Prevalence of SARS-CoV-2 Antibodies in Multiple Sclerosis: The Hidden Part of the Iceberg
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Population
2.3. Antibody Detection
2.4. Demographics, Clinical Features, Treatments, and Laboratory Findings
2.5. Sample Size Calculation
2.6. Statistics
2.7. Data Availability
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clark, A.; Jit, M.; Warren-Gash, C.; Guthrie, B.; Wang, H.H.X.; Mercer, S.W.; Sanderson, C.; McKee, M.; Troeger, C.; Ong, K.L.; et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: A modelling study. Lancet Glob. Health 2020, 8, e1003–e1017. [Google Scholar] [CrossRef]
- Burkill, S.; Montgomery, S.; Hajiebrahimi, M.H.; Hillert, J.; Olsson, T.; Bahmanyar, S. Mortality trends for multiple sclerosis patients in Sweden from 1968 to 2012. Neurology 2017, 89, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Palladino, R.; Marrie, R.; Majeed, A.; Chataway, J. Evaluating the Risk of Macrovascular Events and Mortality Among People With Multiple Sclerosis in England. JAMA Neurol. 2020, 77, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Marrie, R.A.; Elliott, L.; Marriott, J.; Cossoy, M.; Blanchard, J.; Leung, S.; Yu, N. Effect of comorbidity on mortality in multiple sclerosis. Neurology 2015, 85, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Buonomo, A.; Brescia Morra, V.; Zappulo, E.; Lanzillo, R.; Gentile, I.; Montella, S.; Triassi, M.; Palladino, R.; Moccia, M. COVID-19 prevention and multiple sclerosis management: The SAFE pathway for the post-peak. Mult. Scler. Relat. Disord. 2020, 44, 102282. [Google Scholar] [CrossRef]
- Brownlee, W.; Bourdette, D.; Broadley, S.; Killestein, J.; Ciccarelli, O. Treating multiple sclerosis and neuromyelitis optica spectrum disorder during the COVID-19 pandemic. Neurology 2020, 94, 949–952. [Google Scholar] [CrossRef] [Green Version]
- Amor, S.; Baker, D.; Khoury, S.J.; Schmierer, K.; Giovanonni, G. SARS-CoV-2 and Multiple Sclerosis: Not all immune depleting DMTs are equal or bad. Ann. Neurol. 2020, 87, 794–797. [Google Scholar] [CrossRef]
- Moss, B.P.; Mahajan, K.R.; Bermel, R.A.; Hellisz, K.; Hua, L.H.; Hudec, T.; Husak, S.; McGinley, M.P.; Ontaneda, D.; Wang, Z.; et al. Multiple sclerosis management during the COVID-19 pandemic. Mult. Scler. 2020, 26, 1163–1171. [Google Scholar] [CrossRef]
- Sethuraman, N.; Jeremiah, S.S.; Ryo, A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 2020, 323, 2249–2251. [Google Scholar] [CrossRef]
- Kontou, P.I.; Braliou, G.G.; Dimou, N.L.; Nikolopoulos, G.; Bagos, P.G. Antibody tests in detecting SARS-CoV-2 infection: A meta-analysis. Diagnostics 2020, 10, 319. [Google Scholar] [CrossRef]
- Marie, T.-H.; Laurent, B.; Alain, W.; Ingrid, B.; Hugues, M.; Jean-Michel, D.; Jonathan, D. The role of serology for COVID-19 control: Population, kinetics and test performance do matter. J. Infect. 2020, 81, e91–e92. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, Y.; Sun, C.; Wang, X.; Guo, Y.; Qiu, S.; Ma, K. A systematic review of asymptomatic infections with COVID-10. J. Microbiol. Immunol. Infect. 2020. [Google Scholar] [CrossRef] [PubMed]
- Goudsmit, J. The paramount importance of serological surveys of SARS-CoV-2 infection and immunity. Eur. J. Epidemiol. 2020, 35, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Ciccarelli, O.; Cohen, J.; Thompson, A. Response of the multiple sclerosis community to COVID-19. Mult. Scler. 2020, 26, 1134–1136. [Google Scholar] [CrossRef] [PubMed]
