Analysis of De Novo Mutations in Sporadic Cardiomyopathies Emphasizes Their Clinical Relevance and Points to Novel Candidate Genes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. De Novo Mutations in Known Cardiomyopathy Genes
3.1.1. Family FD02
3.1.2. Family FD03
3.1.3. Family FD04
3.1.4. Family FD06
3.1.5. Family FD09
3.1.6. Family FD10
3.1.7. Family FR1
3.1.8. Family FH1
3.2. Novel DCM Candidate Genes – Findings from WES Analysis in Trios
3.2.1. FD05
3.2.2. FD08
3.2.3. FD01
3.2.4. FD07
3.3. Parental Age
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kühl, U.; Maisch, B.; McKenna, W.J.; et al. Classification of the cardiomyopathies: A position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2008, 29, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Kimura, A. Molecular genetics and pathogenesis of cardiomyopathy. J. Hum. Genet. 2016, 61, 41–50. [Google Scholar] [CrossRef]
- Keller, D.I.; Stepowski, D.; Balmer, C.; Simon, F.; Guenthard, J.; Bauer, F.; Itin, P.; David, N.; Drouin-Garraud, V.; Fressart, V. De novo heterozygous desmoplakin mutations leading to Naxos-Carvajal disease. Swiss Med. Wkly. 2012, 142, w13670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyden, L.M.; Kam, C.Y.; Hernández-Martín, A.; Zhou, J.; Craiglow, B.G.; Sidbury, R.; Mathes, E.F.; Maguiness, S.M.; Crumrine, D.A.; Williams, M.L.; et al. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome. Hum. Mol. Genet. 2016, 25, 348–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugie, K.; Yoshizawa, H.; Onoue, K.; Nakanishi, Y.; Eura, N.; Ogawa, M.; Nakano, T.; Sakaguchi, Y.; Hayashi, Y.K.; Kishimoto, T.; et al. Early onset of cardiomyopathy and intellectual disability in a girl with Danon disease associated with a de novo novel mutation of the LAMP2 gene. Neuropathol. Off. J. Jpn. Soc. Neuropathol. 2016, 36, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bai, R.; Wang, L.; Zhang, C.; Zhao, R.; Wan, D.; Chen, X.; Caceres, G.; Barr, D.; Barajas-Martinez, H.; et al. Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. PLoS ONE 2013, 8, e64603. [Google Scholar] [CrossRef]
- Xu, Y.; Gray, A.; Hardie, D.G.; Uzun, A.; Shaw, S.; Padbury, J.; Phornphutkul, C.; Tseng, Y.-T. A novel, de novo mutation in the PRKAG2 gene: Infantile-onset phenotype and the signaling pathway involved. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H283–H292. [Google Scholar] [CrossRef] [Green Version]
- Harms, F.L.; Alawi, M.; Amor, D.J.; Tan, T.Y.; Cuturilo, G.; Lissewski, C.; Brinkmann, J.; Schanze, D.; Kutsche, K.; Zenker, M. The novel RAF1 mutation p.(Gly361Ala) located outside the kinase domain of the CR3 region in two patients with Noonan syndrome, including one with a rare brain tumor. Am. J. Med. Genet. A. 2018, 176, 470–476. [Google Scholar] [CrossRef]
- Yoo, T.Y.; Kim, M.R.; Son, J.S.; Lee, R.; Bae, S.H.; Chung, S.; Kim, K.S.; Seong, M.-W.; Park, S.S. Identification of a Novel De Novo Mutation of the TAZ Gene in a Korean Patient with Barth Syndrome. J. Cardiovasc. Ultrasound 2016, 24, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Long, P.A.; Zimmermann, M.T.; Kim, M.; Evans, J.M.; Xu, X.; Olson, T.M. De novo RRAGC mutation activates mTORC1 signaling in syndromic fetal dilated cardiomyopathy. Hum. Genet. 2016, 135, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Ling, C.; Liu, Y.; Zhang, X.; Zhang, S. A Case of Novel Lamin A/C Mutation Manifesting as Atypical Progeroid Syndrome and Cardiomyopathy. Can. J. Cardiol. 2016, 32, 1166.e29–1166.e31. [Google Scholar] [CrossRef] [PubMed]
