The Rolf Method of Structural Integration and Pelvic Floor Muscle Facilitation: Preliminary Results of a Randomized, Interventional Study
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Clinical Implications
6. Limitations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arnouk, A.; De, E.; Rehfuss, A.; Cappadocia, C.; Dickson, S.; Lian, F. Physical, Complementary, and Alternative Medicine in the Treatment of Pelvic Floor Disorders. Curr. Urol. Rep. 2017, 18, 47. [Google Scholar] [CrossRef] [PubMed]
- Dumoulin, C.; Hunter, K.F.; Moore, K.; Bradley, C.S.; Burgio, K.L.; Hagen, S.; Imamura, M.; Thakar, R.; Williams, K.; Chambers, T. Conservative Management for Female Urinary Incontinence and Pelvic Organ Prolapse Review 2013: Summary of the 5th International Consultation on Incontinence. Neurourol. Urodyn. 2016, 35, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumoulin, C.; Hay-Smith, E.J.C.; Mac Habée-Séguin, G. Pelvic Floor Muscle Training versus No Treatment, or Inactive Control Treatments, for Urinary Incontinence in Women. Cochrane Database Syst. Rev. 2014, 5, CD005654. [Google Scholar] [CrossRef] [PubMed]
- Jundt, K.; Peschers, U.; Kentenich, H. The Investigation and Treatment of Female Pelvic Floor Dysfunction. Dtsch Arztebl Int. 2015, 112, 564–574. [Google Scholar] [CrossRef] [Green Version]
- Bø, K. Pelvic Floor Muscle Training in Treatment of Female Stress Urinary Incontinence, Pelvic Organ Prolapse and Sexual Dysfunction. World J. Urol. 2012, 30, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Tibaek, S.; Dehlendorff, C. Pelvic Floor Muscle Function in Women with Pelvic Floor Dysfunction: A Retrospective Chart Review, 1992–2008. Int. Urogynecol. J. 2014, 25, 663–669. [Google Scholar] [CrossRef]
- Aljuraifani, R.; Stafford, R.E.; Hall, L.M.; Hodges, P.W. Activity of Deep and Superficial Pelvic Floor Muscles in Women in Response to Different Verbal Instructions: A Preliminary Investigation Using a Novel Electromyography Electrode. J. Sex. Med. 2019, 16, 673–679. [Google Scholar] [CrossRef]
- Mateus-Vasconcelos, E.C.L.; Ribeiro, A.M.; Antônio, F.I.; Brito, L.G.d.O.; Ferreira, C.H.J. Physiotherapy Methods to Facilitate Pelvic Floor Muscle Contraction: A Systematic Review. Physiother. Theory Pract. 2018, 34, 420–432. [Google Scholar] [CrossRef]
- Bakker, E.; Shelly, B.; Esch, F.H.; Frawley, H.; McClurg, D.; Meyers, P. International Continence Society Supported Pelvic Physiotherapy Education Guideline. Neurourol. Urodyn. 2018, 37, 869–876. [Google Scholar] [CrossRef] [Green Version]
- Tarsha, M.S.; Park, S.; Tortora, S. Body-Centered Interventions for Psychopathological Conditions: A Review. Front. Psychol. 2020, 10, 20907. [Google Scholar] [CrossRef] [Green Version]
- James, H.; Castaneda, L.; Miller, M.E.; Findley, T. Rolfing Structural Integration Treatment of Cervical Spine Dysfunction. J. Bodyw. Mov. Ther. 2009, 13, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, E.E.; Meleger, A.L.; Bonato, P.; Wayne, P.M.; Langevin, H.M.; Kaptchuk, T.J.; Davis, R.B. Structural Integration as an Adjunct to Outpatient Rehabilitation for Chronic Nonspecific Low Back Pain: A Randomized Pilot Clinical Trial. Evidence-Based Complement. Altern. Med. 2015, 813418. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, E. Structural Integration, an Alternative Method of Manual Therapy and Sensorimotor Education. J. Altern. Complement. Med. 2011, 17, 891–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapsford, R.R.; Hodges, P.W. Contraction of the Pelvic Floor Muscles during Abdominal Maneuvers. Arch. Phys. Med. Rehabil. 2001, 82, 1081–1088. [Google Scholar] [CrossRef]
