Polygenic Risk Scores Shed Light on the Relationship between Schizophrenia and Cognitive Functioning: Review and Meta-Analysis
Abstract
:1. Introduction
1.1. Cognition and Schizophrenia: Is Genetic the Missing Link?
1.2. Schizophrenia is a Partly Genetic and Cognitive Disease
1.3. The Genetic Aspects of Cognitive Functioning
1.4. Why Investigate the Genetic Link between Cognition and Schizophrenia?
1.5. Cognitive Functioning and Community Functioning in Schizophrenia
2. Experimental Section
2.1. Review
2.2. Meta-Analysis
3. Results
3.1. Review
3.1.1. Implication of Genetic risk of Schizophrenia on Cognitive Functioning/Educational Attainment (EA)
3.1.2. Implication of Cognition/EA on the Risk for Schizophrenia and Correlations
3.1.3. Causation Link
3.1.4. Findings from Cases and Sibling Studies
3.2. Meta-Analysis
4. Discussion
4.1. The Cognitive Endophenotypes
4.2. Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deary, I.J.; Weiss, A.; Batty, G.D. Intelligence and Personality as Predictors of Illness and Death: How Researchers in Differential Psychology and Chronic Disease Epidemiology Are Collaborating to Understand and Address Health Inequalities. Psychol. Sci. Public Interest J. Am. Psychol. Soc. 2010, 11, 53–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gale, C.R.; Hatch, S.L.; Batty, G.D.; Deary, I.J. Intelligence in childhood and risk of psychological distress in adulthood: The 1958 National Child Development Survey and the 1970 British Cohort Study. Intelligence 2009, 37, 592–599. [Google Scholar] [CrossRef]
- Gale, C.R.; Batty, G.D.; Tynelius, P.; Deary, I.J.; Rasmussen, F. Intelligence in early adulthood and subsequent hospitalisation and admission rates for the whole range of mental disorders: Longitudinal study of 1,049,663 men. Epidemiol. Camb. Mass 2010, 21, 70–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maccabe, J.H. Population-based cohort studies on premorbid cognitive function in schizophrenia. Epidemiol. Rev. 2008, 30, 77–83. [Google Scholar] [CrossRef]
- Lichtenstein, P.; Yip, B.H.; Björk, C.; Pawitan, Y.; Cannon, T.D.; Sullivan, P.F.; Hultman, C.M. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. Lancet Lond. Engl. 2009, 373, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, P.F.; Kendler, K.S.; Neale, M.C. Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 2003, 60, 1187–1192. [Google Scholar] [CrossRef] [Green Version]
- Ripke, S.; Neale, B.M.; Corvin, A.; Walters, J.T.; Farh, K.-H.; Holmans, P.A.; Lee, P.; Bulik-Sullivan, B.; Collier, D.A. Biological Insights From 108 Schizophrenia-Associated Genetic Loci. Nature 2014, 511, 421. [Google Scholar]
- Purcell, S.M.; Wray, N.R.; Stone, J.L.; Visscher, P.M.; O’Donovan, M.C.; Sullivan, P.F.; Sklar, P.; International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460, 748–752. [Google Scholar]
- Avramopoulos, D. Recent Advances in the Genetics of Schizophrenia. Mol. Neuropsychiatry 2018, 4, 35–51. [Google Scholar] [CrossRef]
- Fioravanti, M.; Bianchi, V.; Cinti, M.E. Cognitive deficits in schizophrenia: An updated metanalysis of the scientific evidence. BMC Psychiatry 2012, 12, 64. [Google Scholar] [CrossRef] [Green Version]
- Heinrichs, R.W.; Zakzanis, K.K. Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology 1998, 12, 426–445. [Google Scholar] [CrossRef] [PubMed]
