Diagnosis and Treatment of Male Infertility-Related Fertilization Failure
Abstract
:1. Introduction
2. PLCζ is the Primary Sperm Oocyte Activating Agent during ICSI but Alternative Factors May Contribute to Fertilization
3. Diagnostic Tools to Detect Oocyte Activation Deficiencies Caused by Sperm Factors
3.1. Heterologous ICSI Tests
3.1.1. Mouse Oocyte Activation Test (MOAT)
3.1.2. Mouse Oocyte Calcium Analysis (MOCA)
3.2. Homologous ICSI Tests
Human Oocyte Calcium Analysis (HOCA)
3.3. Particle Image Velocimetry (PIV)
3.4. Techniques to Assess Compromised PLCζ Presence
3.4.1. Genetic Screening
3.4.2. Gene Expression Analysis, Protein Localization, and Quantification Assays
4. Treatment Options for Patients Suffering from Fertilization Failure
4.1. Assisted Oocyte Activation Methods: Efficacy and Safety
4.2. AOA Efficacy to Overcome Fertilization Failure Caused by Sperm Versus Oocyte Factors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
cDNA Change | Localization (Exon) | Protein Change | Localization (Domain) | Mutation Type | Zygosity | PLCζ Level and Localization in Sperm | Predicted Effect by in Silico Analysis | Observed Phenotype by Functional Analysis | References |
---|---|---|---|---|---|---|---|---|---|
c.360C > G | 4 | p.I120M | EF-X linker | Missense | Heterozygous | No difference with control sperm | No effect | No effect on OA after hPLCZ1cRNA injection into human IVM oocytes | [40] |
c.570 + 1G > T | 5 | p.V189C fs*12 | X | Splicing | C. Heterozygous | Reduced expression | Damaging. Deletion and premature termination codon | NA | [41] |
c.588C > A | 6 | p.C196* | X | Nonsense | Homozygous/ C. Heterozygous | Reduced expression and altered localization | Damaging Premature termination codon | Absence of expression in HEK293T cells. Reduced OA after hPLCZ1 cRNA injection into mouse oocytes. | [41,130,133,139] |
c.590G > A | 6 | p.R197H | X | Missense | Homozygous/ C. Heterozygous | No difference with control sperm | Damaging | Reduced expression in HEK293T cells. Reduced OA after hPLCZ1 cRNA injection into mouse and human IVM oocytes | [40,130,145] |
c.671T > C | 6 | p.L224P | X | Missense | Heterozygous | No difference with control sperm | Damaging | No effect on OA after hPLCZ1 cRNA injection into human IVM oocytes | [40] |
c.698A > T | 6 | p.H233L | X | Missense | Homozygous/ C. Heterozygous | No difference with control sperm | Damaging | Altered Ca2+ patterns and absence of OA after hPLCZ1 cRNA injection into mouse oocytes. Reduced OA after hPLCZ1 cRNA injection into IVM human oocytes. | [40,145,187] |
c.736C > T | 7 | p.L246F | X | Missense | Homozygous | Reduced expression and altered localization | Damaging | NA | [133] |
c.830T > C | 7 | p.L277P | X | Missense | C. Heterozygous | Reduced expression | Damaging | Reduced OA after hPLCZ1 cRNA injection into human IVM oocytes | [41] |
c.972_973delAG | 9 | p.T324 fs | XY-linker | Frameshift deletion | C. Heterozygous | NA | NA | Truncated protein expression in HEK293T cells. Reduced OA after hPLCZ1 cRNA injection into mouse oocytes. | [130] |
c.972_973delAG | 9 | p.V326K fs*25 | XY-linker | Frameshift deletion | Heterozygous | No difference with control sperm | Damaging Truncated protein | Reduced FR after hPLCZ1 cRNA injection into human IVM oocytes | [40] |
c.1048T > C | 10 | p.S350P | Y | Missense | Homozygous | Reduced expression and altered localization | Damaging | NA | [133] |
c.1129_1131deAAT | 10 | p.N377del | Y | Frameshift deletion | C. Heterozygous | Reduced expression | Damaging Disruption of the catalytic domain | Absence of OA after hPLCZ1 cRNA injection into human IVM oocytes | [41] |
c.1151C > T | 10 | p.A384V | Y | Missense | Homozygous | Reduced expression | Damaging | Absence of OA after hPLCZ1 cRNA injection into human IVM oocytes | [41] |
c.1193C > A | 11 | p.H398P | Y | Missense | C. Heterozygous | Reduced expression and altered localization | Damaging | Altered Ca2+ oscillation pattern after hPLCZ1 cRNA injection into mouse oocytes | [45] |
c.1234delA | 11 | p. R412fs | Y | Frameshift deletion | C. Heterozygous | NA | NA | Truncated protein expression in HEK293T cells. Reduced OA after hPLCZ1 cRNA injection into mouse oocytes. | [130] |
c.1259C > T | 11 | p.P420L | Y | Missense | C. Heterozygous | NA | Damaging | Reduced expression in HEK293T cells. Reduced OA after hPLCZ1 cRNA injection into mouse oocytes | [130] |
c.1344A > T | 12 | p.K448N | Y | Missense | C. Heterozygous | Reduced expression | Damaging | Reduced OA after hPLCZ1 cRNA injection into human IVM oocytes | [41] |
c.1465A > T | 13 | p.I489F | C2 | Missense | Homozygous | Absence of expression | Damaging | Altered Ca2+ pattern and reduced OA after mPLCz1 and hPLCZ1 cRNA injection into mouse oocytes | [86] |
c.1499C > T | 13 | p.S500L | C2 | Missense | Homozygous/ C. Heterozygous | No difference with control sperm | Damaging | No effect on FR after hPLCZ1 cRNA injection into human IVM oocytes | [40,71,145] |
c.1658 G > C | 13 | p.R553P | C2 | Missense | Homozygous | No difference with control sperm | Damaging | Reduced OA after hPLCZ1 cRNA injection into mouse oocytes, but not significantly different from control | [131] |
c.1733T > C | 14 | p.M578T | OD (after C2) | Missense | C. Heterozygous | Reduced expression | Damaging | Absence of OA after hPLCZ1 cRNA injection into human IVM oocytes | [41] |
References
- World Health Organization. Infertility Definitions and Terminology. Available online: https://www.who.int/reproductivehealth/topics/infertility/definitions/en/ (accessed on 27 September 2020).