- Ferla, L.; Darski, C.; Paiva, L.L.; Sbruzzi, G.; Vieira, A.; Ferla, L.; Darski, C.; Paiva, L.L.; Sbruzzi, G.; Vieira, A. Synergism between Abdominal and Pelvic Floor Muscles in Healthy Women: A Systematic Review of Observational Studies. Fisioter. Mov. 2016, 29, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, Y.; Cruz, Y.; Boone, T.B.; Munoz, A. Synergistic Activities of Abdominal Muscles Are Required for Efficient Micturition in Anesthetized Female Mice. Int. Neurourol. J. 2018, 22, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carriere, B.; Merkel Feldt, C.; Umphred, D. The Nervous System and Motor Learning. In The Pelvic Floor; Thieme: New York, NY, USA, 2006; pp. 21–33. [Google Scholar]
- Hung, H.-C.; Hsiao, S.-M.; Chih, S.-Y.; Lin, H.-H.; Tsauo, J.-Y. An Alternative Intervention for Urinary Incontinence: Retraining Diaphragmatic, Deep Abdominal and Pelvic Floor Muscle Coordinated Function. Man Ther. 2010, 15, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Dewaele, P.; Deffieux, X.; Villot, A.; Amarenco, G.; Billecocq, S.; Thubert, T. Pelvic Floor Muscle Activation in Stress Urinary Incontinent Women: Impact of a Distraction Task. Neurourol. Urodyn. 2019, 38, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Frawley, H.C.; Dean, S.G.; Slade, S.C.; Hay-Smith, E.J.C. Is Pelvic-Floor Muscle Training a Physical Therapy or a Behavioral Therapy? A Call to Name and Report the Physical, Cognitive, and Behavioral Elements. Phys. Ther. 2017, 97, 425–437. [Google Scholar] [CrossRef]
- Navarro-Brazález, B.; Prieto-Gómez, V.; Prieto-Merino, D.; Sánchez-Sánchez, B.; McLean, L.; Torres-Lacomba, M. Effectiveness of Hypopressive Exercises in Women with Pelvic Floor Dysfunction: A Randomised Controlled Trial. J. Clin. Med. 2020, 9, 1149. [Google Scholar] [CrossRef] [Green Version]
- Soriano, L.; González-Millán, C.; Álvarez Sáez, M.M.; Curbelo, R.; Carmona, L. Effect of an Abdominal Hypopressive Technique Programme on Pelvic Floor Muscle Tone and Urinary Incontinence in Women: A Randomised Crossover Trial. Physiotherapy 2020, 108, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Lausen, A.; Marsland, L.; Head, S.; Jackson, J.; Lausen, B. Modified Pilates as an Adjunct to Standard Physiotherapy Care for Urinary Incontinence: A Mixed Methods Pilot for a Randomised Controlled Trial. BMC Womens Health 2018, 18, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oleksy, Ł.; Wojciechowska, M.; Mika, A.; Antos, E.; Bylina, D.; Kielnar, R.; Pruszczyński, B.; Stolarczyk, A. Normative Values for Glazer Protocol in the Evaluation of Pelvic Floor Muscle Bioelectrical Activity. Medicine 2020, 99, e19060. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. European Recommendations for Surface ElectroMyoGraphy. Roessingh Res. Dev. 1999, 8, 13–54. [Google Scholar]
