Characterization of Clostridioides difficile Strains, the Disease Severity, and the Microbial Changes They Induce
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Bacterial Isolation and Identification
2.3. Multi-Locus Sequence Typing
2.3.1. Amplification (A)
2.3.2. Sequencing and Sequence Type (ST) Determination (B)
2.4. Toxin Detection
2.4.1. Toxin Gene Detection by PCR (A)
2.4.2. Toxin Detection Using a Chromatographic Immunoassay (B)
2.5. Antibiotic Susceptibility Testing
2.6. Disease Severity Scoring and Demographic Data Collection
2.7. Gut Microbiome
2.7.1. DNA Extraction (A)
2.7.2. DNA Amplification (B)
2.7.3. DNA Purification (C)
2.7.4. DNA Quantification and Pooling (D)
2.7.5. Pooling Purification (E)
2.7.6. Sequencing (F)
2.7.7. Analysis (G)
2.8. Statistical Analysis
3. Results
3.1. Demographic and Microbial Characteristics
3.2. Antibiotic Susceptibility Testing
3.3. Associations Between STs, Epidemiological Data, and Bacterial Characteristics
3.4. Associations Between Binary Toxin Gene Occurrence, Epidemiological Data, and Bacterial Characteristics
3.5. Microbiome Analysis
4. Discussion
4.1. Characteristics of the Study Population
4.2. The Characteristics of the Different STs
4.3. The Prevalences of the Different Clades
4.4. The Binary Gene and Susceptibility to Antimicrobial Agents
4.5. Characterization of the Intestinal Microbiota of CDI Patients
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kelly, C.P.; LaMont, J.T. Clostridium difficile—More difficult than ever. N. Engl. J. Med. 2008, 359, 1932–1940. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Khanna, S. Community-acquired Clostridium difficile infection: An increasing public health threat. Infect. Drug Resist. 2014, 7, 63–72. [Google Scholar]
- Slimings, C.; Riley, T.V. Antibiotics and hospital-acquired Clostridium difficile infection: Update of systematic review and meta-analysis. J. Antimicrob. Chemother. 2014, 69, 881–991. [Google Scholar] [CrossRef] [PubMed]
- Stecher, B.; Hardt, W.-D. Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol. 2011, 14, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Tumbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Voth, D.E.; Ballard, J.D. Clostridium difficile Toxins: Mechanism of action and role in disease. Clin. Microbiol. Rev. 2005, 18, 247–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curry, S.R.; Marsh, J.W.; Muto, C.A.; O’Leary, M.M.; Pasculle, A.W.; Harrison, L.H. tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J. Clin. Microbiol. 2007, 45, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, A.; Miller-Roll, T.; Bradenstein, R.; Block, C.; Mendelson, B.; Parizade, M.; Paitan, Y.; Schwartz, D.; Peled, N.; Carmeli, Y.; et al. A national survey of the molecular epidemiology of Clostridium difficile in Israel: The dissemination of the ribotype 027 strain with reduced susceptibility to vancomycin and metronidazole. Diagn. Microbiol. Infect. Dis. 2015, 83, 21–24. [Google Scholar] [CrossRef]
- Florea, D.; Otelea, D.; Rafila, A.; Bădicut, I.; Popoiu, M.; Popescu, G.A. Clinical utility of the GeneXpert assay for the diagnosis of Clostridium difficile infections. BMC Infect. Dis. 2014, 14, O34. [Google Scholar] [CrossRef] [Green Version]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, D.; Fawley, W.; Kachrimanidou, M.; Bowden, R.; Crook, D.W.; Fung, R.; Golubchik, T.; Harding, R.M.; Jeffery, K.J.M.; Jolley, K.A.; et al. Multilocus sequence typing of Clostridium difficile. J. Clin. Microbiol. 2010, 48, 770–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilic, A.; Alam, M.J.; Tisdel, N.L.; Shah, D.N.; Yapar, M.; Lasco, T.M.; Garey, K.W. Multiplex Real-Time PCR method for simultaneous identification and toxigenic type characterization of Clostridium difficile from stool samples. Ann. Lab. Med. 2015, 35, 306–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gateau, C.; Couturier, J.; Coia, J.; Barbut, F. How to: Diagnose infection caused by Clostridium difficile. Clin. Microbiol. Infect. 2017, 24, 463–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 6.0; European Committee on Antimicrobial Susceptibility Testing: Vaxjo, Sweeden, 2016. [Google Scholar]