- Jungwirth, A.; Giwercman, A.; Tournaye, H.; Diemer, T.; Kopa, Z.; Dohle, G.; Krausz, C. European association of urology guidelines on male infertility: The 2012 update. Eur. Urol. 2012, 62, 324–332. [Google Scholar] [CrossRef]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yeste, M.; Jones, C.; Amdani, S.N.; Patel, S.; Coward, K. Oocyte activation deficiency: A role for an oocyte contribution? Hum. Reprod. Update 2016, 22, 23–47. [Google Scholar] [CrossRef]
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef]
- Leaver, R.B. Male infertility: An overview of causes and treatment options. Br. J. Nurs. 2016, 25, 35–41. [Google Scholar] [CrossRef]
- Ferlin, A.; Arredi, B.; Foresta, C. Genetic causes of male infertility. Reprod. Toxicol. 2006, 22, 133–141. [Google Scholar] [CrossRef]
- Miyamoto, T.; Minase, G.; Okabe, K.; Ueda, H.; Sengoku, K. Male infertility and its genetic causes. J. Obstet. Gynaecol. Res. 2015, 41, 1501–1505. [Google Scholar] [CrossRef] [PubMed]
- Kashir, J.; Heindryckx, B.; Jones, C.; de Sutter, P.; Parrington, J.; Coward, K. Oocyte activation, phospholipase C zeta and human infertility. Hum. Reprod. Update 2010, 16, 690–703. [Google Scholar] [CrossRef]
- O’Brien, K.L.O.; Varghese, A.C.; Agarwal, A. The genetic causes of male factor infertility: A review. Fertil. Steril. 2010, 93, 1–12. [Google Scholar] [CrossRef]
- Krausz, C.; Degl’Innocenti, S.; Nuti, F.; Morelli, A.; Felici, F.; Sansone, M.; Varriale, G.; Forti, G. Natural transmission of USP9Y gene mutations: A new perspective on the role of AZFa genes in male fertility. Hum. Mol. Genet. 2006, 15, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Reijo, R.; Lee, T.Y.; Salo, P.; Alagappan, R.; Brown, L.G.; Rosenberg, M.; Rozen, S.; Jaffe, T.; Straus, D.; Hovatta, O.; et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Hum. Reprod. 1996, 11, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Writzl, K.; Zorn, B.; Peterlin, B. Copy number of DAZ genes in infertile men. Fertil. Steril. 2005, 84, 1522–1525. [Google Scholar] [CrossRef] [PubMed]
- Baccetti, B.; Collodel, G.; Estenoz, M.; Manca, D.; Moretti, E.; Piomboni, P. Gene deletions in an infertile man with sperm fibrous sheath dysplasia. Hum. Reprod. 2005, 20, 2790–2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yatsenko, A.N.; Roy, A.; Chen, R.; Ma, L.; Murthy, L.J.; Yan, W.; Lamb, D.J.; Matzuk, M.M. Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL 10 mutations in oligozoospermic patients impair homodimerization. Hum. Mol. Genet. 2006, 15, 3411–3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avenarius, M.R.; Hildebrand, M.S.; Zhang, Y.; Meyer, N.C.; Smith, L.L.H.; Kahrizi, K.; Najmabadi, H.; Smith, R.J.H. Human Male Infertility Caused by Mutations in the CATSPER1 Channel Protein. Am. J. Hum. Genet. 2009, 84, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ElInati, E.; Fossard, C.; Okutman, O.; Ghédir, H.; Ibala-Romdhane, S.; Ray, P.F.; Saad, A.; Hennebicq, S.; Viville, S. A new mutation identified in SPATA16 in two globozoospermic patients. J. Assist. Reprod. Genet. 2016, 33, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Elinati, E.; Kuentz, P.; Redin, C.; Jaber, S.; Vanden Meerschaut, F.; Makarian, J.; Koscinski, I.; Nasr-Esfahani, M.H.; Demirol, A.; Gurgan, T.; et al. Globozoospermia is mainly due to dpy19l2 deletion via non-allelic homologous recombination involving two recombination hotspots. Hum. Mol. Genet. 2012, 21, 3695–3702. [Google Scholar] [CrossRef]
- Yu, J.; Chen, Z.; Ni, Y.; Li, Z. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): A systemic review and meta-analysis. Hum. Reprod. 2012, 27, 25–35. [Google Scholar] [CrossRef]
- Palermo, G.; Joris, H.; Devroey, P.; Van Steirteghem, A.C. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 1992, 340, 17–18. [Google Scholar] [CrossRef]
- Neri, Q.V.; Lee, B.; Rosenwaks, Z.; Machaca, K.; Palermo, G.D. Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium 2014, 55, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Palermo, G.D.; O’Neill, C.L.; Chow, S.; Cheung, S.; Parrella, A.; Pereira, N.; Rosenwaks, Z. Intracytoplasmic sperm injection: State of the art in humans. Reproduction 2017, 154, F93–F110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palermo, G.D.; Cohen, J.; Alikani, M.; Adler, A.; Rosenwaks, Z. Intracytoplasmic sperm injection: A novel treatment for all forms of male factor infertility. Fertil. Steril. 1995, 63, 1231–1240. [Google Scholar] [CrossRef]
- Vanden Meerschaut, F.; Nikiforaki, D.; Heindryckx, B.; De Sutter, P. Assisted oocyte activation following ICSI fertilization failure. Reprod. Biomed. Online 2014, 28, 560–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahutte, N.G.; Arici, A. Failed fertilization: Is it predictable? Curr. Opin. Obstet. Gynecol. 2003, 15, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Maheshwari, A.; Mollison, J. Factors associated with failed treatment: An analysis of 121,744 women embarking on their first IVF Cycles. PLoS ONE 2013, 8, e82249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, S.; Hamilton, M.P.R.; Shaaban, M.; Khalaf, Y.; Seddler, M.; Ghobara, T.; Braude, P.; Kennedy, R.; Rutherford, A.; Hartshorne, G.; et al. Conventional in-vitro fertilisation versus intracytoplasmic sperm injection for the treatment of non-male-factor infertility: A randomised controlled trial. Lancet 2001, 357, 2075–2079. [Google Scholar] [CrossRef]
- Flaherty, S.P.; Payne, D.; Matthews, C.D. Fertilization failures and abnormal fertilization after intracytoplasmic sperm injection. Hum. Reprod. 1998, 13, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Esfandiari, N.; Javed, M.H.; Gotlieb, L.; Casper, R. Complete Failed Fertiltzation After Intracytoplasmic Sperm lniection-Analysis of 10 Years’ Data. Int. J. Fertil. Womens Med. 2005, 50, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Bonte, D.; Reddy Guggilla, R.; Stamatiadis, P.; De Sutter, P.; Heindryckx, B. Unraveling the Causes of Failed Fertilization after Intracytoplasmic Sperm Injection Due to Oocyte Activation Deficiency. In Reproductomics; Horcajadas, J.A., Gosálvez, J., Eds.; Academic Press, Elsevier: London, UK, 2018; pp. 243–277. [Google Scholar] [CrossRef]
- Yanagida, K.; Fujikura, Y.; Katayose, H. The present status of artificial oocyte activation in assisted reproductive technology. Reprod. Med. Biol. 2008, 7, 133–142. [Google Scholar] [CrossRef]
- Combelles, C.M.H.; Zhu, L.; Fox, J.H.; Racowsky, C. Diagnosing cellular defects in an unexplained case of total fertilization failure. Hum. Reprod. 2010, 25, 1666–1671. [Google Scholar] [CrossRef] [Green Version]
- Sang, Q.; Li, B.; Kuang, Y.; Wang, X.; Zhang, Z.; Chen, B.; Wu, L.; Lyu, Q.; Fu, Y.; Yan, Z.; et al. Homozygous Mutations in WEE2 Cause Fertilization Failure and Female Infertility. Am. J. Hum. Genet. 2018, 102, 649–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esterhuizen, A.D.; Franken, D.R.; Becker, P.J.; Lourens, J.G.H.; Müller, I.I.; Van Rooyen, L.H. Defective sperm decondensation: A cause for fertilization failure. Andrologia 2002, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Terada, Y.; Nakamura, S.I.; Morita, J.; Tachibana, M.; Morito, Y.; Ito, K.; Murakami, T.; Yaegashi, N.; Okamura, K. Use of mammalian eggs for assessment of human sperm function: Molecular and cellular analyses of fertilization by intracytoplasmic sperm injection. Am. J. Reprod. Immunol. 2004, 51, 290–293. [Google Scholar] [CrossRef]