- Mallet, J.; Ramoz, N.; Le Strat, Y.; Gorwood, P.; Dubertret, C. Heavy cannabis use prior psychosis in schizophrenia: Clinical, cognitive and neurological evidences for a new endophenotype? Eur. Arch. Psychiatry Clin. Neurosci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Nkam, I.; Ramoz, N.; Breton, F.; Mallet, J.; Gorwood, P.; Dubertret, C. Impact of DRD2/ANKK1 and COMT Polymorphisms on Attention and Cognitive Functions in Schizophrenia. PLoS ONE 2017, 12, e0170147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesholam-Gately, R.I.; Giuliano, A.J.; Goff, K.P.; Faraone, S.V.; Seidman, L.J. Neurocognition in first-episode schizophrenia: A meta-analytic review. Neuropsychology 2009, 23, 315–336. [Google Scholar] [CrossRef] [Green Version]
- Gur, R.E.; Nimgaonkar, V.L.; Almasy, L.; Calkins, M.E.; Ragland, J.D.; Pogue-Geile, M.F.; Kanes, S.; Blangero, J.; Gur, R.C. Neurocognitive endophenotypes in a multiplex multigenerational family study of schizophrenia. Am. J. Psychiatry 2007, 164, 813–819. [Google Scholar] [CrossRef]
- Kahn, R.S.; Keefe, R.S.E. Schizophrenia is a cognitive illness: Time for a change in focus. JAMA Psychiatry 2013, 70, 1107–1112. [Google Scholar] [CrossRef]
- Blokland, G.A.M.; Mesholam-Gately, R.I.; Toulopoulou, T.; Del Re, E.C.; Lam, M.; DeLisi, L.E.; Donohoe, G.; Walters, J.T.R.; Seidman, L.J.; et al.; GENUS Consortium Heritability of Neuropsychological Measures in Schizophrenia and Nonpsychiatric Populations: A Systematic Review and Meta-analysis. Schizophr. Bull. 2017, 43, 788–800. [Google Scholar] [CrossRef]
- Toulopoulou, T.; Goldberg, T.E.; Mesa, I.R.; Picchioni, M.; Rijsdijk, F.; Stahl, D.; Cherny, S.S.; Sham, P.; Faraone, S.V.; Tsuang, M.; et al. Impaired intellect and memory: A missing link between genetic risk and schizophrenia? Arch. Gen. Psychiatry 2010, 67, 905–913. [Google Scholar] [CrossRef]
- Lin, S.-H.; Liu, C.-M.; Hwang, T.-J.; Hsieh, M.H.; Hsiao, P.-C.; Faraone, S.V.; Tsuang, M.T.; Hwu, H.-G.; Chen, W.J. Performance on the Wisconsin Card Sorting Test in families of schizophrenia patients with different familial loadings. Schizophr. Bull. 2013, 39, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Stefansson, H.; Meyer-Lindenberg, A.; Steinberg, S.; Magnusdottir, B.; Morgen, K.; Arnarsdottir, S.; Bjornsdottir, G.; Walters, G.B.; Jonsdottir, G.A.; Doyle, O.M.; et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 2014, 505, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Plomin, R.; Deary, I.J. Genetics and intelligence differences: Five special findings. Mol. Psychiatry 2015, 20, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohi, K.; Sumiyoshi, C.; Fujino, H.; Yasuda, Y.; Yamamori, H.; Fujimoto, M.; Shiino, T.; Sumiyoshi, T.; Hashimoto, R. Genetic Overlap between General Cognitive Function and Schizophrenia: A Review of Cognitive GWASs. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polderman, T.J.C.; Benyamin, B.; de Leeuw, C.A.; Sullivan, P.F.; van Bochoven, A.; Visscher, P.M.; Posthuma, D. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 2015, 47, 702–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, J.L.; Tylee, D.S.; Mattheisen, M.; Børglum, A.D.; Als, T.D.; Grove, J.; Werge, T.; Mortensen, P.B.; et al.; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) A polygenic resilience score moderates the genetic risk for schizophrenia. Mol. Psychiatry 2019. [Google Scholar] [CrossRef] [Green Version]