- Velazquez-Gomez, I.; Rocha-Rodriguez, R.; Toro, D.H.; Gutierrez-Nuñez, J.J.; Gonzalez, G.; Saavedra, S. A Severity score index for Clostridium difficile infection. Infect. Dis. Clin. Pract. 2008, 16, 376–378. [Google Scholar] [CrossRef]
- Santos, S.S.; Nielsen, T.K.; Hansen, L.H.; Winding, A. Comparison of three DNA extraction methods for recovery of soil protist DNA. J. Microbiol. Methods. 2015, 115, 13–19. [Google Scholar] [CrossRef]
- Meyer, M.; Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, 2010, pdb-prot5448. [Google Scholar] [CrossRef]
- Nakayama, Y.; Yamaguchi, H.; Einaga, N.; Esumi, M. Pitfalls of DNA quantification using DNA-binding fluorescent dyes and suggested solutions. PLoS ONE 2016, 11, e0150528. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [Green Version]
- Faith, D.P.; Baker, A.M. Phylogenetic diversity (PD) and biodiversity conservation: Some bioinformatics challenges. Evol. Bioinform. 2007, 2, 121–128. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, r60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simor, A.E.; Bradley, S.F.; Strausbaugh, L.J.; Crossley, K.; Nicolle, L.E. Clostridium difficile in long-term-care facilities for the elderly. Infect. Control Hosp. Epidemiol. 2002, 23, 696–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hota, S.S.; Achonu, C.; Crowcroft, N.S.; Harvey, B.J.; Lauwers, A.; Gardam, M.A. Determining mortality rates attributable to Clostridium difficile infection. Emerg. Infect. Dis. 2012, 18, 305–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamo, Z.; Azrad, M.; Nitzan, O.; Sagie, A.; Tkhawkho, L.; Binyamin, D.; Peretz, A. Role of single procalcitonin test on admission as a biomarker for predicting the severity of Clostridium difficile infection. Front. Microbiol. 2017, 8, 2532. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, M.; Ríos-Chaparro, D.I.; Patarroyo, M.A.; Ramírez, J.D. Determining Clostridium difficile intra-taxa diversity by mining multilocus sequence typing databases. BMC Microbiol. 2017, 17, 62. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zhang, W.; Cheng, J.-W.; Xiao, M.; Sun, G.-R.; Guo, C.-J.; Liu, M.-J.; Cong, P.-S.; Kudinha, T. Molecular epidemiology of Clostridium difficile in two tertiary care hospitals in Shandong Province, China. Infect. Drug Resist. 2018, 11, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Pepin, J.; Saheb, N.; Coulombe, M.-A.; Alary, M.-E.; Corriveau, M.-P.; Authier, S.; Leblanc, M.; Rivard, G.; Bettez, M.; Primeau, V. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: A cohort study during an epidemic in Quebec. Clin. Infect. Dis. 2005, 41, 1254–1260. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Addisu, A.; Alrabaa, S.; Sun, X. Antibiotic resistance and toxin production of Clostridium difficile isolates from the hospitalized patients in a large hospital in Florida. Front. Microbiol. 2017, 8, 2584. [Google Scholar] [CrossRef]