- Olson, T.M.; Doan, T.P.; Kishimoto, N.Y.; Whitby, F.G.; Ackerman, M.J.; Fananapazir, L. Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 2000, 32, 1687–1694. [Google Scholar] [CrossRef]
- Watkins, H.; Thierfelder, L.; Hwang, D.S.; McKenna, W.; Seidman, J.G.; Seidman, C.E. Sporadic hypertrophic cardiomyopathy due to de novo myosin mutations. J. Clin. Invest. 1992, 90, 1666–1671. [Google Scholar] [CrossRef] [PubMed]
- Karam, S.; Raboisson, M.-J.; Ducreux, C.; Chalabreysse, L.; Millat, G.; Bozio, A.; Bouvagnet, P. A de novo mutation of the beta cardiac myosin heavy chain gene in an infantile restrictive cardiomyopathy. Congenit. Heart Dis. 2008, 3, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Suzuki, Y.; Arimura, T.; Kimura, A.; Narumi, H.; Hasegawa, S. A novel de novo mutation of β-cardiac myosin heavy chain gene found in a twelve-year-old boy with hypertrophic cardiomyopathy. J. Genet. 2014, 93, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Cui, H.-L.; He, T.-T.; Wang, J.-G.; Wang, D.; Feng, X.-X.; Zou, Y.-B.; Wang, Y.-L.; Wang, J.-Z.; Hui, R.-T.; et al. Familial hypertrophic cardiomyopathy caused by a de novo Gly716Arg mutation of the β-myosin heavy chain. Cardiol. Young 2017, 27, 467–472. [Google Scholar] [CrossRef]
- Mouton, J.M.; Pellizzon, A.S.; Goosen, A.; Kinnear, C.J.; Herbst, P.G.; Brink, P.A.; Moolman-Smook, J.C. Diagnostic disparity and identification of two TNNI3 gene mutations, one novel and one arising de novo, in South African patients with restrictive cardiomyopathy and focal ventricular hypertrophy. Cardiovasc. J. Afr. 2015, 26, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Peddy, S.B.; Vricella, L.A.; Crosson, J.E.; Oswald, G.L.; Cohn, R.D.; Cameron, D.E.; Valle, D.; Loeys, B.L. Infantile restrictive cardiomyopathy resulting from a mutation in the cardiac troponin T gene. Pediatrics 2006, 117, 1830–1833. [Google Scholar] [CrossRef]
- Long, P.A.; Larsen, B.T.; Evans, J.M.; Olson, T.M. Exome Sequencing Identifies Pathogenic and Modifier Mutations in a Child With Sporadic Dilated Cardiomyopathy. J. Am. Heart Assoc. 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Watkins, H.; Anan, R.; Coviello, D.A.; Spirito, P.; Seidman, J.G.; Seidman, C.E. A de novo mutation in alpha-tropomyosin that causes hypertrophic cardiomyopathy. Circulation 1995, 91, 2302–2305. [Google Scholar] [CrossRef]
- Kelle, A.M.; Bentley, S.J.; Rohena, L.O.; Cabalka, A.K.; Olson, T.M. Ebstein anomaly, left ventricular non-compaction, and early onset heart failure associated with a de novo α-tropomyosin gene mutation. Am. J. Med. Genet. A 2016, 170, 2186–2190. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.E.; Selvanayagam, J.B.; Wiesmann, F.; Robson, M.D.; Francis, J.M.; Anderson, R.H.; Watkins, H.; Neubauer, S. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 2005, 46, 101–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploski, R.; Pollak, A.; Müller, S.; Franaszczyk, M.; Michalak, E.; Kosinska, J.; Stawinski, P.; Spiewak, M.; Seggewiss, H.; Bilinska, Z.T. Does p.Q247X in TRIM63 cause human hypertrophic cardiomyopathy? Circ. Res. 2014, 114, e2–e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talevich, E.; Shain, A.H.; Botton, T.; Bastian, B.C. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput. Biol. 2016, 12, e1004873. [Google Scholar] [CrossRef] [PubMed]