- Davies, G.; Armstrong, N.; Bis, J.C.; Bressler, J.; Chouraki, V.; Giddaluru, S.; Hofer, E.; Ibrahim-Verbaas, C.A.; Kirin, M.; Lahti, J.; et al. Genetic contributions to variation in general cognitive function: A meta-analysis of genome-wide association studies in the CHARGE consortium (N = 53949). Mol. Psychiatry 2015, 20, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Sniekers, S.; Stringer, S.; Watanabe, K.; Jansen, P.R.; Coleman, J.R.I.; Krapohl, E.; Taskesen, E.; Hammerschlag, A.R.; Okbay, A.; Zabaneh, D.; et al. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat. Genet. 2017, 49, 1107–1112. [Google Scholar] [CrossRef]
- Davies, G.; Marioni, R.E.; Liewald, D.C.; Hill, W.D.; Hagenaars, S.P.; Harris, S.E.; Ritchie, S.J.; Luciano, M.; Fawns-Ritchie, C.; Lyall, D.; et al. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N = 112 151). Mol. Psychiatry 2016, 21, 758–767. [Google Scholar] [CrossRef] [Green Version]
- Scheggia, D.; Mastrogiacomo, R.; Mereu, M.; Sannino, S.; Straub, R.E.; Armando, M.; Managò, F.; Guadagna, S.; Piras, F.; Zhang, F.; et al. Variations in Dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Leggio, G.M.; Torrisi, S.A.; Mastrogiacomo, R.; Mauro, D.; Chisari, M.; Devroye, C.; Scheggia, D.; Nigro, M.; Geraci, F.; Pintori, N.; et al. The epistatic interaction between the dopamine D3 receptor and dysbindin-1 modulates higher-order cognitive functions in mice and humans. Mol. Psychiatry 2019. [Google Scholar] [CrossRef]
- Davies, G.; Lam, M.; Harris, S.E.; Trampush, J.W.; Luciano, M.; Hill, W.D.; Hagenaars, S.P.; Ritchie, S.J.; Marioni, R.E.; Fawns-Ritchie, C.; et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat. Commun. 2018, 9, 2098. [Google Scholar] [CrossRef] [Green Version]
- Savage, J.E.; Jansen, P.R.; Stringer, S.; Watanabe, K.; Bryois, J.; de Leeuw, C.A.; Nagel, M.; Awasthi, S.; Barr, P.B.; Coleman, J.R.I.; et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 2018, 50, 912–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechi, M.; Bosia, M.; Spangaro, M.; Buonocore, M.; Cavedoni, S.; Agostoni, G.; Bianchi, L.; Cocchi, F.; Guglielmino, C.; Smeraldi, E.; et al. Exploring functioning in schizophrenia: Predictors of functional capacity and real-world behaviour. Psychiatry Res. 2017, 251, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Green, M.F. Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J. Clin. Psychiatry 2006, 67, e12. [Google Scholar] [CrossRef]
- Halverson, T.F.; Orleans-Pobee, M.; Merritt, C.; Sheeran, P.; Fett, A.-K.; Penn, D.L. Pathways to functional outcomes in schizophrenia spectrum disorders: Meta-analysis of social cognitive and neurocognitive predictors. Neurosci. Biobehav. Rev. 2019, 105, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Bowie, C.R.; Harvey, P.D. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr. Dis. Treat. 2006, 2, 531–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, S.S.; Almasy, L.; Gur, R.C.; Prasad, K.; Roalf, D.R.; Gur, R.E.; Nimgaonkar, V.L.; Pogue-Geile, M.F. Cognition and community functioning in schizophrenia: The nature of the relationship. J. Abnorm. Psychol. 2018, 127, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, L.; Tansey, K.E.; Rai, D.; Jones, P.; Ripke, S.; Chambert, K.D.; Moran, J.L.; McCarroll, S.A.; Linden, D.E.J.; Owen, M.J.; et al. Evidence of Common Genetic Overlap Between Schizophrenia and Cognition. Schizophr. Bull. 2016, 42, 832–842. [Google Scholar] [CrossRef] [Green Version]