- Bo, K.; Morkved, S. Pelvic Floor and Exercise Science. In Evidence-Based Physical Therapy for the Pelvic Floor. Bridging Science and Clinical Practice; Churchill Livingstone Elsevier: Edinburgh, UK, 2015; pp. 111–116. [Google Scholar]
- Neels, H.; De Wachter, S.; Wyndaele, J.-J.; Van Aggelpoel, T.; Vermandel, A. Common Errors Made in Attempt to Contract the Pelvic Floor Muscles in Women Early after Delivery: A Prospective Observational Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 220, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Zadro, J.; O’Keeffe, M.; Maher, C. Do Physical Therapists Follow Evidence-Based Guidelines When Managing Musculoskeletal Conditions? Systematic Review. BMJ Open 2019, 9, e032329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chmielewska, D.; Stania, M.; Smykla, A.; Kwaśna, K.; Błaszczak, E.; Sobota, G.; Skrzypulec-Plinta, V. Bioelectrical Activity of the Pelvic Floor Muscles after 6-Week Biofeedback Training in Nulliparous Continent Women. Acta Bioeng. Biomech. 2016, 18, 105–113. [Google Scholar] [PubMed]
- Naess, I.; Bø, K. Can Maximal Voluntary Pelvic Floor Muscle Contraction Reduce Vaginal Resting Pressure and Resting EMG Activity? Int. Urogynecol. J. 2018, 29, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.; Vogt, T.; Kanosue, K. Brain Activity Underlying Muscle Relaxation. Front. Physiol. 2019, 10, 1457. [Google Scholar] [CrossRef] [Green Version]
- Leitner, M.; Moser, H.; Eichelberger, P.; Kuhn, A.; Radlinger, L. Pelvic Floor Muscle Activity during Fast Voluntary Contractions in Continent and Incontinent Women. Neurourol. Urodyn. 2019, 38, 625–631. [Google Scholar] [CrossRef]
- Bo, K.; Frawley, H.C.; Haylen, B.T.; Abramov, Y.; Almeida, F.G.; Berghmans, B.; Bortolini, M.; Dumoulin, C.; Gomes, M.; McClurg, D.; et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) Joint Report on the Terminology for the Conservative and Nonpharmacological Management of Female Pelvic Floor Dysfunction. Neurourol. Urodyn. 2017, 36, 221–244. [Google Scholar] [CrossRef] [PubMed]
- Faubion, S.S.; Shuster, L.T.; Bharucha, A.E. Recognition and Management of Nonrelaxing Pelvic Floor Dysfunction. Mayo Clin. Proc. 2012, 87, 187–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, L.; Normandeau, C.; Hodder, J. The Impact of State of Bladder Fullness on Tonic and Phasic Activation of the Pelvic Floor Muscles in Women. J. Electromyogr. Kinesiol. 2016, 27, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Vieira, G.F.; Saltiel, F.; Miranda-Gazzola, A.P.G.; Kirkwood, R.N.; Figueiredo, E.M. Pelvic Floor Muscle Function in Women with and without Urinary Incontinence: Are Strength and Endurance the Only Relevant Functions? A Cross-Sectional Study. Physiotherapy 2019, 109, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Cacciari, L.P.; Dumoulin, C.; Hay-Smith, E.J. Pelvic Floor Muscle Training versus No Treatment, or Inactive Control Treatments, for Urinary Incontinence in Women: A Cochrane Systematic Review Abridged Republication. Braz. J. Phys. Ther. 2019, 23, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Schleip, R. Fascial Plasticity—A New Neurobiological Explanation: Part 1. J. Bodyw. Mov. Ther. 2003, 7, 11–19. [Google Scholar] [CrossRef]