- Verza, S.; Esteves, S.C. Sperm defect severity rather than sperm source is associated with lower fertilization rates after intracytoplasmic sperm injection. Int. Braz. J. Urol. 2008, 34, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaichian, S.; Tamannaie, Z.; Rohani, H.; Ahmadi, M.; Nasr, M.H.; Pazouki, A.; Mehdizadehkashi, A. Relationship between sperm parameters and intracytoplasmic sperm injection outcome. Middle East. Fertil. Soc. J. 2015, 20, 251–254. [Google Scholar] [CrossRef]
- Nomikos, M.; Kashir, J.; Lai, F.A. The role and mechanism of action of sperm PLC-zeta in mammalian fertilisation. Biochem. J. 2017, 474, 3659–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durban, M.; Barragán, M.; Colodron, M.; Ferrer-Buitrago, M.; De Sutter, P.; Heindryckx, B.; Vernaeve, V.; Vassena, R. PLCζ disruption with complete fertilization failure in normozoospermia. J. Assist. Reprod. Genet. 2015, 32, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Torra-Massana, M.; Cornet-Bartolomé, D.; Barragán, M.; Durban, M.; Ferrer-Vaquer, A.; Zambelli, F.; Rodriguez, A.; Oliva, R.; Vassena, R. Novel phospholipase C zeta 1 mutations associated with fertilization failures after ICSI. Hum. Reprod. 2019, 34, 1494–1504. [Google Scholar] [CrossRef]
- Yan, Z.; Fan, Y.; Wang, F.; Yan, Z.; Li, M.; Ouyang, J.; Wu, L.; Yin, M.; Zhao, J.; Kuang, Y.; et al. Novel mutations in PLCZ1 cause male infertility due to fertilization failure or poor fertilization. Hum. Reprod. 2020, 35, 472–481. [Google Scholar] [CrossRef]
- Azad, N.; Nazarian, H.; Novin, M.G.; Farahani, R.M.; Piryaei, A.; Heidari, M.H.; Alitappeh, M.A. Oligoasthenoteratozoospermic (OAT) men display altered phospholipase C ζ (PLCζ) localization and a lower percentage of sperm cells expressing PLCζ and post-acrosomal sheath WW domain-binding protein (PAWP). Bosn. J. Basic Med. Sci. 2018, 18, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Rahimizadeh, P.; Topraggaleh, T.R.; Nasr-Esfahani, M.H.; Ziarati, N.; Mirshahvaladi, S.; Esmaeili, V.; Seifi, S.; Eftekhari-Yazdi, P.; Shahverdi, A. The alteration of PLCζ protein expression in unexplained infertile and asthenoteratozoospermic patients: A potential effect on sperm fertilization ability. Mol. Reprod. Dev. 2020, 87, 115–123. [Google Scholar] [CrossRef]
- Taylor, S.L.; Yoon, S.Y.; Morshedi, M.S.; Lacey, D.R.; Jellerette, T.; Fissore, R.A.; Oehninger, S. Complete globozoospermia associated with PLCζ deficiency treated with calcium ionophore and ICSI results in pregnancy. Reprod. Biomed. Online 2010, 20, 559–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heytens, E.; Parrington, J.; Coward, K.; Young, C.; Lambrecht, S.; Yoon, S.Y.; Fissore, R.A.; Hamer, R.; Deane, C.M.; Ruas, M.; et al. Reduced amounts and abnormal forms of phospholipase C zeta (PLCζ) in spermatozoa from infertile men. Hum. Reprod. 2009, 24, 2417–2428. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.; Kashir, J.; Thanassoulas, A.; Safieh-Garabedian, B.; Lai, F.A.; Nomikos, M. Essential Role of Sperm-Specific PLC-Zeta in Egg Activation and Male Factor Infertility: An Update. Front. Cell Dev. Biol. 2020, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashir, J. Increasing associations between defects in phospholipase C zeta and conditions of male infertility: Not just ICSI failure? J. Assist. Reprod. Genet. 2020, 37, 1273–1293. [Google Scholar] [CrossRef] [PubMed]
- Heindryckx, B.; Van der Elst, J.; De Sutter, P.; Dhont, M. Treatment option for sperm- or oocyte-related fertilization failure: Assisted oocyte activation following diagnostic heterologous ICSI. Hum. Reprod. 2005, 20, 2237–2241. [Google Scholar] [CrossRef] [Green Version]
- Vanden Meerschaut, F.; Leybaert, L.; Nikiforaki, D.; Qian, C.; Heindryckx, B.; De Sutter, P. Diagnostic and prognostic value of calcium oscillatory pattern analysis for patients with ICSI fertilization failure. Hum. Reprod. 2013, 28, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Ferrer-Buitrago, M.; Dhaenens, L.; Lu, Y.; Bonte, D.; Vanden Meerschaut, F.; De Sutter, P.; Leybaert, L.; Heindryckx, B. Human oocyte calcium analysis predicts the response to assisted oocyte activation in patients experiencing fertilization failure after ICSI. Hum. Reprod. 2018, 33, 416–425. [Google Scholar] [CrossRef]
- Meng, X.; Melo, P.; Jones, C.; Ross, C.; Mounce, G.; Turner, K.; Child, T.; Coward, K. Use of phospholipase C zeta analysis to identify candidates for artificial oocyte activation: A case series of clinical pregnancies and a proposed algorithm for patient management. Fertil. Steril. 2020, 114, 163–174. [Google Scholar] [CrossRef]
- Bonte, D.; Ferrer-Buitrago, M.; Dhaenens, L.; Popovic, M.; Thys, V.; De Croo, I.; De Gheselle, S.; Steyaert, N.; Boel, A.; Vanden Meerschaut, F.; et al. Assisted oocyte activation significantly increases fertilization and pregnancy outcome in patients with low and total failed fertilization after intracytoplasmic sperm injection: A 17-year retrospective study. Fertil. Steril. 2019, 112, 266–274. [Google Scholar] [CrossRef]
- Sun, B.; Yeh, J. Calcium Oscillatory Patterns and Oocyte Activation During Fertilization: A Possible Mechanism for Total Fertilization Failure (TFF) in Human In Vitro Fertilization? Reprod. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Vanden Meerschaut, F.; Nikiforaki, D.; De Gheselle, S.; Dullaerts, V.; Van Den Abbeel, E.; Gerris, J.; Heindryckx, B.; De Sutter, P. Assisted oocyte activation is not beneficial for all patients with a suspected oocyte-related activation deficiency. Hum. Reprod. 2012, 27, 1977–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, A.; Nomikos, M.; Theodoridou, M.; Nounesis, G.; Lai, F.A.; Swann, K. PLCζ causes Ca2+ oscillations in mouse eggs by targeting intracellular and not plasma membrane PI(4,5)P 2. Mol. Biol. Cell 2012, 23, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.J. Signalling mechanisms of mamalian oocyte activation. Hum. Reprod. Update 2002, 8, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Stein, P.; Savy, V.; Williams, A.M.; Williams, C.J. Modulators of calcium signalling at fertilization: Calcium signaling at fertilization. Open Biol. 2020, 10. [Google Scholar] [CrossRef]
- Ducibella, T.; Huneau, D.; Angelichio, E.; Xu, Z.; Schultz, R.M.; Kopf, G.S.; Fissore, R.; Madoux, S.; Ozil, J.-P. Egg-to-Embryo Transition Is Driven by Differential Responses to Ca2+ Oscillation Number. Dev. Biol. 2002, 250, 280–291. [Google Scholar] [CrossRef]
- Tsaadon, L.; Kaplan-Kraicer, R.; Shalgi, R. Myristoylated alanine-rich C kinase substrate, but not Ca2+/calmodulin-dependent protein kinase II, is the mediator in cortical granules exocytosis. Reproduction 2008, 135, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Dupont, G. Link between fertilization-induced Ca2+ oscillations and relief from metaphase II arrest in mammalian eggs: A model based on calmodulin-dependent kinase II activation. Biophys. Chem. 1998, 72, 153–167. [Google Scholar] [CrossRef]
- Tom Ducibella and Rafael Fissore The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev. Biol. 2008, 315, 257–279. [CrossRef] [Green Version]