- Rice, M.E.; Harris, G.T. Comparing effect sizes in follow-up studies: ROC Area, Cohen’s d, and r. Law Hum. Behav. 2005, 29, 615–620. [Google Scholar] [CrossRef]
- Kauppi, K.; Westlye, L.T.; Tesli, M.; Bettella, F.; Brandt, C.L.; Mattingsdal, M.; Ueland, T.; Espeseth, T.; Agartz, I.; Melle, I.; et al. Polygenic risk for schizophrenia associated with working memory-related prefrontal brain activation in patients with schizophrenia and healthy controls. Schizophr. Bull. 2015, 41, 736–743. [Google Scholar] [CrossRef] [Green Version]
- Lencz, T.; Knowles, E.; Davies, G.; Guha, S.; Liewald, D.C.; Starr, J.M.; Djurovic, S.; Melle, I.; Sundet, K.; Christoforou, A.; et al. Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: A report from the Cognitive Genomics consorTium (COGENT). Mol. Psychiatry 2014, 19, 168–174. [Google Scholar] [CrossRef] [Green Version]
- The jamovi project (2019). jamovi (Version 0.9) [Computer Software]. Available online: https://www.jamovi.org (accessed on 25 January 2020).
- Schmidt, F.L.; Hunter, J.E. Methods of Meta-Analysis: Correcting Error and Bias in Research Findings, 3rd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2014; ISBN 978-1-4522-8689-1. [Google Scholar]
- Schmidt, F.L.; Oh, I.-S.; Hayes, T.L. Fixed- versus random-effects models in meta-analysis: Model properties and an empirical comparison of differences in results. Br. J. Math. Stat. Psychol. 2009, 62, 97–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeland, O.B.; Frei, O.; Kauppi, K.; Hill, W.D.; Li, W.; Wang, Y.; Krull, F.; Bettella, F.; Eriksen, J.A.; Witoelar, A.; et al. Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function. JAMA Psychiatry 2017, 74, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, S.; Medland, S.; Turner, J.A.; Calhoun, V.D.; Lim, K.O.; Mueller, B.A.; Bustillo, J.R.; O’Leary, D.S.; Vaidya, J.G.; McEwen, S.; et al. Polygenic risk score, genome-wide association, and gene set analyses of cognitive domain deficits in schizophrenia. Schizophr. Res. 2018, 201, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Germine, L.; Robinson, E.B.; Smoller, J.W.; Calkins, M.E.; Moore, T.M.; Hakonarson, H.; Daly, M.J.; Lee, P.H.; Holmes, A.J.; Buckner, R.L.; et al. Association between polygenic risk for schizophrenia, neurocognition and social cognition across development. Transl. Psychiatry 2016, 6, e924. [Google Scholar] [CrossRef] [Green Version]
- Hagenaars, S.P.; Harris, S.E.; Davies, G.; Hill, W.D.; Liewald, D.C.M.; Ritchie, S.J.; Marioni, R.E.; Fawns-Ritchie, C.; Cullen, B.; Malik, R.; et al. Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N = 112 151) and 24 GWAS consortia. Mol. Psychiatry 2016, 21, 1624–1632. [Google Scholar] [CrossRef] [Green Version]
- Liebers, D.T.; Pirooznia, M.; Seiffudin, F.; Musliner, K.L.; Zandi, P.P.; Goes, F.S. Polygenic Risk of Schizophrenia and Cognition in a Population-Based Survey of Older Adults. Schizophr. Bull. 2016, 42, 984–991. [Google Scholar] [CrossRef] [Green Version]