- Schleip, R. Fascial Plasticity—A New Neurobiological Explanation Part 2. J. Bodyw. Mov. Ther. 2003, 7, 104–116. [Google Scholar] [CrossRef]
- Baramee, P.; Muro, S.; Suriyut, J.; Harada, M.; Akita, K. Three Muscle Slings of the Pelvic Floor in Women: An Anatomic Study. Anat. Sci. Int. 2019, 95, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Nyangoh Timoh, K.; Moszkowicz, D.; Zaitouna, M.; Lebacle, C.; Martinovic, J.; Diallo, D.; Creze, M.; Lavoue, V.; Darai, E.; Benoit, G.; et al. Detailed Muscular Structure and Neural Control Anatomy of the Levator Ani Muscle: A Study Based on Female Human Fetuses. Am. J. Obstet. Gynecol. 2018, 218, 121.e1–121.e12. [Google Scholar] [CrossRef]
- Cottingham, J.T.; Porges, S.W.; Richmond, K. Shifts in Pelvic Inclination Angle and Parasympathetic Tone Produced by Rolfing Soft Tissue Manipulation. Phys. Ther. 1988, 68, 1364–1370. [Google Scholar] [CrossRef]
- Cottingham, J.T.; Porges, S.W.; Lyon, T. Effects of Soft Tissue Mobilization (Rolfing Pelvic Lift) on Parasympathetic Tone in Two Age Groups. Phys. Ther. 1988, 68, 352–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, J.M. Pelvic Floor Myofascial Trigger Points: Manual Therapy for Interstitial Cystitis and the Urgency-Frequency Syndrome. J. Urol. 2001, 166, 2226–2231. [Google Scholar] [CrossRef]
- Morin, M.; Binik, Y.M.; Bourbonnais, D.; Khalifé, S.; Ouellet, S.; Bergeron, S. Heightened Pelvic Floor Muscle Tone and Altered Contractility in Women with Provoked Vestibulodynia. J. Sex. Med. 2017, 14, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Morin, M.; Carroll, M.-S.; Bergeron, S. Systematic Review of the Effectiveness of Physical Therapy Modalities in Women with Provoked Vestibulodynia. Sex. Med. Rev. 2017, 5, 295–322. [Google Scholar] [CrossRef] [PubMed]
- Rolf, I. The Pelvis Has Many Facets. In Rolfing: Reestablish the Natural Alignment and Structural Integration of the Human Body for Vitality and Well-Being; Healing Arts Press: Rochester, VT, USA, 1989; pp. 136–138. [Google Scholar]
- Ashton-Miller, J.A.; Delancey, J.O.L. Functional Anatomy of the Female Pelvic Floor. Ann. N. Y. Acad. Sci. 2007, 1101, 266–296. [Google Scholar] [CrossRef]
- Giraudet, G.; Patrouix, L.; Fontaine, C.; Demondion, X.; Cosson, M.; Rubod, C. Three Dimensional Model of the Female Perineum and Pelvic Floor Muscles. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 226, 1–6. [Google Scholar] [CrossRef]
- Lasak, A.M.; Jean-Michel, M.; Le, P.U.; Durgam, R.; Harroche, J. The Role of Pelvic Floor Muscle Training in the Conservative and Surgical Management of Female Stress Urinary Incontinence: Does the Strength of the Pelvic Floor Muscles Matter? PM&R 2018, 10, 1198–1210. [Google Scholar] [CrossRef]
- Ramin, A.; Macchi, V.; Porzionato, A.; De Caro, R.; Stecco, C. Fascial Continuity of the Pelvic Floor with the Abdominal and Lumbar Region. Pelviperineology 2016, 35, 3–5. [Google Scholar]
- Fan, C.; Guidolin, D.; Ragazzo, S.; Fede, C.; Pirri, C.; Gaudreault, N.; Porzionato, A.; Macchi, V.; De Caro, R.; Stecco, C. Effects of Cesarean Section and Vaginal Delivery on Abdominal Muscles and Fasciae. Medicina 2020, 56, 260. [Google Scholar] [CrossRef]