- Gerding, D.N.; Johnson, S.; Rupnik, M.; Aktories, K. Clostridium difficile binary toxin CDT: Mechanism, epidemiology, and potential clinical importance. Gut Microbes 2014, 5, 15–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffery, I.B.; Lynch, D.B.; O’Toole, P.W. Composition and temporal stability of the gut microbiota in older persons. ISME J. 2015, 10, 170–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imhann, F.; Bonder, M.J.; Vila, A.V.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.M.; et al. Proton pump inhibitors affect the gut microbiome. Gut 2016, 65, 740–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antharam, V.C.; Li, E.C.; Ishmael, A.; Sharma, A.; Mai, V.; Rand, K.H.; Wang, G.P. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J. Clin. Microbiol. 2013, 51, 2884–2892. [Google Scholar] [CrossRef] [Green Version]
- Louie, T.J.; Cannon, K.; Byrne, B.; Emery, J.; Ward, L.; Eyben, M.; Krulicki, W. Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin. Infect. Dis. 2012, 55, S132–S142. [Google Scholar] [CrossRef]
- Goudarzi, M.; Seyedjavadi, S.S.; Goudarzi, H.; Aghdam, E.M.; Nazeri, S. Clostridium difficile infection: Epidemiology, pathogenesis, risk factors, and therapeutic options. Scientifica 2014, 2014, 916826. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, M.J.; Sharp, R.; Macfarlane, G.T. Variation in human intestinal microbiota with age. Dig. Liver Dis. 2002, 34, S12–S18. [Google Scholar] [CrossRef]
- Hopkins, M.J.; Sharp, R.; Macfarlane, G.T. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 2001, 48, 198–205. [Google Scholar] [CrossRef]
- Manges, A.R.; Labbe, A.; Loo, V.G.; Atherton, J.K.; Behr, M.A.; Masson, L.; Tellis, P.A.; Brousseau, R. Comparative metagenomic study of alterations to the intestinal microbiota and risk of nosocomial Clostridium difficile-associated disease. J. Infect. Dis. 2010, 202, 1877–1884. [Google Scholar] [CrossRef] [Green Version]
- Barc, M.C.; Bourlioux, F.; Rigottier-Gois, L.; Charrin-Sarnel, C.; Janoir, C.; Boureau, H.; Doré, J.; Collignon, A. Effect of amoxicillin-clavulanic acid on human fecal flora in a gnotobiotic mouse model assessed with fluorescence hybridization using group-specific 16S rRNA probes in combination with flow cytometry. Antimicrob. Agents Chemother. 2004, 48, 1365–1368. [Google Scholar] [CrossRef] [Green Version]
- Robinson, C.J.; Young, V.B. Antibiotic administration alters the community structure of the gastrointestinal microbiota. Gut Microbes 2010, 1, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient Characteristic | N (%) |
---|---|
Gender | |
Male | 34 (48.6) |
Female | 36 (51.4) |
Disease Severity | |
Mild | 45 (64.3) |
Moderate | 23 (32.8) |
Severe | 2 (2.9) |
30-day mortality | |
Alive | 48 (68.6) |
Died | 22 (31.4) |
Infection acquisition | |
Nosocomial | 47 (67.1) |
Community | 23 (32.9) |
NAP1/027/B1 | |
Positive | 3 (4.3) |
Negative | 67 (95.7) |
Toxins * | |
A | 8 (11.4) |
B | 9 (12.9) |
A + B | 61 (87.1) |
Antibiotic | Resistant Isolates n (%) * | Mean MIC90 (µg/mL) | MIC50 (µg/mL) |
---|---|---|---|
Metronidazole | 12 (17.1) | 40.6 | 0.5 |
Vancomycin | 1 (1.4) | 4.2 | 0.38 |
Moxifloxacin | 29 (41.4) | 13.7 | 2 |
Tigecycline | 5 (7.1) | 0.5 | 0.023 |
Characteristic | ST04 (n = 16) | ST37 (n = 9) | ST104 (n = 6) | ST42 (n = 5) | ST02 (n = 5) | Other (n = 29) | p-Value |
---|---|---|---|---|---|---|---|
Disease severity | 0.105 | ||||||
Moderate | 4 # (25%) | 5 (55.6%) | 0 (0%) | 0 # (0%) | 3 (60%) | 11 (37.9%) | |
Mild | 11 (68.8%) | 4 (44.4%) | 6 (100%) | 4 (80%) | 2 (40%) | 18 (62.1%) | |
Gender | 0.979 | ||||||
Male | 8 (50%) | 5 (55.6%) | 3 (50%) | 2 (40%) | 3 (60%) | 13 (44.8%) | |
Female | 8 (50%) | 4 (44.4%) | 3 (50%) | 3 (60%) | 2 (40%) | 16 (55.2%) | |
Disease acquisition | 0.326 | ||||||
Nosocomial | 13 (81.3%) | 6 (66.7%) | 3 (50%) | 4 (80%) | 2 (40%) | 20 (69%) | |
Community | 3 (18.7%) | 3 (33.3%) | 3 (50%) | 1 (20%) | 3 (60%) | 9 (31%) | |
30-day mortality | 0.641 | ||||||