- Benca, C.E.; Derringer, J.L.; Corley, R.P.; Young, S.E.; Keller, M.C.; Hewitt, J.K.; Friedman, N.P. Predicting Cognitive Executive Functioning with Polygenic Risk Scores for Psychiatric Disorders. Behav. Genet. 2017, 47, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Davey Smith, G.; Hart, C.; Hole, D.; MacKinnon, P.; Gillis, C.; Watt, G.; Blane, D.; Hawthorne, V. Education and occupational social class: Which is the more important indicator of mortality risk? J. Epidemiol. Commun. Health 1998, 52, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Krapohl, E.; Euesden, J.; Zabaneh, D.; Pingault, J.-B.; Rimfeld, K.; von Stumm, S.; Dale, P.S.; Breen, G.; O’Reilly, P.F.; Plomin, R. Phenome-wide analysis of genome-wide polygenic scores. Mol. Psychiatry 2016, 21, 1188–1193. [Google Scholar] [CrossRef] [Green Version]
- Power, R.A.; Steinberg, S.; Bjornsdottir, G.; Rietveld, C.A.; Abdellaoui, A.; Nivard, M.M.; Johannesson, M.; Galesloot, T.E.; Hottenga, J.J.; Willemsen, G.; et al. Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nat. Neurosci. 2015, 18, 953–955. [Google Scholar] [CrossRef]
- Nieuwboer, H.A.; Pool, R.; Dolan, C.V.; Boomsma, D.I.; Nivard, M.G. GWIS: Genome-Wide Inferred Statistics for Functions of Multiple Phenotypes. Am. J. Hum. Genet. 2016, 99, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Bansal, V.; Mitjans, M.; Burik, C.A.P.; Linnér, R.K.; Okbay, A.; Rietveld, C.A.; Begemann, M.; Bonn, S.; Ripke, S.; de Vlaming, R.; et al. Genome-wide association study results for educational attainment aid in identifying genetic heterogeneity of schizophrenia. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef]
- Hill, W.D.; Davies, G.; Liewald, D.C.; McIntosh, A.M.; Deary, I.J.; CHARGE Cognitive Working Group. Age-Dependent Pleiotropy Between General Cognitive Function and Major Psychiatric Disorders. Biol. Psychiatry 2016, 80, 266–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntosh, A.M.; Gow, A.; Luciano, M.; Davies, G.; Liewald, D.C.; Harris, S.E.; Corley, J.; Hall, J.; Starr, J.M.; Porteous, D.J.; et al. Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biol. Psychiatry 2013, 73, 938–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Córdova-Palomera, A.; Kaufmann, T.; Bettella, F.; Wang, Y.; Doan, N.T.; van der Meer, D.; Alnæs, D.; Rokicki, J.; Moberget, T.; Sønderby, I.E.; et al. Effects of autozygosity and schizophrenia polygenic risk on cognitive and brain developmental trajectories. Eur. J. Hum. Genet. EJHG 2018, 26, 1049–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riglin, L.; Collishaw, S.; Richards, A.; Thapar, A.K.; Maughan, B.; O’Donovan, M.C.; Thapar, A. Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: A population-based cohort study. Lancet Psychiatry 2017, 4, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Shafee, R.; Nanda, P.; Padmanabhan, J.L.; Tandon, N.; Alliey-Rodriguez, N.; Kalapurakkel, S.; Weiner, D.J.; Gur, R.E.; Keefe, R.S.E.; Hill, S.K.; et al. Polygenic risk for schizophrenia and measured domains of cognition in individuals with psychosis and controls. Transl. Psychiatry 2018, 8, 78. [Google Scholar] [CrossRef]
- Brainstorm Consortium; Anttila, V.; Bulik-Sullivan, B.; Finucane, H.K.; Walters, R.K.; Bras, J.; Duncan, L.; Escott-Price, V.; Falcone, G.J.; Gormley, P.; et al. Analysis of shared heritability in common disorders of the brain. Science 2018, 360. [Google Scholar]