- Czaprowski, D.; Stoliński, Ł.; Tyrakowski, M.; Kozinoga, M.; Kotwicki, T. Non-Structural Misalignments of Body Posture in the Sagittal Plane. Scoliosis Spinal Disord. 2018, 13, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Manshadi, F.D.; Ghanbari, Z.; Miri, E.-S.; Azimi, H. Postural and Musculoskeletal Disorders in Women with Urinary Incontinence: A Research Report. J. Clin. Physiother. Res. 2016, 1, 27–31. [Google Scholar] [CrossRef]
- Zhoolideh, P.; Ghaderi, F.; Salahzadeh, Z. Are There Any Relations Between Posture and Pelvic Floor Disorders? A Literature Review. Crescent J. Med Biol. Sci. 2017, 4, 153–159. [Google Scholar]
- Ptaszkowski, K.; Zdrojowy, R.; Slupska, L.; Bartnicki, J.; Dembowski, J.; Halski, T.; Paprocka-Borowicz, M. Assessment of Bioelectrical Activity of Pelvic Floor Muscles Depending on the Orientation of the Pelvis in Menopausal Women with Symptoms of Stress Urinary Incontinence: Continued Observational Study. Eur. J. Phys. Rehabil. Med. 2017, 53, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Capson, A.C.; Nashed, J.; Mclean, L. The Role of Lumbopelvic Posture in Pelvic Floor Muscle Activation in Continent Women. J. Electromyogr. Kinesiol. 2011, 21, 166–177. [Google Scholar] [CrossRef]
- Chen, C.-H.; Huang, M.-H.; Chen, T.-W.; Weng, M.-C.; Lee, C.-L.; Wang, G.-J. Relationship between Ankle Position and Pelvic Floor Muscle Activity in Female Stress Urinary Incontinence. Urology 2005, 66, 288–292. [Google Scholar] [CrossRef]
- Halski, T.; Słupska, L.; Dymarek, R.; Bartnicki, J.; Halska, U.; Król, A.; Paprocka-Borowicz, M.; Dembowski, J.; Zdrojowy, R.; Ptaszkowski, K. Evaluation of Bioelectrical Activity of Pelvic Floor Muscles and Synergistic Muscles Depending on Orientation of Pelvis in Menopausal Women with Symptoms of Stress Urinary Incontinence: A Preliminary Observational Study. Biomed. Res. Int. 2014, 2014, 274938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aw, H.C.; Ranasinghe, W.; Tan, P.H.M.; O’Connell, H.E. Overactive Pelvic Floor Muscles (OPFM): Improving Diagnostic Accuracy with Clinical Examination and Functional Studies. Transl. Androl. Urol. 2017, 6 (Suppl. 2), S64–S67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behm, D.G.; Wilke, J. Do Self-Myofascial Release Devices Release Myofascia? Rolling Mechanisms: A Narrative Review. Sports Med. 2019, 49, 1173–1181. [Google Scholar] [CrossRef]
- Moldwin, R.M.; Fariello, J.Y. Myofascial Trigger Points of the Pelvic Floor: Associations with Urological Pain Syndromes and Treatment Strategies Including Injection Therapy. Curr. Urol. Rep. 2013, 14, 409–417. [Google Scholar] [CrossRef] [PubMed]
Session | Intervention |
---|---|
1 | Increase length and pliability of fascial tissue (FT) on the anterior aspect of the trunk, allowing freer respiratory movement of ribs, and of FT connecting shoulder girdle to rib cage and hips to the pelvis. |
2 | Increase consistency of FT pliability in feet, ankles, and knees, increasing the support they provide for the upper body. |
3 | Increase anterior–posterior and cephalic–caudal pliability in FT of the lateral side of the body and left/right and anterior/posterior balance; increase the independence of the thorax from the pelvis. |
4 | Increase pliability, left/right, and anterior/posterior balance of FT of the medial aspect of legs and pelvic floor. |