- Leocani, L.; Diserens, K.; Moccia, M.; Caltagirone, C. Disability through COVID-19 pandemic: Neurorehabilitation cannot wait. Eur. J. Neurol. 2020, 27, e50–e51. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Li, Z.; Yi, Y.; Luo, X.; Xiong, N.; Liu, Y.; Li, S.; Sun, R.; Wang, Y.; Hu, B.; Chen, W.; et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020, 92, 1518–1524. [Google Scholar] [CrossRef]
- Lou, B.; Li, T.-D.; Zheng, S.-F.; Su, Y.-Y.; Li, Z.-Y.; Liu, W.; Yu, F.; Ge, S.-X.; Zou, Q.-D.; Yuan, Q.; et al. Serology characteristics of SARS-CoV-2 infection since exposure and post symptom onset. Eur. Respir. J. 2020, 56. [Google Scholar] [CrossRef]
- Lisboa Bastos, M.; Tavaziva, G.; Abidi, S.K.; Campbell, J.R.; Haraoui, L.P.; Johnston, J.C.; Lan, Z.; Law, S.; MacLean, E.; Trajman, A.; et al. Diagnostic accuracy of serological tests for covid-19: Systematic review and meta-analysis. BMJ 2020, 370. [Google Scholar] [CrossRef]
- Li, L.; Huang, T.; Wang, Y.-Q.; Wang, Z.-P.; Liang, Y.; Huang, T.-B.; Zhang, H.-Y.; Sun, W.; Wang, Y. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J. Med. Virol. 2020, 92, 577–583. [Google Scholar] [CrossRef]
- Moccia, M.; Brescia Morra, V.; Lanzillo, R.; Loperto, I.; Giordana, R.; Fumo, M.; Petruzzo, M.; Capasso, N.; Triassi, M.; Sormani, M.; et al. Multiple sclerosis in the Campania Region (South Italy): Algorithm validation and 2015-2017 prevalence. Int. J. Environ. Res. Public Health 2020, 17, 3388. [Google Scholar] [CrossRef] [PubMed]
- IHME COVID-19 Health Service Utilization Forecasting Team; Murray, C.J.L. Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- ISTAT. Primi Risultati Dell’indagine di Sieroprevalenza sul SARS-CoV-2. 2020. Available online: http://www.salute.gov.it/portale/news/p3_2_1_1_1.jsp?lingua=italiano&menu=notizie&p=dalministero&id=4998 (accessed on 16 December 2020).
- Bryan, A.; Pepper, G.; Wener, M.H.; Fink, S.L.; Morishima, C.; Chaudhary, A.; Jerome, K.R.; Mathias, P.C.; Greninger, A.L. Performance Characteristics of the Abbott Architect SARS-CoV-2 IgG Assay and Seroprevalence in Boise, Idaho. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef] [PubMed]
- Sood, N.; Simon, P.; Ebner, P.; Eichner, D.; Reynolds, J.; Bendavid, E.; Bhattacharya, J. Seroprevalence of SARS-CoV-2-Specific Antibodies Among Adults in Los Angeles County, California, on April 10–11, 2020. JAMA 2020, 13, 98–99. [Google Scholar] [CrossRef]
- Korth, J.; Wilde, B.; Dolff, S.; Anastasiou, O.E.; Krawczyk, A.; Jahn, M.; Cordes, S.; Ross, B.; Esser, S.; Lindemann, M.; et al. SARS-CoV-2-specific antibody detection in healthcare workers in Germany with direct contact to COVID-19 patients. J. Clin. Virol. 2020, 128, 104437. [Google Scholar] [CrossRef]
- Behrens, G.M.N.; Cossmann, A.; Stankov, M.V.; Witte, T.; Ernst, D.; Happle, C.; Jablonka, A. Perceived versus proven SARS-CoV-2-specific immune responses in health-care professionals. Infection 2020, 48, 631–634. [Google Scholar] [CrossRef]
- Wijnands, J.M.A.; Zhu, F.; Kingwell, E.; Fisk, J.D.; Evans, C.; Marrie, R.A.; Zhao, Y.; Tremlett, H. Disease-modifying drugs for multiple sclerosis and infection risk: A cohort study. J. Neurol. Neurosurg. Psychiatry 2018, 89, 1050–1056. [Google Scholar] [CrossRef]