- Hatzimanolis, A.; Avramopoulos, D.; Arking, D.E.; Moes, A.; Bhatnagar, P.; Lencz, T.; Malhotra, A.K.; Giakoumaki, S.G.; Roussos, P.; Smyrnis, N.; et al. Stress-Dependent Association Between Polygenic Risk for Schizophrenia and Schizotypal Traits in Young Army Recruits. Schizophr. Bull. 2018, 44, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.; Hill, W.D.; Trampush, J.W.; Yu, J.; Knowles, E.; Davies, G.; Stahl, E.; Huckins, L.; Liewald, D.C.; Djurovic, S.; et al. Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways. Am. J. Hum. Genet. 2019, 105, 334–350. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.; Trampush, J.W.; Yu, J.; Knowles, E.; Davies, G.; Liewald, D.C.; Starr, J.M.; Djurovic, S.; Melle, I.; Sundet, K.; et al. Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets. Cell Rep. 2017, 21, 2597–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, N.; Sui, J.; Chen, J.; Zhang, F.; Tian, L.; Lin, D.; Song, M.; Calhoun, V.D.; Cui, Y.; Vergara, V.M.; et al. A Schizophrenia-Related Genetic-Brain-Cognition Pathway Revealed in a Large Chinese Population. EBioMedicine 2018, 37, 471–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toulopoulou, T.; Zhang, X.; Cherny, S.; Dickinson, D.; Berman, K.F.; Straub, R.E.; Sham, P.; Weinberger, D.R. Polygenic risk score increases schizophrenia liability through cognition-relevant pathways. Brain J. Neurol. 2019, 142, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Trampush, J.W.; Yang, M.L.Z.; Yu, J.; Knowles, E.; Davies, G.; Liewald, D.C.; Starr, J.M.; Djurovic, S.; Melle, I.; Sundet, K.; et al. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: A report from the COGENT consortium. Mol. Psychiatry 2017, 22, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Bulik-Sullivan, B.; Finucane, H.K.; Anttila, V.; Gusev, A.; Day, F.R.; Loh, P.-R.; Duncan, L.; ReproGen Consortium; Psychiatric Genomics Consortium; Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium 3; et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015, 47, 1236–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frei, O.; Holland, D.; Smeland, O.B.; Shadrin, A.A.; Fan, C.C.; Maeland, S.; O’Connell, K.S.; Wang, Y.; Djurovic, S.; Thompson, W.K.; et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Hellard, S.; Wang, Y.; Witoelar, A.; Zuber, V.; Bettella, F.; Hugdahl, K.; Espeseth, T.; Steen, V.M.; Melle, I.; Desikan, R.; et al. Identification of Gene Loci That Overlap Between Schizophrenia and Educational Attainment. Schizophr. Bull. 2017, 43, 654–664. [Google Scholar] [CrossRef] [Green Version]
- Okbay, A.; Beauchamp, J.P.; Fontana, M.A.; Lee, J.J.; Pers, T.H.; Rietveld, C.A.; Turley, P.; Chen, G.-B.; Emilsson, V.; Meddens, S.F.W.; et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 2016, 533, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, H.J.; Debost, J.-C.; Agerbo, E.; Benros, M.E.; McGrath, J.J.; Mortensen, P.B.; Ranning, A.; Hjorthøj, C.; Mors, O.; Nordentoft, M.; et al. Polygenic Risk Scores, School Achievement, and Risk for Schizophrenia: A Danish Population-Based Study. Biol. Psychiatry 2018, 84, 684–691. [Google Scholar] [CrossRef] [Green Version]
- van Os, J.; Pries, L.-K.; Delespaul, P.; Kenis, G.; Luykx, J.J.; Lin, B.D.; Richards, A.L.; Akdede, B.; Binbay, T.; Altınyazar, V.; et al. Replicated evidence that endophenotypic expression of schizophrenia polygenic risk is greater in healthy siblings of patients compared to controls, suggesting gene-environment interaction. The EUGEI study. Psychol. Med. 2019, 1–14. [Google Scholar] [CrossRef]