5 | Increase pliability and left/right and surface to deep balance in FT comprising the anterior aspect of the pelvis and lumbar spine. |
6 | Increase pliability and left/right and surface to deep balance in FT comprising posterior aspect from heel to back. |
7 | Increase pliability and left/right and anterior/posterior balance in FT of the cranium and cervical spine. |
8 | Increase fascial tissue pliability and left/right balance in the hands, wrists, elbows, and arms; increase biomechanical flow between upper extremities and spine. |
9 | Increase fascial tissue pliability comprising the lower extremities through hips and pelvis; increase biomechanical flow between lower extremities and spine. |
10 | Optimize biomechanical flow through extremities, shoulder, and pelvic girdles to spine; increase overall uniformity of tonus. |
Participant’s Position | The Therapist |
---|---|
Supine, flexion of hip and knee joints. | Gave verbal instructions regarding the insertion of the endovaginal probe, and the command “contract the muscles around the electrode in your body as much as possible and lift, then completely relax”. These activities were supposed to be an isolated contraction, while the adductors, abdominals, glutes, and extensor muscles of the back were kept relaxed. According to Bø et al. [26], the inability to perform an isolated PFM contraction, for example, without engaging the synergists, may mask the shift in this muscle group and its strength, which in turn translates into lower exercise potential. We recorded the surface electromyography signal when (1) each participant was sure how to contract and relax the PFMs as much as possible without any feedback from the therapist; (2) the sEMG amplitude evaluated was not increased too much, decreased, or absent (an elevated amplitude during resting/baseline activity implies that a muscle has insufficient possibilities for rest); (3) the timing patterns of muscle activity were not too early, late, or asynchronous; (4) the PFM contractions were isolated from synergistic muscles [24]; or (5) the participant stopped breathing or performed a pelvic tilt or straining during the PFM contraction [27]. The sEMG measurement was recorded without eye control (without visualization of sEMG activity on the monitor screen) and with eye control for each participant. As a result, all participants had the same preparation time to achieve muscle control in this region of the body. |
Variables | SI Group (n = 20) | Control Group (n = 13) | p-Value | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Me | Min | Max | Q1 | Q3 | SD | Me | Min | Max | Q1 | Q3 | SD | ||||
Age (years) | 27 | 24 | 21 | 38 | 23 | 29 | 5 | 24 | 23 | 22 | 32 | 23 | 24 | 3 | 0.14 * |
Height (cm) | 164 | 164 | 154 | 175 | 159 | 167 | 5 | 159 | 158 | 146 | 174 | 156 | 161 | 7 | 0.43 * |
Weight (kg) | 60 | 61 | 53 | 74 | 54 | 63 | 6 | 57 | 56 | 47 | 63 | 55 | 60 | 5 | 0.43 * |
BMI (kg/m2) | 21.9 | 21.3 | 18.6 | 29.4 | 20.6 | 22.4 | 2.3 | 22.6 | 22.3 | 20.0 | 25.4 | 22.0 | 23.6 | 1.4 | 0.09 * |
sEMG Activity of PFMs (µV) | Measurement | SI Group | Control Group | p-Value 1 | ||
---|---|---|---|---|---|---|
Me | Q1–Q3 | Me | Q1–Q3 | |||
Pre-Baseline Rest | Before | 2.5 | 1.7–3.2 | 1.5 | 1.5–2.8 | 0.98 |
After | 2.1 | 1.1–3.2 | 1.5 | 1.3–2.0 | 0.99 | |