- Gerull, B.; Gramlich, M.; Atherton, J.; McNabb, M.; Trombitás, K.; Sasse-Klaassen, S.; Seidman, J.G.; Seidman, C.; Granzier, H.; Labeit, S.; et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 2002, 30, 201–204. [Google Scholar] [CrossRef]
- Hinson, J.T.; Chopra, A.; Nafissi, N.; Polacheck, W.J.; Benson, C.C.; Swist, S.; Gorham, J.; Yang, L.; Schafer, S.; Sheng, C.C.; et al. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 2015, 349, 982–986. [Google Scholar] [CrossRef] [Green Version]
- Castelletti, S.; Vischer, A.S.; Syrris, P.; Crotti, L.; Spazzolini, C.; Ghidoni, A.; Parati, G.; Jenkins, S.; Kotta, M.-C.; McKenna, W.J.; et al. Desmoplakin missense and non-missense mutations in arrhythmogenic right ventricular cardiomyopathy: Genotype-phenotype correlation. Int. J. Cardiol. 2017, 249, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Kapplinger, J.D.; Tester, D.J.; Alders, M.; Benito, B.; Berthet, M.; Brugada, J.; Brugada, P.; Fressart, V.; Guerchicoff, A.; Harris-Kerr, C.; et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 2010, 7, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Hata, Y.; Hirono, K.; Takasaki, A.; Ozawa, S.W.; Nakaoka, H.; Saito, K.; Miyao, N.; Okabe, M.; Ibuki, K.; et al. A Wide and Specific Spectrum of Genetic Variants and Genotype-Phenotype Correlations Revealed by Next-Generation Sequencing in Patients with Left Ventricular Noncompaction. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef]
- Villard, E.; Duboscq-Bidot, L.; Charron, P.; Benaiche, A.; Conraads, V.; Sylvius, N.; Komajda, M. Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur. Heart J. 2005, 26, 794–803. [Google Scholar] [CrossRef] [Green Version]
- García-Giustiniani, D.; Arad, M.; Ortíz-Genga, M.; Barriales-Villa, R.; Fernández, X.; Rodríguez-García, I.; Mazzanti, A.; Veira, E.; Maneiro, E.; Rebolo, P.; et al. Phenotype and prognostic correlations of the converter region mutations affecting the β myosin heavy chain. Heart Br. Card. Soc. 2015, 101, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Perrot, A.; Schmidt-Traub, H.; Hoffmann, B.; Prager, M.; Bit-Avragim, N.; Rudenko, R.I.; Usupbaeva, D.A.; Kabaeva, Z.; Imanov, B.; Mirrakhimov, M.M.; et al. Prevalence of cardiac beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J. Mol. Med. Berl. Ger. 2005, 83, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Gimeno, J.R.; Bahl, A.; Steffensen, U.; Steffensen, M.; Osman, E.; Thaman, R.; Mogensen, J.; Elliott, P.M.; Doi, Y.; et al. Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J. Am. Coll. Cardiol. 2007, 49, 2419–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Spaendonck-Zwarts, K.Y.; van Rijsingen, I.A.W.; van den Berg, M.P.; Lekanne Deprez, R.H.; Post, J.G.; van Mil, A.M.; Asselbergs, F.W.; Christiaans, I.; van Langen, I.M.; Wilde, A.A.M.; et al. Genetic analysis in 418 index patients with idiopathic dilated cardiomyopathy: overview of 10 years’ experience. Eur. J. Heart Fail. 2013, 15, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. Off. J. Am. Coll. Med. Genet. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Shaban, N.M.; Shi, K.; Lauer, K.V.; Carpenter, M.A.; Richards, C.M.; Salamango, D.; Wang, J.; Lopresti, M.W.; Banerjee, S.; Levin-Klein, R.; et al. The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is Regulated by an RNA-Mediated Dimerization Mechanism. Mol. Cell 2018, 69, 75–86.e9. [Google Scholar] [CrossRef] [Green Version]