- Jones, K.T. Mammalian egg activation: From Ca2+ spiking to cell cycle progression. Reproduction 2005, 130, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Madgwick, S.; Levasseur, M.; Jones, K.T. Calmodulin-dependent protein kinase II, and not protein kinase C, is sufficient for triggering cell-cycle resumption in mammalian eggs. J. Cell Sci. 2005, 118, 3849–3859. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.S.; Susor, A.; Conti, M. Protein tyrosine kinase Wee1B is essential for metaphase II exit in mouse oocytes. Science 2011, 332, 462–465. [Google Scholar] [CrossRef] [Green Version]
- Kashir, J.; Deguchi, R.; Jones, C.; Coward, K.; Stricker, S.A. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom. Mol. Reprod. Dev. 2013, 80, 787–815. [Google Scholar] [CrossRef] [PubMed]
- Nikiforaki, D.; Vanden Meerschaut, F.; Qian, C.; De Croo, I.; Lu, Y.; Deroo, T.; Van Den Abbeel, E.; Heindryckx, B.; De Sutter, P. Oocyte cryopreservation and in vitro culture affect calcium signalling during human fertilization. Hum. Reprod. 2014, 29, 29–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tóth, S.; Huneau, D.; Banrezes, B.; Ozil, J.P. Egg activation is the result of calcium signal summation in the mouse. Reproduction 2006, 131, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Ozil, J.P.; Huneau, D. Activation of rabbit oocytes: The impact of the Ca2+ signal regime on development. Development 2001, 128, 917–928. [Google Scholar]
- Ozil, J.P.; Banrezes, B.; Tóth, S.; Pan, H.; Schultz, R.M. Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Dev. Biol. 2006, 300, 534–544. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Bonte, D.; Ferrer-Buitrago, M.; Popovic, M.; Neupane, J.; Van Der Jeught, M.; Leybaert, L.; De Sutter, P.; Heindryckx, B. Culture conditions affect Ca2+ release in artificially activated mouse and human oocytes. Reprod. Fertil. Dev. 2018, 30, 991–1001. [Google Scholar] [CrossRef]
- Yoon, S.-Y.; Jellerette, T.; Salicioni, A.M.; Lee, H.C.; Yoo, M.; Coward, K.; Parrington, J.; Grow, D.; Cibelli, J.B.; Visconti, P.E.; et al. Human sperm devoid of PLC, zeta 1 fail to induce Ca2+ release and are unable to initiate the first step of embryo development. J. Clin. Investig. 2008, 118, 3671–3681. [Google Scholar] [CrossRef] [Green Version]
- Harada, Y.; Matsumoto, T.; Hirahara, S.; Nakashima, A.; Ueno, S.; Oda, S.; Miyazaki, S.; Iwao, Y. Characterization of a sperm factor for egg activation at fertilization of the newt Cynops pyrrhogaster. Dev. Biol. 2007, 306, 797–808. [Google Scholar] [CrossRef] [Green Version]
- Sette, C.; Bevilacqua, A.; Bianchini, A.; Mangia, F.; Geremia, R.; Rossi, P. Parthenogenetic activation of mouse eggs by microinjection of a truncated c-kit tyrosine kinase present in spermatozoa. Development 1997, 124, 2267–2274. [Google Scholar] [PubMed]
- Wu, A.T.H.; Sutovsky, P.; Manandhar, G.; Xu, W.; Katayama, M.; Day, B.N.; Park, K.W.; Yi, Y.J.; Yan, W.X.; Prather, R.S.; et al. PAWP, a sperm-specific WW domain-binding protein, promotes meiotic resumption and pronuclear development during fertilization. J. Biol. Chem. 2007, 282, 12164–12175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aarabi, M.; Balakier, H.; Bashar, S.; Moskovtsev, S.I.; Sutovsky, P.; Librach, C.L.; Oko, R. Sperm-derived WW domain-binding protein, PAWP, elicits calcium oscillations and oocyte activation in humans and mice. FASEB J. 2014, 28, 4434–4440. [Google Scholar] [CrossRef] [PubMed]
- Aarabi, M.; Balakier, H.; Bashar, S.; Moskovtsev, S.I.; Sutovsky, P.; Librach, C.L.; Oko, R. Sperm content of postacrosomal WW binding protein is related to fertilization outcomes in patients undergoing assisted reproductive technology. Fertil. Steril. 2014, 102, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Nomikos, M.; Sanders, J.R.; Theodoridou, M.; Kashir, J.; Matthews, E.; Nounesis, G.; Lai, F.A.; Swann, K. Sperm-specific post-acrosomal WW-domain binding protein (PAWP) does not cause Ca2+ release in mouse oocytes. Mol. Hum. Reprod. 2014, 20, 938–947. [Google Scholar] [CrossRef] [Green Version]
- Nomikos, M.; Sanders, J.R.; Kashir, J.; Sanusi, R.; Buntwal, L.; Love, D.; Ashley, P.; Sanders, D.; Knaggs, P.; Bunkheila, A.; et al. Functional disparity between human pawpand plcζ in the generation of Ca2+ oscillations for oocyte activation. Mol. Hum. Reprod. 2015, 21, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Satouh, Y.; Nozawa, K.; Ikawa, M. Sperm postacrosomal WW domain-binding protein is not required for mouse egg activation. Biol. Reprod. 2015, 93, 1–7. [Google Scholar] [CrossRef]
- Saunders, C.M.; Larman, M.G.; Parrington, J.; Cox, L.J.; Royse, J.; Blayney, L.M.; Swann, K.; Lai, F.A. PLCζ: A sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 2002, 129, 3533–3544. [Google Scholar]
- Rogers, N.T.; Hobson, E.; Pickering, S.; Lai, F.A.; Braude, P.; Swann, K. Phospholipase Cζ causes Ca2+ oscillations and parthenogenetic activation of human oocytes. Reproduction 2004, 128, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Ito, M.; Kuroda, K.; Takeda, S.; Tanaka, A. Cell Calcium The establishment of appropriate methods for egg-activation by human PLCZ1 RNA injection into human oocyte. Cell Calcium 2017, 65, 22–30. [Google Scholar] [CrossRef]
- Yoon, S.; Eum, J.H.; Lee, J.E.; Lee, H.C.; Kim, Y.S.; Han, J.E.; Won, H.J.; Park, S.H.; Shim, S.H.; Lee, W.S.; et al. Recombinant human phospholipase C zeta 1 induces intracellular calcium oscillations and oocyte activation in mouse and human oocytes. Hum. Reprod. 2012, 27, 1768–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodoridou, M.; Nomikos, M.; Parthimos, D.; Gonzalez-Garcia, J.R.; Elgmati, K.; Calver, B.L.; Sideratou, Z.; Nounesis, G.; Swann, K.; Lai, F.A. Chimeras of sperm PLCζ reveal disparate protein domain functions in the generation of intracellular Ca2+ oscillations in mammalian eggs at fertilization. Mol. Hum. Reprod. 2013, 19, 852–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knott, J.G.; Kurokawa, M.; Fissore, R.A.; Schultz, R.M.; Williams, C.J. Transgenic RNA interference reveals role for mouse sperm phospholipase Cζ in triggering Ca2+ oscillations during fertilization. Biol. Reprod. 2005, 72, 992–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escoffier, J.; Lee, H.C.; Yassine, S.; Zouari, R.; Martinez, G.; Karaouzène, T.; Coutton, C.; Kherraf, Z.E.; Halouani, L.; Triki, C.; et al. Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Hum. Mol. Genet. 2016, 25, 878–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachem, A.; Godwin, J.; Ruas, M.; Lee, H.C.; Buitrago, M.F.; Ardestani, G.; Bassett, A.; Fox, S.; Navarrete, F.; De Sutter, P.; et al. Plcζ is the physiological trigger of the Ca2+ oscillations that induce embryogenesis in mammals but conception can occur in its absence. Development 2017, 144, 2914–2924. [Google Scholar] [CrossRef] [Green Version]
- Nozawa, K.; Satouh, Y.; Fujimoto, T.; Oji, A.; Ikawa, M. Sperm-borne phospholipase C zeta-1 ensures monospermic fertilization in mice. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.I.; Tokmakov, A.A.; Iwasaki, T.; Fukami, Y. Tyrosine kinase-dependent activation of phospholipase Cγ is required for calcium transient in Xenopus egg fertilization. Dev. Biol. 2000, 224, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Runft, L.L.; Carroll, D.J.; Gillett, J.; Giusti, A.F.; O’Neill, F.J.; Foltz, K.R. Identification of a starfish egg PLC-γ that regulates Ca2+ release at fertilization. Dev. Biol. 2004, 269, 220–236. [Google Scholar] [CrossRef] [Green Version]
- Coward, K.; Owen, H.; Tunwell, R.; Swann, K.; Parrington, J. Phospholipid binding properties and functional characterization of a sea urchin phospholipase Cδ in urchin and mouse eggs. Biochem. Biophys. Res. Commun. 2007, 357, 964–970. [Google Scholar] [CrossRef]