- Alloza, C.; Bastin, M.E.; Cox, S.R.; Gibson, J.; Duff, B.; Semple, S.I.; Whalley, H.C.; Lawrie, S.M. Central and non-central networks, cognition, clinical symptoms, and polygenic risk scores in schizophrenia. Hum. Brain Mapp. 2017, 38, 5919–5930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, A.L.; Pardiñas, A.F.; Frizzati, A.; Tansey, K.E.; Lynham, A.J.; Holmans, P.; Legge, S.E.; Savage, J.E.; Agartz, I.; Andreassen, O.A.; et al. The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia. Schizophr. Bull. 2019. [Google Scholar] [CrossRef]
- Wang, S.-H.; Hsiao, P.-C.; Yeh, L.-L.; Liu, C.-M.; Liu, C.-C.; Hwang, T.-J.; Hsieh, M.H.; Chien, Y.-L.; Lin, Y.-T.; Chandler, S.D.; et al. Polygenic risk for schizophrenia and neurocognitive performance in patients with schizophrenia. Genes Brain Behav. 2018, 17, 49–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranlund, S.; Calafato, S.; Thygesen, J.H.; Lin, K.; Cahn, W.; Crespo-Facorro, B.; de Zwarte, S.M.C.; Díez, Á.; Di Forti, M. A polygenic risk score analysis of psychosis endophenotypes across brain functional, structural, and cognitive domains. Am. J. Med. Genet. Part. B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 2018, 177, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Maher, B.S. Polygenic Scores in Epidemiology: Risk Prediction, Etiology, and Clinical Utility. Curr. Epidemiol. Rep. 2015, 2, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Agerbo, E.; Sullivan, P.F.; Vilhjálmsson, B.J.; Pedersen, C.B.; Mors, O.; Børglum, A.D.; Hougaard, D.M.; Hollegaard, M.V.; Meier, S.; Mattheisen, M.; et al. Polygenic Risk Score, Parental Socioeconomic Status, Family History of Psychiatric Disorders, and the Risk for Schizophrenia: A Danish Population-Based Study and Meta-analysis. JAMA Psychiatry 2015, 72, 635–641. [Google Scholar] [CrossRef]
- McCarthy, N.S.; Badcock, J.C.; Clark, M.L.; Knowles, E.E.M.; Cadby, G.; Melton, P.E.; Morgan, V.A.; Blangero, J.; Moses, E.K.; Glahn, D.C.; et al. Assessment of Cognition and Personality as Potential Endophenotypes in the Western Australian Family Study of Schizophrenia. Schizophr. Bull. 2018, 44, 908–921. [Google Scholar] [CrossRef]
- Bright, P.; Jaldow, E.; Kopelman, M.D. The National Adult Reading Test as a measure of premorbid intelligence: A comparison with estimates derived from demographic variables. J. Int. Neuropsychol. Soc. JINS 2002, 8, 847–854. [Google Scholar] [CrossRef] [Green Version]
- Conners, C.K.; Staff, M.H.S.; Connelly, V.; Campbell, S.; MacLean, M.; Barnes, J. Conners’ Continuous Performance Test II (CPT II V. 5). Multi-Health Syst. Inc. 2000, 29, 175–196. [Google Scholar]
- Nuechterlein, K.H.; Green, M.F.; Kern, R.S.; Baade, L.E.; Barch, D.M.; Cohen, J.D.; Essock, S.; Fenton, W.S.; Frese, F.J.; Gold, J.M.; et al. The MATRICS Consensus Cognitive Battery, part 1: Test selection, reliability, and validity. Am. J. Psychiatry 2008, 165, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Zai, G.; Robbins, T.W.; Sahakian, B.J.; Kennedy, J.L. A review of molecular genetic studies of neurocognitive deficits in schizophrenia. Neurosci. Biobehav. Rev. 2017, 72, 50–67. [Google Scholar] [CrossRef] [PubMed]
- Ranlund, S.; Rosa, M.J.; de Jong, S.; Cole, J.H.; Kyriakopoulos, M.; Fu, C.H.Y.; Mehta, M.A.; Dima, D. Associations between polygenic risk scores for four psychiatric illnesses and brain structure using multivariate pattern recognition. NeuroImage Clin. 2018, 20, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