- Kong, A.; Frigge, M.L.; Masson, G.; Besenbacher, S.; Sulem, P.; Magnusson, G.; Gudjonsson, S.A.; Sigurdsson, A.; Jonasdottir, A.; Jonasdottir, A.; et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 2012, 488, 471–475. [Google Scholar] [CrossRef] [Green Version]
- Francioli, L.C.; Polak, P.P.; Koren, A.; Menelaou, A.; Chun, S.; Renkens, I.; van Duijn, C.M.; Swertz, M.; Wijmenga, C.; Genome of the Netherlands Consortium; et al. Genome-wide patterns and properties of de novo mutations in humans. Nat. Genet. 2015, 47, 822–826. [Google Scholar] [CrossRef] [Green Version]
- Conrad, D.F.; Keebler, J.E.M.; DePristo, M.A.; Lindsay, S.J.; Zhang, Y.; Casals, F.; Idaghdour, Y.; Hartl, C.L.; Torroja, C.; Garimella, K.V.; et al. Variation in genome-wide mutation rates within and between human families. Nat. Genet. 2011, 43, 712–714. [Google Scholar]
- Gauthier, J.; Rouleau, G.A. De novo mutations in neurological and psychiatric disorders: effects, diagnosis and prevention. Genome Med. 2012, 4, 71. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-J.; Lin, Q.-F.; Zhang, Q.-J.; He, J.; Liu, X.-Y.; Lin, M.-T.; Murong, S.-X.; Liou, C.-W.; Wang, N. Molecular analysis of the dystrophin gene in 407 Chinese patients with Duchenne/Becker muscular dystrophy by the combination of multiplex ligation-dependent probe amplification and Sanger sequencing. Clin. Chim. Acta Int. J. Clin. Chem. 2013, 423, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Ploski, R.; Rydzanicz, M.; Ksiazczyk, T.M.; Franaszczyk, M.; Pollak, A.; Kosinska, J.; Michalak, E.; Stawinski, P.; Ziolkowska, L.; Bilinska, Z.T.; et al. Evidence for troponin C (TNNC1) as a gene for autosomal recessive restrictive cardiomyopathy with fatal outcome in infancy. Am. J. Med. Genet. A 2016, 170, 3241–3248. [Google Scholar] [CrossRef] [PubMed]
- Kidd, J.M.; Newman, T.L.; Tuzun, E.; Kaul, R.; Eichler, E.E. Population stratification of a common APOBEC gene deletion polymorphism. PLoS Genet. 2007, 3, e63. [Google Scholar] [CrossRef] [PubMed]
- Zhen, A.; Du, J.; Zhou, X.; Xiong, Y.; Yu, X.-F. Reduced APOBEC3H variant anti-viral activities are associated with altered RNA binding activities. PLoS ONE 2012, 7, e38771. [Google Scholar] [CrossRef]
- Ooms, M.; Krikoni, A.; Kress, A.K.; Simon, V.; Münk, C. APOBEC3A, APOBEC3B, and APOBEC3H haplotype 2 restrict human T-lymphotropic virus type 1. J. Virol. 2012, 86, 6097–6108. [Google Scholar] [CrossRef] [Green Version]
- Ohoka, N.; Yoshii, S.; Hattori, T.; Onozaki, K.; Hayashi, H. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J. 2005, 24, 1243–1255. [Google Scholar] [CrossRef]
- Cheng, W.-P.; Lo, H.-M.; Wang, B.-W.; Chua, S.-K.; Lu, M.-J.; Shyu, K.-G. Atorvastatin alleviates cardiomyocyte apoptosis by suppressing TRB3 induced by acute myocardial infarction and hypoxia. J. Formos. Med. Assoc. Taiwan Yi Zhi 2017, 116, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Du, K.; Herzig, S.; Kulkarni, R.N.; Montminy, M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 2003, 300, 1574–1577. [Google Scholar] [CrossRef] [Green Version]