- Yin, X.; Eckberg, W.R. Characterization of phospholipases C ß and γ and their possible roles in chaetopterus egg activation. Mol. Reprod. Dev. 2009, 76, 460–470. [Google Scholar] [CrossRef]
- Igarashi, H.; Knott, J.G.; Schultz, R.M.; Williams, C.J. Alterations of PLCβ1 in mouse eggs change calcium oscillatory behavior following fertilization. Dev. Biol. 2007, 312, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Rybouchkin, A.; Dozortsev, D.; De Sutter, P.; Qian, C.; Dhont, M. Andrology: Intracytoplasmic injection of human spermatozoa into mouse oocytes: A useful model to investigate the oocyte-activating capacity and the karyotype of human spermatozoa. Hum. Reprod. 1995, 10, 1130–1135. [Google Scholar] [CrossRef]
- Goud, P.T.; Goud, A.P.; Rybouchkin, A.V.; De Sutter, P.; Dhont, M. Chromatin decondensation, pronucleus formation, metaphase entry and chromosome complements of human spermatozoa after intracytoplasmic sperm injection into hamster oocytes. Hum. Reprod. 1998, 13, 1336–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, E.L.; Mudrak, O.; Zalensky, A.O. Kinetics of human male pronuclear development in a heterologous ICSI model. J. Assist. Reprod. Genet. 2010, 27, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A.; Bongso, A.; Ng, S.C. Intracytoplasmic injection of human sperm into the hamster oocyte (Hamster ICSI Assay) as a test for fertilizing capacity of the severe male-factor sperm. J. Assist. Reprod. Genet. 1996, 13, 647–651. [Google Scholar] [CrossRef]
- Chi, H.J.; Koo, J.J.; Song, S.J.; Lee, J.Y.; Chang, S.S. Successful fertilization and pregnancy after intracytoplasmic sperm injection and oocyte activation with calcium ionophore in a normozoospermic patient with extremely low fertilization rates in intracytoplasmic sperm injection cycles. Fertil. Steril. 2004, 82, 475–477. [Google Scholar] [CrossRef]
- Schatten, H.; Sun, Q.Y. The role of centrosomes in mammalian fertilization and its significance for ICSI. Mol. Hum. Reprod. 2009, 15, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Avidor-Reiss, T.; Khire, A.; Fishman, E.L.; Jo, K.H. Atypical centrioles during sexual reproduction. Front. Cell Dev. Biol. 2015, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.Y.; Schatten, H. Centrosome inheritance after fertilization and nuclear transfer in mammals. Adv. Exp. Med. Biol. 2007, 591, 58–71. [Google Scholar] [CrossRef]
- Terada, Y.; Nakamura, S.I.; Simerly, C.; Hewitson, L.; Murakami, T.; Yaegashi, N.; Okamura, K.; Schatten, G. Centrosomal Function Assessment in Human Sperm Using Heterologous ICSI with Rabbit Eggs: A New Male Factor Infertility Assay. Mol. Reprod. Dev. 2004, 67, 360–365. [Google Scholar] [CrossRef]
- Yoshimoto-Kakoi, T.; Terada, Y.; Tachibana, M.; Murakami, T.; Yaegashi, N.; Okamura, K. Assessing centrosomal function of infertile males using heterologous ICSI. Syst. Biol. Reprod. Med. 2008, 54, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.I.; Terada, Y.; Horiuchi, T.; Emuta, C.; Murakami, T.; Yaegashi, N.; Okamura, K. Human sperm aster formation and pronuclear decondensation in bovine eggs following intracytoplasmic sperm injection using a piezo-driven pipette: A novel assay for human sperm centrosomal function. Biol. Reprod. 2001, 65, 1359–1363. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Terada, Y.; Horiuchi, T.; Emuta, C.; Murakami, T.; Yaegashi, N.; Okamura, K. Analysis of the human sperm centrosomal function and the oocyte activation ability in a case of globozoospermia, by ICSI into bovine oocytes. Hum. Reprod. 2002, 17, 2930–2934. [Google Scholar] [CrossRef]
- Rawe, V.Y.; Terada, Y.; Nakamura, S.; Chillik, C.F.; Olmedo, S.B.; Chemes, H.E. A pathology of the sperm centriole responsible for defective sperm aster formation, syngamy and cleavage. Hum. Reprod. 2002, 17, 2344–2349. [Google Scholar] [CrossRef] [Green Version]
- Heindryckx, B.; De Gheselle, S.; Gerris, J.; Dhont, M.; De Sutter, P. Efficiency of assisted oocyte activation as a solution for failed intracytoplasmic sperm injection. Reprod. Biomed. Online 2008, 17, 662–668. [Google Scholar] [CrossRef]
- Rybouchkin, A.V.; De Sutter, P.; Van Der Straeten, F.; Dhont, M.; Quatacker, J. Fertilization and pregnancy after assisted oocyte activation and intracytoplasmic sperm injection in a case of round-headed sperm associated with deficient oocyte activation capacity. Fertil. Steril. 1997, 68, 1144–1147. [Google Scholar] [CrossRef]
- Heytens, E.; Schmitt-John, T.; Moser, J.M.; Jensen, N.M.; Soleimani, R.; Young, C.; Coward, K.; Parrington, J.; De Sutter, P. Reduced fertilization after ICSI and abnormal phospholipase C zeta presence in spermatozoa from the wobbler mouse. Reprod. Biomed. Online 2010, 21, 742–749. [Google Scholar] [CrossRef] [Green Version]
- Tesarik, J.; Rienzi, L.; Ubaldi, F.; Mendoza, C.; Greco, E. Use of a modified intracytoplasmic sperm injection technique to overcome sperm-borne and oocyte-borne oocyte activation failures. Fertil. Steril. 2002, 78, 619–624. [Google Scholar] [CrossRef]
- Araki, Y.; Yoshizawa, M.; Abe, H.; Murase, Y.; Araki, Y. Use of mouse oocytes to evaluate the ability of human sperm to activate oocytes after failure of activation by intracytoplasmic sperm injection. Zygote 2004, 12, 111–116. [Google Scholar] [CrossRef]
- Egashira, A.; Murakami, M.; Haigo, K.; Horiuchi, T.; Kuramoto, T. A successful pregnancy and live birth after intracytoplasmic sperm injection with globozoospermic sperm and electrical oocyte activation. Fertil. Steril. 2009, 92, 2037.e5–2037.e9. [Google Scholar] [CrossRef]
- Kyono, K.; Nakajo, Y.; Nishinaka, C.; Hattori, H.; Kyoya, T.; Ishikawa, T.; Abe, H.; Araki, Y. A birth from the transfer of a single vitrified-warmed blastocyst using intracytoplasmic sperm injection with calcium ionophore oocyte activation in a globozoospermic patient. Fertil. Steril. 2009, 91, 931.e7–931.e11. [Google Scholar] [CrossRef] [PubMed]
- Bonte, D.; Thys, V.; De Sutter, P.; Boel, A.; Leybaert, L.; Heindryckx, B. Vitrification negatively affects the Ca2+-releasing and activation potential of mouse oocytes, but vitrified oocytes are potentially useful for diagnostic purposes. Reprod. Biomed. Online 2020, 40, 13–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morozumi, K.; Shikano, T.; Miyazaki, S.; Yanagimachi, R. Simultaneous removal of sperm plasma membrane and acrosome before intracytoplasmic sperm injection improves oocyte activation/embryonic development. Proc. Natl. Acad. Sci. USA 2006, 103, 17661–17666. [Google Scholar] [CrossRef] [Green Version]
- Cox, L.J.; Larman, M.G.; Saunders, C.M.; Hashimoto, K.; Swann, K.; Lai, F.A. Sperm phospholipase Cζ from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction 2002, 124, 611–623. [Google Scholar] [CrossRef]
- Nomikos, M.; Theodoridou, M.; Elgmati, K.; Parthimos, D.; Calver, B.L.; Buntwal, L.; Nounesis, G.; Swann, K.; Anthony Lai, F. Human PLCζ exhibits superior fertilization potency over mouse PLCζ in triggering the Ca2+ oscillations required for mammalian oocyte activation. Mol. Hum. Reprod. 2014, 20, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Nikiforaki, D.; Vanden Meerschaut, F.; De Gheselle, S.; Qian, C.; Van Den Abbeel, E.; De Vos, W.H.; Deroo, T.; De Sutter, P.; Heindryckx, B. Sperm involved in recurrent partial hydatidiform moles cannot induce the normal pattern of calcium oscillations. Fertil. Steril. 2014, 102. [Google Scholar] [CrossRef]