- Sormani, M.P.; Study, I. Correspondence An Italian programme for COVID-19 infection. Lancet Glob. Health 2020, 4422, 30147. [Google Scholar] [CrossRef]
- Montero-Escribano, P.; Matías-Guiu, J.; Gómez-Iglesias, P.; Porta-Etessam, J.; Pytel, V.; Matias-Guiu, J.A. Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: A case series of 60 patients from Madrid, Spain. Mult. Scler. Relat. Disord. 2020, 42, 102185. [Google Scholar] [CrossRef]
- De Angelis, M.; Petracca, M.; Lanzillo, R.; Brescia Morra, V.; Moccia, M. Mild or no COVID-19 symptoms in cladribine-treated multiple sclerosis: Two cases and implications for clinical practice. Mult. Scler. Relat. Disord. 2020, 45, 102452. [Google Scholar] [CrossRef]
- Evangelou, N.; Garjani, A.; DasNair, R.; Hunter, R.; Tuite-Dalton, K.A.; Craig, E.M.; Rodgers, W.J.; Coles, A.; Dobson, R.; Duddy, M.; et al. Self-diagnosed COVID-19 in people with multiple sclerosis: A community-based cohort of the UK MS Register. J. Neurol. Neurosurg. Psychiatry 2020. [Google Scholar] [CrossRef]
- Loonstra, F.C.; Hoitsma, E.; van Kempen, Z.L.E.; Killestein, J.; Mostert, J.P. COVID-19 in multiple sclerosis: The Dutch experience. Mult. Scler. 2020, 26, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Louapre, C.; Collongues, N.; Stankoff, B.; Giannesini, C.; Papeix, C.; Bensa, C.; Deschamps, R.; Créange, A.; Wahab, A.; Pelletier, J.; et al. Clinical Characteristics and Outcomes in Patients with Coronavirus Disease 2019 and Multiple Sclerosis. JAMA Neurol. 2020, 77, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Qiu, W.; Bu, B.; Xu, Y.; Yang, H.; Huang, D.; Lau, A.Y.; Guo, J.; Zhang, M.-N.; Zhang, X.; et al. Risk of COVID-19 infection in MS and neuromyelitis optica spectrum disorders. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e787. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, L.; Li, J.; Chen, L.; Song, Y.; Cai, Z.; Yang, C. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J. Med. Virol. 2020, 92, 903–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Zhu, F.; Guo, F.; Yang, B.; Wang, T. Detection of antibodies against SARS-CoV-2 in patients with COVID-19. J. Med. Virol. 2020, 92, 1735–1738. [Google Scholar] [CrossRef] [Green Version]
- Epstein, D.J.; Dunn, J.; Deresinski, S. Infectious complications of multiple sclerosis therapies: Implications for screening, prophylaxis, and management. Open Forum Infect. Dis. 2018, 5, ofy174. [Google Scholar] [CrossRef] [Green Version]
MS Patients (n = 310) | Low-Risk Population (n = 862) | High-Risk Population (n = 235) | |
---|---|---|---|
Age, years | 42.3 ± 12.4 | 42.9 ± 13.3 | 39.4 ± 10.9 |
Sex, females (%) | 208 (67.1%) | 412 (47.8%) | 128 (54.5%) |
SARS-CoV-2 status, number (prevalence %) | |||
IgG or IgM positive | 9 (2.9%) | 11 (1.3%) | 25 (10.6%) |
Females | 6 (2.9%) | 7 (1.7%) | 14 (10.9%) |
Males | 3 (2.9%) | 4 (0.9%) | 11 (10.3%) |
IgG positive | 9 (2.9%) | 5 (0.6%) | 9 (3.8%) |
IgM positive | 0 (0%) | 6 (0.7%) | 8 (3.4%) |
IgM and IgG positive | 0 (0%) | 0 (0%) | 8 (3.4%) |
MS Negative to SARS-CoV-2 IgG/IgM (n = 301) | MS Positive to SARS-CoV-2 IgG/IgM (n = 9) | |
---|---|---|
Age, years | 42.2 ± 12.4 | 41.4 ± 12.8 |
Females, number (%) | 202 (67.1%) | 6 (66.6%) |
Expanded disability status scale (EDSS), median (range) | 3.5 (0–8.0) | 3.0 (1.0–6.5) |