- Rampino, A.; Taurisano, P.; Fanelli, G.; Attrotto, M.; Torretta, S.; Antonucci, L.A.; Miccolis, G.; Pergola, G.; Ursini, G.; Maddalena, G.; et al. A Polygenic Risk Score of glutamatergic SNPs associated with schizophrenia predicts attentional behavior and related brain activity in healthy humans. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2017, 27, 928–939. [Google Scholar] [CrossRef]
- Cosgrove, D.; Mothersill, O.; Kendall, K.; Konte, B.; Harold, D.; Giegling, I.; Hartmann, A.; Richards, A.; Mantripragada, K.; Wellcome Trust Case Control Consortium; et al. Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1C’s Role in Working Memory. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2017, 42, 2612–2622. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, D.; Harold, D.; Mothersill, O.; Anney, R.; Hill, M.J.; Bray, N.J.; Blokland, G.; Petryshen, T.; Richards, A.; Mantripragada, K.; et al. MiR-137 derived polygenic risk: Effects on cognitive performance in patients with schizophrenia and controls. Transl. Psychiatry 2017, 7, e1012. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, S.K.; Ozkan, S.; Musil, R.; Spellmann, I.; Kannayian, N.; Falkai, P.; Rossner, M.; Papiol, S. Polygenic analysis suggests the involvement of calcium signaling in executive function in schizophrenia patients. Eur. Arch. Psychiatry Clin. Neurosci. 2018. [Google Scholar] [CrossRef]
- Fischer, E.K.; Drago, A. A molecular pathway analysis stresses the role of inflammation and oxidative stress towards cognition in schizophrenia. J. Neural Transm. Vienna Austria 1996 2017, 124, 765–774. [Google Scholar] [CrossRef]
Meta-Analysis, Population | Random Effects Model (Hunter–Schmidt) | |||||||
Estimate | se | Z | p | CI Lower Bound | CI Upper Bound | |||
H: k = 6, Intercept | 0.0413 | 0.0116 | −3.56 | <0.001 | −0.064 | −0.019 | ||
SZ: k = 3, Intercept | −0.00327 | 0.0171 | −0.191 | 0.848 | −0.037 | 0.030 | ||
Heterogeneity Statistics | ||||||||
Tau | Tau2 | I2 | H2 | R2 | df | Q | p | |
H | 0.016 | 3 × 10−4 (SE = 0) | 41.05% | 1.696 | . | 5.000 | 42.697 | <0.001 |
SZ | 0.000 | 0 (SE = 6 × 10−4) | 0% | 1.000 | . | 2.000 | 2.601 | 0.272 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallet, J.; Le Strat, Y.; Dubertret, C.; Gorwood, P. Polygenic Risk Scores Shed Light on the Relationship between Schizophrenia and Cognitive Functioning: Review and Meta-Analysis. J. Clin. Med. 2020, 9, 341. https://doi.org/10.3390/jcm9020341
Mallet J, Le Strat Y, Dubertret C, Gorwood P. Polygenic Risk Scores Shed Light on the Relationship between Schizophrenia and Cognitive Functioning: Review and Meta-Analysis. Journal of Clinical Medicine. 2020; 9(2):341. https://doi.org/10.3390/jcm9020341
Chicago/Turabian StyleMallet, Jasmina, Yann Le Strat, Caroline Dubertret, and Philip Gorwood. 2020. "Polygenic Risk Scores Shed Light on the Relationship between Schizophrenia and Cognitive Functioning: Review and Meta-Analysis" Journal of Clinical Medicine 9, no. 2: 341. https://doi.org/10.3390/jcm9020341
APA StyleMallet, J., Le Strat, Y., Dubertret, C., & Gorwood, P. (2020). Polygenic Risk Scores Shed Light on the Relationship between Schizophrenia and Cognitive Functioning: Review and Meta-Analysis. Journal of Clinical Medicine, 9(2), 341. https://doi.org/10.3390/jcm9020341