- Aynaud, M.-M.; Suspène, R.; Vidalain, P.-O.; Mussil, B.; Guétard, D.; Tangy, F.; Wain-Hobson, S.; Vartanian, J.-P. Human Tribbles 3 protects nuclear DNA from cytidine deamination by APOBEC3A. J. Biol. Chem. 2012, 287, 39182–39192. [Google Scholar] [CrossRef] [Green Version]
- Doege, H.; Bocianski, A.; Joost, H.G.; Schürmann, A. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem. J. 2000, 350 Pt 3, 771–776. [Google Scholar] [CrossRef]
- Macintyre, A.N.; Gerriets, V.A.; Nichols, A.G.; Michalek, R.D.; Rudolph, M.C.; Deoliveira, D.; Anderson, S.M.; Abel, E.D.; Chen, B.J.; Hale, L.P.; et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014, 20, 61–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavanagh Williamson, M.; Coombes, N.; Juszczak, F.; Athanasopoulos, M.; Khan, M.B.; Eykyn, T.R.; Srenathan, U.; Taams, L.S.; Dias Zeidler, J.; Da Poian, A.T.; et al. Upregulation of Glucose Uptake and Hexokinase Activity of Primary Human CD4+ T Cells in Response to Infection with HIV-1. Viruses 2018, 10, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maedera, S.; Mizuno, T.; Ishiguro, H.; Ito, T.; Soga, T.; Kusuhara, H. GLUT6 is a lysosomal transporter that is regulated by inflammatory stimuli and modulates glycolysis in macrophages. FEBS Lett. 2019, 593, 195–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takayama, S.; Xie, Z.; Reed, J.C. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J. Biol. Chem. 1999, 274, 781–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hershberger, R.E.; Hedges, D.J.; Morales, A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 2013, 10, 531–547. [Google Scholar] [CrossRef]
- Biagini, E.; Olivotto, I.; Iascone, M.; Parodi, M.I.; Girolami, F.; Frisso, G.; Autore, C.; Limongelli, G.; Cecconi, M.; Maron, B.J.; et al. Significance of sarcomere gene mutations analysis in the end-stage phase of hypertrophic cardiomyopathy. Am. J. Cardiol. 2014, 114, 769–776. [Google Scholar] [CrossRef]
Family | NGS Target | Gene/Transcript | Variant (dbSNP ID) | Genomic Coordinates (GRCh38) | Allele Frequency | ACMG Verdict (default/if de novo) | ClinVar Clinical Significance | Status |
---|---|---|---|---|---|---|---|---|
FD02 | WES | TTN/ NM_001267550.2 | p.Trp976Leu/c.2927G>T 1 (ND) | 2:178782979-C>A | 0 | VUS/ Likely Pathog | ND | Novel |
FD03 | WES | DSP/ NM_004415.2 | p.Glu290Lys/c.868G>A 1 (rs397516974) | 6:7565449-G>A | 0 | VUS/ Likely Pathog | VUS (1x) | Described [27] |
FD04 | TSC | SCN5A/ NM_198056.2 | p.Glu1548Gln/c.4642G>C 1 (ND) | 3:38554450-C>G | 0 | VUS/ Likely Pathog | ND | Novel |
FD06 | WES | TNNC1/ NM_003280.2 | p.Glu94Val/c.281A>T 1 (ND) | 3:52451780-T>A | 0 | VUS/ Likely Pathog | ND | Novel |
FD09 | WES | MYH7/ NM_000257.3 | p.Ile201Thr/c.602T>C 1 (rs397516258) | 14:23431798-A>G | 0 | Likely Pathog/ Pathog | Likely Pathog (3×) | Described [30] |
TPM1/ NM_001018006.1 | p.Lys205Arg/c.614A>G 2 (ND) | 15:63061248-A>G | 0 | VUS/ Likely Pathog | ND | Novel | ||
FD10 | TSO | CRYAB/ NM_001885.2 | p.Thr40Met/c.119C>T 1 (rs782122417) | 11:111911606-G>A | 1.07e–05 (GnomAD) | VUS/ Likely Pathog | ND | Novel |
FR1 | WES | MYH7/ NM_000257.3 | p.Gly768Arg/c.2302G>A 1 (rs727503260) | 14:23425403-C>T | 0 | Pathog/ Pathog | Pathog (1×) | Described [31] |