- Dai, J.; Zheng, W.; Dai, C.; Guo, J.; Lu, C.; Gong, F.; Li, Y.; Zhou, Q.; Lu, G.; Lin, G. New biallelic mutations in WEE2: Expanding the spectrum of mutations that cause fertilization failure or poor fertilization. Fertil. Steril. 2019, 111, 510–518. [Google Scholar] [CrossRef]
- Busardò, F.P.; Gulino, M.; Napoletano, S.; Zaami, S.; Frati, P. The Evolution of Legislation in the Field of Medically Assisted Reproduction and Embryo Stem Cell Research in European Union Members. Biomed. Res. Int. 2014, 2014. [Google Scholar] [CrossRef]
- De Gheselle, N.; De Croo, V.; Heindryckx, L.; Van den Abbeel, D.S. The effect of smooth endoplasmic reticulum aggregates in human oocytes on calcium signalling and the significance for oocyte collection cycle. In Proceedings of the Abstracts of the 30th Annual Meeting of ESHRE, Munich, Germany, 29 June–2 July 2014. [Google Scholar]
- Leemans, B.; Gadella, B.M.; Stout, T.A.E.; Heras, S.; Smits, K.; Ferrer-Buitrago, M.; Claes, E.; Heindryckx, B.; De Vos, W.H.; Nelis, H.; et al. Procaine induces cytokinesis in horse oocytes via a pH-dependent mechanism. Biol. Reprod. 2015, 93, 1–17. [Google Scholar] [CrossRef]
- Ajduk, A.; Ilozue, T.; Windsor, S.; Yu, Y.; Seres, K.B.; Bomphrey, R.J.; Tom, B.D.; Swann, K.; Thomas, A.; Graham, C.; et al. Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability. Nat. Commun. 2011, 2, 410–417. [Google Scholar] [CrossRef] [Green Version]
- Swann, K.; Windsor, S.; Campbell, K.; Elgmati, K.; Nomikos, M.; Zernicka-Goetz, M.; Amso, N.; Lai, F.A.; Thomas, A.; Graham, C. Phospholipase C-ζ-induced Ca2+ oscillations cause coincident cytoplasmic movements in human oocytes that failed to fertilize after intracytoplasmic sperm injection. Fertil. Steril. 2012, 97, 742–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milewski, R.; Szpila, M.; Ajduk, A. Dynamics of cytoplasm and cleavage divisions correlates with preimplantation embryo development. Reproduction 2018, 155, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, W.M.; Kashir, J.; Jones, C.; Coward, K. Oocyte activation and phospholipase C zeta (PLCζ): Diagnostic and therapeutic implications for assisted reproductive technology. Cell Commun. Signal. 2012, 10, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amdani, S.N.; Yeste, M.; Jones, C.; Coward, K. Phospholipase C zeta (PLCζ) and male infertility: Clinical update and topical developments. Adv. Biol. Regul. 2016, 61, 58–67. [Google Scholar] [CrossRef]
- Nomikos, M.; Kashir, J.; Swann, K.; Lai, F.A. Sperm PLCζ: From structure to Ca2+ oscillations, egg activation and therapeutic potential. FEBS Lett. 2013, 587, 3609–3616. [Google Scholar] [CrossRef] [Green Version]
- Nomikos, M.; Elgmati, K.; Theodoridou, M.; Georgilis, A.; Gonzalez-Garcia, J.R.; Nounesis, G.; Swann, K.; Lai, F.A. Novel regulation of PLCζ activity via its XY-linker. Biochem. J. 2011, 438, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Mu, J.; Zhang, Z.; Wu, L.; Fu, J.; Chen, B.; Yan, Z.; Li, B.; Zhou, Z.; Wang, W.; Zhao, L.; et al. The identification of novel mutations in PLCZ1 responsible for human fertilization failure and a therapeutic intervention by artificial oocyte activation. Mol. Hum. Reprod. 2020, 26, 80–87. [Google Scholar] [CrossRef]
- Yuan, P.; Yang, C.; Ren, Y.; Yan, J.; Nie, Y.; Yan, L.; Qiao, J. A novel homozygous mutation of phospholipase C zeta leading to defective human oocyte activation and fertilization failure. Hum. Reprod. 2020, 35, 977–985. [Google Scholar] [CrossRef]
- Kleene, K.C. Connecting cis-elements and trans-factors with mechanisms of developmental regulation of mRNA translation in meiotic and haploid mammalian spermatogenic cells. Reproduction 2013, 146. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Dai, C.; Guo, J.; Zheng, W.; Zhang, T.; Li, Y.; Lu, C.; Gong, F.; Lu, G.; Lin, G. Novel homozygous variations in PLCZ1 lead to poor or failed fertilization characterized by abnormal localization patterns of PLCζ in sperm. Clin. Genet. 2020, 97, 347–351. [Google Scholar] [CrossRef]
- Wu, L.; Chen, H.; Li, D.; Song, D.; Chen, B.; Yan, Z.; lyu, Q.; Wang, L.; Kuang, Y.; Li, B.; et al. Novel mutations in PATL2: Expanding the mutational spectrum and corresponding phenotypic variability associated with female infertility. J. Hum. Genet. 2019, 64, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, B.; Li, D.; Yan, Z.; Mao, X.; Xu, Y.; Mu, J.; Li, Q.; Jin, L.; He, L.; et al. Novel mutations and structural deletions in TUBB8: Expanding mutational and phenotypic spectrum of patients with arrest in oocyte maturation, fertilization or early embryonic development. Hum. Reprod. 2017, 32, 457–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alazami, A.M.; Awad, S.M.; Coskun, S.; Al-Hassan, S.; Hijazi, H.; Abdulwahab, F.M.; Poizat, C.; Alkuraya, F.S. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol. 2015, 16, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghajanpour, S.; Ghaedi, K.; Salamian, A.; Deemeh, M.R.; Tavalaee, M.; Moshtaghian, J.; Parrington, J.; Nasr-Esfahani, M.H. Quantitative expression of phospholipase C zeta, as an index to assess fertilization potential of a semen sample. Hum. Reprod. 2011, 26, 2950–2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavalaee, M.; Nasr-Esfahani, M.H. Expression profile of PLCζ, PAWP, and TR-KIT in association with fertilization potential, embryo development, and pregnancy outcomes in globozoospermic candidates for intra-cytoplasmic sperm injection and artificial oocyte activation. Andrology 2016, 4, 850–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Zhang, J.; Kong, S.; Li, C.; Zhang, Z.; He, X.; Wu, H.; Tang, D.; Zha, X.; Tan, Q.; et al. A homozygous nonsense mutation of PLCZ1 cause male infertility with oocyte activation deficiency. J. Assist. Reprod. Genet. 2020, 37, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Kashir, J.; Jones, C.; Lee, H.C.; Rietdorf, K.; Nikiforaki, D.; Durrans, C.; Ruas, M.; Tee, S.T.; Heindryckx, B.; Galione, A.; et al. Loss of activity mutations in phospholipase C zeta ( PLC z ) abolishes calcium oscillatory ability of human recombinant protein in mouse oocytes. Hum. Reprod. 2011, 26, 3372–3387. [Google Scholar] [CrossRef] [Green Version]
- Nazarian, H.; Azad, N.; Nazari, L.; Piryaei, A.; Heidari, M.H.; Masteri-Farahani, R.; Karimi, M.; Ghaffari-Novin, M. Effect of artificial oocyte activation on intra-cytoplasmic sperm injection outcomes in patients with lower percentage of sperm containing phospholipase Cζ: A randomized clinical trial. J. Reprod. Infertil. 2019, 20, 3–9. [Google Scholar]
- Yelumalai, S.; Yeste, M.; Jones, C.; Amdani, S.N.; Kashir, J.; Mounce, G.; Da Silva, S.J.M.; Barratt, C.L.; McVeigh, E.; Coward, K. Total levels, localization patterns, and proportions of sperm exhibiting phospholipase C zeta are significantly correlated with fertilization rates after intracytoplasmic sperm injection. Fertil. Steril. 2015, 104, 561–568.e4. [Google Scholar] [CrossRef]
- Grasa, P.; Coward, K.; Young, C.; Parrington, J. The pattern of localization of the putative oocyte activation factor, phospholipase Cζ, in uncapacitated, capacitated, and ionophore-treated human spermatozoa. Hum. Reprod. 2008, 23, 2513–2522. [Google Scholar] [CrossRef]