p-Value 2 | 0.014 | 0.17 | ||||
Phasic Contraction | Before | 9.3 | 6.1–10.0 | 6.9 | 4.4–10.2 | 0.50 |
After | 9.6 | 6.9–11.7 | 6.5 | 3.2–9.9 | 0.037 | |
p-Value 2 | 0.16 | 0.13 | ||||
Tonic Contraction | Before | 9.0 | 6.3–11.7 | 6.9 | 4.0–10.9 | 0.29 |
After | 9.4 | 7.6–12.0 | 5.5 | 3.5–13.2 | 0.15 | |
p-Value 2 | 0.25 | 0.97 | ||||
Rest after Tonic Contraction | Before | 3.1 | 2.3–3.9 | 1.7 | 1.4–3.4 | 0.12 |
After | 2.6 | 1.9–3.6 | 1.4 | 1.2–2.5 | 0.12 | |
p-Value 2 | 0.021 | 0.10 | ||||
Isometric Contraction | Before | 8.6 | 6.4–10.3 | 5.9 | 4.8–11.3 | 0.35 |
After | 10.0 | 7.4–12.2 | 5.9 | 2.6–8.6 | 0.06 | |
p-Value 2 | 0.33 | 0.13 | ||||
Post-Baseline Rest | Before | 2.6 | 1.8–3.1 | 1.5 | 1.4–2.6 | 0.15 |
After | 2.3 | 1.5–2.7 | 1.5 | 1.0–2.3 | 0.14 | |
p-Value 2 | 0.18 | 0.60 |
sEMG Activity of PFMs (µV) | Measurement | SI Group | Control Group | p-Value 1 | ||
---|---|---|---|---|---|---|
Me | Q1–Q3 | Me | Q1–Q3 | |||
Pre-Baseline Rest | Before | 4.5 | 3.3–5.8 | 4.4 | 3.7–5.3 | 0.93 |
After | 5.3 | 4.2–7.2 | 4.0 | 3.9–4.8 | 0.028 | |
p-Value 2 | 0.30 | 0.75 | ||||
Phasic Contraction | Before | 8.2 | 7.2–10.0 | 10.4 | 8.8–15.3 | 0.037 |
After | 10.7 | 8.3–16.7 | 10.2 | 8.0–14.8 | 0.78 | |
p-Value 2 | 0.014 | 0.46 | ||||
Tonic Contraction | Before | 8.6 | 6.8–12.2 | 9.2 | 6.5–13.8 | 0.41 |
After | 10.4 | 7.8–12.8 | 10.9 | 6.9–14.2 | 0.87 | |
p-Value 2 | 0.08 | 0.98 | ||||
Rest after Tonic Contraction | Before | 4.4 | 3.5–5.7 | 4.5 | 3.7–6.5 | 0.99 |
After | 4.7 | 3.6–6.1 | 3.8 | 3.6–4.6 | 0.21 | |
p-Value 2 | 0.97 | 0.051 | ||||
Isometric Contraction | Before | 9.0 | 5.2–12.1 | 8.2 | 6.8–11.7 | 0.63 |
After | 9.4 | 6.7–11.7 | 8.9 | 8.0–11.3 | 0.96 | |
p-Value 2 | 0.22 | 0.42 | ||||
Post-Baseline Rest | Before | 4.0 | 2.5–6.1 | 3.8 | 3.1–5.9 | 0.84 |
After | 4.7 | 3.1–6.0 | 3.9 | 2.9–4.2 | 0.15 | |
p-Value 2 | 0.79 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasper-Jędrzejewska, M.; Jędrzejewski, G.; Ptaszkowska, L.; Ptaszkowski, K.; Schleip, R.; Halski, T. The Rolf Method of Structural Integration and Pelvic Floor Muscle Facilitation: Preliminary Results of a Randomized, Interventional Study. J. Clin. Med. 2020, 9, 3981. https://doi.org/10.3390/jcm9123981
Kasper-Jędrzejewska M, Jędrzejewski G, Ptaszkowska L, Ptaszkowski K, Schleip R, Halski T. The Rolf Method of Structural Integration and Pelvic Floor Muscle Facilitation: Preliminary Results of a Randomized, Interventional Study. Journal of Clinical Medicine. 2020; 9(12):3981. https://doi.org/10.3390/jcm9123981
Chicago/Turabian StyleKasper-Jędrzejewska, Martyna, Grzegorz Jędrzejewski, Lucyna Ptaszkowska, Kuba Ptaszkowski, Robert Schleip, and Tomasz Halski. 2020. "The Rolf Method of Structural Integration and Pelvic Floor Muscle Facilitation: Preliminary Results of a Randomized, Interventional Study" Journal of Clinical Medicine 9, no. 12: 3981. https://doi.org/10.3390/jcm9123981
APA StyleKasper-Jędrzejewska, M., Jędrzejewski, G., Ptaszkowska, L., Ptaszkowski, K., Schleip, R., & Halski, T. (2020). The Rolf Method of Structural Integration and Pelvic Floor Muscle Facilitation: Preliminary Results of a Randomized, Interventional Study. Journal of Clinical Medicine, 9(12), 3981. https://doi.org/10.3390/jcm9123981