Disease-modifying treatments (DMT), number (%) | ||
No/Low risk of systemic immunosuppression | 187 (62.1%) | 5 (55.6%) |
Dimethyl Fumarate | 8 | 0 |
Interferon | 3 | 0 |
Glatiramer | 1 | 0 |
Natalizumab | 166 | 3 |
Teriflunomide | 3 | 1 |
No DMT | 7 | 1 |
Moderate/high risk of systemic immunosuppression | 114 (37.9%) | 4 (44.4%) |
Alemtuzumab | 16 | 3 |
Cladribine | 5 | 1 |
Fingolimod | 12 | 0 |
Ocrelizumab | 80 | 0 |
Rituximab | 1 | 0 |
Comorbidities, number (%) | 32 (10.6%) | 0 (0%) |
Diabetes | 1 | 0 |
High blood pressure | 19 | 0 |
High cholesterol | 9 | 0 |
Thyroid disease | 7 | 0 |
White blood cell count, ×103/μL | 7.43 ± 2.32 | 6.62 ± 2.07 |
Total lymphocyte count, ×103/μL | 2.48 ± 1.35 | 1.79 ± 1.01 |
Lactic dehydrogenase, U/L | 215.83 ± 49.94 | 223.44 ± 52.30 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
Age, years | 39 | 54 | 42 | 27 | 35 | 65 | 38 | 57 | 29 |
Sex | Male | Female | Female | Female | Female | Female | Female | Male | Male |
COVID-19 symptoms | None | Cough | None | None | None | None | None | None | Fever, anosmia |
COVID-19 at-risk behaviour | None | None | None | None | None | None | None | None | Travel |
EDSS | 2.5 | 3.0 | 6.5 | 1.0 | 4.5 | 2.5 | 4.5 | 4.0 | 1.5 |
DMT | Alemtuzumab | Natalizumab | Alemtuzumab | Natalizumab | Natalizumab | Teriflunomide | Alemtuzumab | None | Cladribine |
Last DMT administration | January 2019 | February 2020 | June 2018 | March 2020 | February 2020 | Ongoing | January 2018 | July 2019 | |
Comorbidities | None | None | None | None | None | None | None | None | None |
White blood cell count *, ×103/μL | 10.27 | 7.56 | 7.45 | 6.93 | 5.6 | 7.17 | 7.29 | 3.25 | 4.12 |
Total lymphocyte count **, ×103/μL | 1.81 | 2.85 | 0.90 | 3.18 | 3.06 | 1.97 | 1.61 | 0.69 | 0.71 |
Lactic dehydrogenase ***, U/L | 274 | 225 | 215 | 178 | 190 | 332 | 172 | 239 | 186 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capasso, N.; Palladino, R.; Montella, E.; Pennino, F.; Lanzillo, R.; Carotenuto, A.; Petracca, M.; Iodice, R.; Iovino, A.; Aruta, F.; et al. Prevalence of SARS-CoV-2 Antibodies in Multiple Sclerosis: The Hidden Part of the Iceberg. J. Clin. Med. 2020, 9, 4066. https://doi.org/10.3390/jcm9124066
Capasso N, Palladino R, Montella E, Pennino F, Lanzillo R, Carotenuto A, Petracca M, Iodice R, Iovino A, Aruta F, et al. Prevalence of SARS-CoV-2 Antibodies in Multiple Sclerosis: The Hidden Part of the Iceberg. Journal of Clinical Medicine. 2020; 9(12):4066. https://doi.org/10.3390/jcm9124066
Chicago/Turabian StyleCapasso, Nicola, Raffaele Palladino, Emma Montella, Francesca Pennino, Roberta Lanzillo, Antonio Carotenuto, Maria Petracca, Rosa Iodice, Aniello Iovino, Francesco Aruta, and et al. 2020. "Prevalence of SARS-CoV-2 Antibodies in Multiple Sclerosis: The Hidden Part of the Iceberg" Journal of Clinical Medicine 9, no. 12: 4066. https://doi.org/10.3390/jcm9124066
APA StyleCapasso, N., Palladino, R., Montella, E., Pennino, F., Lanzillo, R., Carotenuto, A., Petracca, M., Iodice, R., Iovino, A., Aruta, F., Pastore, V., Buonomo, A. R., Zappulo, E., Gentile, I., Triassi, M., Brescia Morra, V., & Moccia, M. (2020). Prevalence of SARS-CoV-2 Antibodies in Multiple Sclerosis: The Hidden Part of the Iceberg. Journal of Clinical Medicine, 9(12), 4066. https://doi.org/10.3390/jcm9124066