- Escoffier, J.; Yassine, S.; Lee, H.C.; Martinez, G.; Delaroche, J.; Coutton, C.; Karaouzéne, T.; Zouari, R.; Metzler-Guillemain, C.; Pernet-Gallay, K.; et al. Subcellular localization of phospholipase Cz in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation. Mol. Hum. Reprod. 2014, 21, 157–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrer-Vaquer, A.; Barragan, M.; Freour, T.; Vernaeve, V.; Vassena, R. PLCζ sequence, protein levels, and distribution in human sperm do not correlate with semen characteristics and fertilization rates after ICSI. J. Assist. Reprod. Genet. 2016, 33, 747–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashir, J.; Jones, C.; Mounce, G.; Ramadan, W.M.; Lemmon, B.; Heindryckx, B.; De Sutter, P.; Parrington, J.; Turner, K.; Child, T.; et al. Variance in total levels of phospholipase C zeta (PLC-ζ) in human sperm may limit the applicability of quantitative immunofluorescent analysis as a diagnostic indicator of oocyte activation capability. Fertil. Steril. 2013, 99, 107–117.e3. [Google Scholar] [CrossRef] [PubMed]
- Kashir, J.; Buntwal, L.; Nomikos, M.; Calver, B.L.; Stamatiadis, P.; Ashley, P.; Vassilakopoulou, V.; Sanders, D.; Knaggs, P.; Livaniou, E.; et al. Antigen unmasking enhances visualization efficacy of the oocyte activation factor, phospholipase C zeta, in mammalian sperm. Mol. Hum. Reprod. 2017, 23, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Cheung, S.; Xie, P.; Parrella, A.; Keating, D.; Rosenwaks, Z.; Palermo, G.D. Identification and treatment of men with phospholipase Cζ–defective spermatozoa. Fertil. Steril. 2020, 114, 535–544. [Google Scholar] [CrossRef]
- Ferrer-Buitrago, M.; Bonte, D.; De Sutter, P.; Leybaert, L.; Heindryckx, B. Single Ca2+ transients vs oscillatory Ca2+ signaling for assisted oocyte activation: Limitations and benefits. Reproduction 2018, 155, R105–R119. [Google Scholar] [CrossRef] [Green Version]
- Yanagida, K.; Katayose, H.; Yazawa, H.; Kimura, Y.; Sato, A.; Yanagimachi, H.; Yanagimachi, R. Successful fertilization and pregnancy following ICSI and electrical oocyte activation. Hum. Reprod. 1999, 14, 1307–1311. [Google Scholar] [CrossRef] [Green Version]
- Mansour, R.; Fahmy, I.; Tawab, N.A.; Kamal, A.; El-Demery, Y.; Aboulghar, M.; Serour, G. Electrical activation of oocytes after intracytoplasmic sperm injection: A controlled randomized study. Fertil. Steril. 2009, 91, 133–139. [Google Scholar] [CrossRef]
- Baltaci, V.; Ayvaz, Ö.Ü.; Ünsal, E.; Akta, Y.; Baltac, A.; Turhan, F.; Özcan, S.; Sönmezer, M. The effectiveness of intracytoplasmic sperm injection combined with piezoelectric stimulation in infertile couples with total fertilization failure. Fertil. Steril. 2010, 94, 900–904. [Google Scholar] [CrossRef]
- Ebner, T.; Moser, M.; Sommergruber, M.; Jesacher, K.; Tews, G. Complete oocyte activation failure after ICSI can be overcome by a modified injection technique. Hum. Reprod. 2004, 19, 1837–1841. [Google Scholar] [CrossRef] [Green Version]
- Ebner, T.; Montag, M.; Montag, M.; Van Der Ven, K.; Van Der Ven, H.; Ebner, T.; Shebl, O.; Oppelt, P.; Hirchenhain, J.; Krüssel, J.; et al. Live birth after artificial oocyte activation using a ready-to-use ionophore: A prospective multicentre study. Reprod. Biomed. Online 2015, 30, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montag, M.; Köster, M.; Van Der Ven, K.; Bohlen, U.; Van Der Ven, H. The benefit of artificial oocyte activation is dependent on the fertilization rate in a previous treatment cycle. Reprod. Biomed. Online 2012, 24, 521–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejera, A.; Mollá, M.; Muriel, L.; Remohí, J.; Pellicer, A.; De Pablo, J.L. Successful pregnancy and childbirth after intracytoplasmic sperm injection with calcium ionophore oocyte activation in a globozoospermic patient. Fertil. Steril. 2008, 90, 1202.e1–1202.e5. [Google Scholar] [CrossRef] [PubMed]
- Nasr-Esfahani, M.H.; Razavi, S.; Javdan, Z.; Tavalaee, M. Artificial oocyte activation in severe teratozoospermia undergoing intracytoplasmic sperm injection. Fertil. Steril. 2008, 90, 2231–2237. [Google Scholar] [CrossRef]
- Li, J.; Zheng, X.; Lian, Y.; Li, M.; Lin, S.; Zhuang, X.; Chen, L.; Liu, P.; Qiao, J. Artificial oocyte activation improves cycles with prospects of ICSI fertilization failure: A sibling oocyte control study. Reprod. Biomed. Online 2019, 39, 199–204. [Google Scholar] [CrossRef]
- Nikiforaki, D.; Vanden Meerschaut, F.; De Roo, C.; Lu, Y.; Ferrer-Buitrago, M.; De Sutter, P.; Heindryckx, B. Effect of two assisted oocyte activation protocols used to overcome fertilization failure on the activation potential and calcium releasing pattern. Fertil. Steril. 2016, 105, 798–806.e2. [Google Scholar] [CrossRef]
- Versieren, K.; Heindryckx, B.; Lierman, S.; Gerris, J.; De Sutter, P. Developmental competence of parthenogenetic mouse and human embryos after chemical or electrical activation. Reprod. Biomed. Online 2010, 21, 769–775. [Google Scholar] [CrossRef] [Green Version]
- Vanden Meerschaut, F.; Nikiforaki, D.; De Roo, C.; Lierman, S.; Qian, C.; Schmitt-John, T.; De Sutter, P.; Heindryckx, B. Comparison of pre-and post-implantation development following the application of three artificial activating stimuli in a mouse model with round-headed sperm cells deficient for oocyte activation. Hum. Reprod. 2013, 28, 1190–1198. [Google Scholar] [CrossRef]
- Carvacho, I.; Lee, H.C.; Fissore, R.A.; Clapham, D.E. TRPV3 mediates Sr influx during mouse egg activation. Cell Rep. 2014, 5, 1375–1386. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Reddy, R.; Ferrer Buitrago, M.; Vander Jeught, M.; Neupane, J.; De Vos, W.H.; Van den Abbeel, E.; Lierman, S.; De Sutter, P.; Heindryckx, B. Strontium fails to induce Ca2+ release and activation in human oocytes despite the presence of functional TRPV3 channels. Hum. Reprod. Open 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Yanagida, K.; Morozumi, K.; Katayose, H.; Hayashi, S.; Sato, A. Successful pregnancy after ICSI with strontium oocyte activation in low rates of fertilization. Reprod. Biomed. Online 2006, 13, 801–806. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, S.D.; Yang, S.H.; Yoon, S.H.; Jung, J.H.; Lim, J.H. Successful pregnancy after SrCl2 oocyte activation in couples with repeated low fertilization rates following calcium ionophore treatment. Syst. Biol. Reprod. Med. 2014, 60, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, M.; Emad, M.; Mahran, A.; Sabry, M.; Fetih, A.N.; Abdelghafar, H.; Rasheed, S. Artificial oocyte activation with SrCl2 or calcimycin after ICSI improves clinical and embryological outcomes compared with ICSI alone: Results of a randomized clinical trial. Hum. Reprod. 2018, 33, 1636–1644. [Google Scholar] [CrossRef]
- Norozi-Hafshejani, M.; Tavalaee, M.; Azadi, L.; Bahadorani, M.; Nasr-Esfahani, M.H. Effects of assisted oocyte activation with calcium-ionophore and strontium chloride on in vitro ICSI outcomes. Iran. J. Basic Med. Sci. 2018, 21, 1109–1117. [Google Scholar] [CrossRef]