Alive | 10 (62.5%) | 6 (66.7%) | 6 (100%) | 3 (60%) | 3 (60%) | 20 (69%) | |
Died | 6 (37.5%) | 3 (33.3%) | 0 (0%) | 2 (40%) | 2 (40%) | 9 (31%) | |
Number of Classes | 0.761 | ||||||
0 | 0 (0%) 10 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (3.4%) # | |
1 | (62.5%) | 2 (22.2%) | 2 (33.3%) | 2 (40%) | 3 (60%) | 15 (51.7%) | |
2 | 1 (6.2%) | 3 (33.3%) | 1 (16.7%) | 2 (40%) | 2 (40%) | 2 (6.9%) | |
3 | 3 (18.8%) | 2 (22.2%) | 1 (16.7%) | 0 (0%) | 0 (0%) | 9 (31%) | |
4 | 1 (6.2%) | 0 (0%) | 1 (16.7%) | 0 (0%) | 0 (0%) | 1 (3.4%) |
Characteristics | ST04 (n = 16) | ST37 (n = 9) | ST104 (n = 6) | ST42 (n = 5) | ST02 (n = 5) | Other (n = 29) | p-Value |
---|---|---|---|---|---|---|---|
Toxins # | 0.906 | ||||||
A | 1 (6.3%) | 1 (11.1%) | 0 (0%) | 1 (20%) | 0 (0%) | 5 (17.2%) | |
B | 7 (43.7%) | 3 (33.3%) | 2 (33.3%) | 1 (20%) | 1 (20%) | 9 (31%) | |
A + B | 8 (50%) | 5 (55.6%) | 4 (66.7%) | 3 (60%) | 4 (80%) | 15 (51.8%) | |
Binary toxin | 0.614 | ||||||
Negative | 14 (87.5%) | 7 (77.8%) | 6 (100%) | 5 (100%) | 5 (100%) | 24 (82.7%) | |
Positive | 2 (12.5%) | 2 (22.2%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (17.3%) | |
Metronidazole | 0.550 | ||||||
S | 13 (81.3%) | 6 (66.7%) | 6 (100%) | 5 (100%) | 4 (80%) | 24 (82.7%) | |
R | 3 (18.7%) | 3 (33.3%) | 0 (0%) | 0 (0%) | 1 (20%) | 5 (17.3%) | |
Moxifloxacin | 0.001 * | ||||||
S | 1 (6.3%) | 5 (55.6%) | 6 (100%) | 5 (100%) | 2 (40%) | 22 (75.8%) | |
R | 15 (93.7%) | 4 (44.4%) | 0 (0%) | 0 (0%) | 3 (60%) | 7 (24.2%) | |
Tigecycline | 0.626 | ||||||
S | 16 (100%) | 8 (88.9%) | 5 (83.3%) | 5 (100%) | 5 (100%) | 26 (89.7%) | |
R | 0 (0%) | 1 (11.1%) | 1 (16.7%) | 0 (0%) | 0 (0%) | 3 (10.3%) | |
Vancomycin | 0.230 | ||||||
S | 16 (100%) | 8 (88.9%) | 6 (100%) | 5 (100%) | 5 (100%) | 29 (100%) | |
R | 0 (0%) | 1 (11.1%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Characteristic | Binary-Negative Isolates (n = 61) N (%) | Binary-Positive Isolates (n = 9) N (%) | p-Value |
---|---|---|---|
NAP1 | 0.001 * | ||
Positive | 61 (100) | 6 (66.7) | |
Negative | 0 (0) | 3 (33.3) | |
Toxins | 0.449 | ||
A | 8 (13.1) | 0 (0) | |
B | 19 (31.1) | 4 (44.5) | |
A + B | 34 (55.7) | 5 (55.5) | |
Metronidazole | 0.020 | ||
S | 53 (86.9) | 5 (55.5) | |
R | 8 (13.1) | 4 (45.5) | |
Moxifloxacin | 0.009 | ||
S | 37 (60.7) | 4 (44.5) | |
R | 24 (39.3) | 5 (55.5) | |
Tigecycline | 0.357 | ||
S | 57 (93.4) | 8 (88.9) | |
R | 4 (6.6) | 1 (11.1) | |
Vancomycin | 0.620 | ||
S | 61 (100) | 8 (88.9) | |
R | 0 (0) | 1 (11.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rohana, H.; Azrad, M.; Nitzan, O.; Adler, A.; Binyamin, D.; Koren, O.; Peretz, A. Characterization of Clostridioides difficile Strains, the Disease Severity, and the Microbial Changes They Induce. J. Clin. Med. 2020, 9, 4099. https://doi.org/10.3390/jcm9124099
Rohana H, Azrad M, Nitzan O, Adler A, Binyamin D, Koren O, Peretz A. Characterization of Clostridioides difficile Strains, the Disease Severity, and the Microbial Changes They Induce. Journal of Clinical Medicine. 2020; 9(12):4099. https://doi.org/10.3390/jcm9124099
Chicago/Turabian StyleRohana, Hanan, Maya Azrad, Orna Nitzan, Amos Adler, Dana Binyamin, Omry Koren, and Avi Peretz. 2020. "Characterization of Clostridioides difficile Strains, the Disease Severity, and the Microbial Changes They Induce" Journal of Clinical Medicine 9, no. 12: 4099. https://doi.org/10.3390/jcm9124099
APA StyleRohana, H., Azrad, M., Nitzan, O., Adler, A., Binyamin, D., Koren, O., & Peretz, A. (2020). Characterization of Clostridioides difficile Strains, the Disease Severity, and the Microbial Changes They Induce. Journal of Clinical Medicine, 9(12), 4099. https://doi.org/10.3390/jcm9124099