MYBPC3/ NM_000256.3 | p.Pro1066Arg/ c.3197C>G 2 (ND) | 11:47333327-G>C | 0 | VUS/ Likely Pathog | ND | Novel | ||
FH1 | WES | MYH7/ NM_000257.3 | p.Arg453Cys/c.1357C>T 1 (rs121913625) | 14:23429005-G>A | 0 | Likely Pathog/ Pathog | Pathog (10×), Likely Pathog (1×) | Described [32,33,34] |
Family | FD05 | FD08 | FD07 | FD01 | ||
---|---|---|---|---|---|---|
Gene/ Transcript | TRIB3/ NM_021158.4 | SLC2A6/ NM_017585.3 | APOBEC3B/ NM_004900.4 | UNC45A/ NM_018671.5 | ||
Variant | p.Gly257Ser/c.769G>A 1 | p.Arg283His/c.848G>A 1 | p.Cys217Tyr/c.650G>A 2 | p.Arg633Trp/c.1897C>T 3 | ||
ID | rs534951995 | ND | ND | rs374670572 | ||
Genomic Coordinates (GRCh38) | 20:396382-G>A | 9:133475040-C>T | 22:38989537-G>A | 15:90949334-C>T | ||
ACMG Verdict (default/if de novo) | VUS/ Likely Pathog | VUS/ Likely Pathog | VUS/ Likely Pathog | VUS/ VUS | ||
Allele frequency | GnomAD | 7.98e–06 | 0 | 0 | 3.94e–04 | |
1000G P3 Eur/tot | 0/2.0e–04 | 0/0 | 0/0 | 0/7.99e–04 | ||
ESP6500 Eur/tot | 0/0 | 0/0 | 0/0 | 1.20e–04/ 8.00e–05 | ||
Prediction Scores | General | DANN | 0.9988 | 0.9993 | 0.9458 | 0.9979 |
Mutation Taster | Disease causing | Disease causing | Polymorphism | Disease causing | ||
FATHMM | Tolerated | Tolerated | Damaging | Tolerated | ||
Meta SVM | Damaging | Tolerated | Damaging | Tolerated | ||
MetalR | Tolerated | Tolerated | Damaging | Tolerated | ||
Conservation | GERP | NR 5.269, RS 5.269 | NR 5.3, RS 5.3 | NR 1.919, RS 1.919 | NR 5.28, RS 4.36 | |
Mutation Assessor | High | Low | High | Low | ||
Functional | Provean | Damaging | Neutral | Damaging | Damaging |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franaszczyk, M.; Truszkowska, G.; Chmielewski, P.; Rydzanicz, M.; Kosinska, J.; Rywik, T.; Biernacka, A.; Spiewak, M.; Kostrzewa, G.; Stepien-Wojno, M.; et al. Analysis of De Novo Mutations in Sporadic Cardiomyopathies Emphasizes Their Clinical Relevance and Points to Novel Candidate Genes. J. Clin. Med. 2020, 9, 370. https://doi.org/10.3390/jcm9020370
Franaszczyk M, Truszkowska G, Chmielewski P, Rydzanicz M, Kosinska J, Rywik T, Biernacka A, Spiewak M, Kostrzewa G, Stepien-Wojno M, et al. Analysis of De Novo Mutations in Sporadic Cardiomyopathies Emphasizes Their Clinical Relevance and Points to Novel Candidate Genes. Journal of Clinical Medicine. 2020; 9(2):370. https://doi.org/10.3390/jcm9020370
Chicago/Turabian StyleFranaszczyk, Maria, Grazyna Truszkowska, Przemyslaw Chmielewski, Malgorzata Rydzanicz, Joanna Kosinska, Tomasz Rywik, Anna Biernacka, Mateusz Spiewak, Grazyna Kostrzewa, Malgorzata Stepien-Wojno, and et al. 2020. "Analysis of De Novo Mutations in Sporadic Cardiomyopathies Emphasizes Their Clinical Relevance and Points to Novel Candidate Genes" Journal of Clinical Medicine 9, no. 2: 370. https://doi.org/10.3390/jcm9020370
APA StyleFranaszczyk, M., Truszkowska, G., Chmielewski, P., Rydzanicz, M., Kosinska, J., Rywik, T., Biernacka, A., Spiewak, M., Kostrzewa, G., Stepien-Wojno, M., Stawinski, P., Bilinska, M., Krajewski, P., Zielinski, T., Lutynska, A., Bilinska, Z. T., & Ploski, R. (2020). Analysis of De Novo Mutations in Sporadic Cardiomyopathies Emphasizes Their Clinical Relevance and Points to Novel Candidate Genes. Journal of Clinical Medicine, 9(2), 370. https://doi.org/10.3390/jcm9020370