- Bernhardt, M.L.; Kong, B.Y.; Kim, A.M.; O’Halloran, T.V.; Woodruff, T.K. A Zinc-Dependent Mechanism Regulates Meiotic Progression in Mammalian Oocytes. Biol. Reprod. 2012, 86, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Duncan, F.E.; Que, E.L.; Zhang, N.; Feinberg, E.C.; O’Halloran, T.V.; Woodruff, T.K. The zinc spark is an inorganic signature of human egg activation. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sutter, P.; Dozortsev, D.; Cieslak, J.; Wolf, G.; Verlinsky, Y.; Dyban, A. Parthenogenetic activation of human oocytes by puromycin. J. Assist. Reprod. Genet. 1992, 9, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Rogers, N.T.; Halet, G.; Piao, Y.; Carroll, J.; Ko, M.S.H.; Swann, K. The absence of a Ca2+ signal during mouse egg activation can affect parthenogenetic preimplantation development, gene expression patterns, and blastocyst quality. Reproduction 2006, 132, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Phillips, K.P.; Petrunewich, M.A.F.; Collins, J.L.; Booth, R.A.; Liu, X.J.; Baltz, J.M. Inhibition of MEK or cdc2 kinase parthenogenetically activates mouse eggs and yields the same phenotypes as Mos-/-parthenogenotes. Dev. Biol. 2002, 247, 210–223. [Google Scholar] [CrossRef] [Green Version]
- Nomikos, M.; Ph, D.; Yu, Y.; Ph, D.; Elgmati, K.; Sc, M.; Theodoridou, M.; Sc, M. Phospholipase C z rescues failed oocyte activation in a prototype of male factor infertility. Fertil. Steril. 2013, 99, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Ferrer-Buitrago, M.; Tilleman, L.; Thys, V.; Hachem, A.; Boel, A.; Van Nieuwerburgh, F.; Deforce, D.; Leybaert, L.; De Sutter, P.; Parrington, J.; et al. Comparative study of pre-implantation development following distinct assisted oocyte activation protocols in a PLC-Zeta knockout mouse model Running. Mol. Hum. Reprod. 2020, 26, 801–815. [Google Scholar] [CrossRef] [PubMed]
- Van Blerkom, J.; Cohen, J.; Johnson, M. A plea for caution and more research in the “experimental” use of ionophores in ICSI. Reprod. Biomed. Online 2015, 30, 323–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanden Meerschaut, F.; D’Haeseleer, E.; Gysels, H.; Thienpont, Y.; Dewitte, G.; Heindryckx, B.; Oostra, A.; Roeyers, H.; Van Lierde, K.; De Sutter, P. Neonatal and neurodevelopmental outcome of children aged 3-10 years born following assisted oocyte activation. Reprod. Biomed. Online 2014, 28, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deemeh, M.R.; Tavalaee, M.; Nasr-Esfahani, M.H. Health of children born through artificial oocyte activation: A pilot study. Reprod. Sci. 2015, 22, 322–328. [Google Scholar] [CrossRef]
- Mateizel, I.; Verheyen, G.; Van de Velde, H.; Tournaye, H.; Belva, F. Obstetric and neonatal outcome following ICSI with assisted oocyte activation by calcium ionophore treatment. J. Assist. Reprod. Genet. 2018, 35, 1005–1010. [Google Scholar] [CrossRef]
- Li, B.; Zhou, Y.; Yan, Z.; Li, M.; Xue, S.; Cai, R.; Fu, Y.; Hong, Q.; Long, H.; Yin, M.; et al. Pregnancy and neonatal outcomes of artificial oocyte activation in patients undergoing frozen–thawed embryo transfer: A 6-year population-based retrospective study. Arch. Gynecol. Obstet. 2019, 300, 1083–1092. [Google Scholar] [CrossRef]
- Takisawa, T.; Sato, Y.; Tasaka, A.; Ito, Y.; Nakamura, Y.; Hattori, H. Effect of oocyte activation by calcium ionophore A23187 or strontium chloride in patients with low fertilization rates and follow-up of babies. Fertil. Steril. 2011, 96, S162. [Google Scholar] [CrossRef]
- Kyono, K.; Kumagai, S.; Nishinaka, C.; Nakajo, Y.; Uto, H.; Toya, M.; Sugawara, J.; Araki, Y. Birth and follow-up of babies born following ICSI using SrCl2 oocyte activation. Reprod. Biomed. Online 2008, 17, 53–58. [Google Scholar] [CrossRef]
- Capalbo, A.; Ottolini, C.S.; Griffin, D.K.; Ubaldi, F.M.; Handyside, A.H.; Rienzi, L. Artificial oocyte activation with calcium ionophore does not cause a widespread increase in chromosome segregation errors in the second meiotic division of the oocyte. Fertil. Steril. 2016, 105, 807–814.e2. [Google Scholar] [CrossRef] [Green Version]
- Ferrer-Buitrago, M.; Bonte, D.; Dhaenens, L.; Vermorgen, S.; Lu, Y.; De Sutter, P.; Heindryckx, B. Assessment of the calcium releasing machinery in oocytes that failed to fertilize after conventional ICSI and assisted oocyte activation. Reprod. Biomed. Online 2019, 38, 497–507. [Google Scholar] [CrossRef]
- Yang, X.; Shu, L.; Cai, L.; Sun, X.; Cui, Y.; Liu, J. Homozygous missense mutation Arg207Cys in the WEE2 gene causes female infertility and fertilization failure. J. Assist. Reprod. Genet. 2019, 36, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Ebner, T.; Oppelt, P.; Wober, M.; Staples, P.; Mayer, R.B.; Sonnleitner, U.; Bulfon-Vogl, S.; Gruber, I.; Haid, A.E.; Shebl, O. Treatment with Ca2+ ionophore improves embryo development and outcome in cases with previous developmental problems: A prospective multicenter study. Hum. Reprod. 2015, 30, 97–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, M.; Zhang, D.; He, X.; Chen, B.; Li, Q.; Ding, D.; Hao, Y.; Xue, R.; Ji, D.; Zou, W.; et al. Artificial oocyte activation to improve reproductive outcomes in couples with various causes of infertility: A retrospective cohort study. Reprod. Biomed. Online 2020, 40, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Kashir, J.; Konstantinidis, M.; Jones, C.; Lemmon, B.; Chang Lee, H.; Hamer, R.; Heindryckx, B.; Deane, C.M.; De Sutter, P.; Fissore, R.A.; et al. A maternally inherited autosomal point mutation in human phospholipase C zeta (PLCζ) leads to male infertility. Hum. Reprod. 2012, 27, 222–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MOAT Group (OA Rate, %) | MOCA (AxF Value) | HOCA (AxF Value) | Diagnosed OAD (Sperm or Oocyte Factor) | ICSI-AOA Outcome (FR and LBR) |
---|---|---|---|---|
MOAT 1: 0–20% | <9 Absence or very abnormal number of Ca2+ oscillations | <0.6 Absence of Ca2+ oscillations | Sperm-related OAD | AOA very beneficial (restores FR to normal values ≈70% and increases LBR) |
MOAT 2: 21–84% | <9 Abnormal number of Ca2+ oscillations | <0.6 Absence or very abnormal number of Ca2+ oscillations | Sperm-related OAD | AOA very beneficial (restores FR to normal values ≈70% and increases LBR) |
>9 Normal number of Ca2+ oscillations | <0.6 Absence or very abnormal number of Ca2+ oscillations | Diminished sperm activating capacity not detected by mouse assays | AOA beneficial (increases significantly FR to ≈60% and improves LBR) | |
MOAT 3: 85–100% | >9 Normal number of Ca2+ oscillations | <0.6 Absence or very abnormal number of Ca2+ oscillations | Diminished sperm activating capacity not detected by mouse assays | AOA beneficial (increases significantly FR to ≈50% and improves LBR) |
>0.6 Normal number of Ca2+ oscillations | Normal sperm activating capacity, thus oocyte-related OAD | ICSI-AOA outcome very variable. When ICSI-AOA fails to restore FR, patients must be advised for oocyte donation. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardona Barberán, A.; Boel, A.; Vanden Meerschaut, F.; Stoop, D.; Heindryckx, B. Diagnosis and Treatment of Male Infertility-Related Fertilization Failure. J. Clin. Med. 2020, 9, 3899. https://doi.org/10.3390/jcm9123899
Cardona Barberán A, Boel A, Vanden Meerschaut F, Stoop D, Heindryckx B. Diagnosis and Treatment of Male Infertility-Related Fertilization Failure. Journal of Clinical Medicine. 2020; 9(12):3899. https://doi.org/10.3390/jcm9123899
Chicago/Turabian StyleCardona Barberán, Arantxa, Annekatrien Boel, Frauke Vanden Meerschaut, Dominic Stoop, and Björn Heindryckx. 2020. "Diagnosis and Treatment of Male Infertility-Related Fertilization Failure" Journal of Clinical Medicine 9, no. 12: 3899. https://doi.org/10.3390/jcm9123899
APA StyleCardona Barberán, A., Boel, A., Vanden Meerschaut, F., Stoop, D., & Heindryckx, B. (2020). Diagnosis and Treatment of Male Infertility-Related Fertilization Failure. Journal of Clinical Medicine, 9(12), 3899. https://doi.org/10.3390/jcm9123899