Postpartum Diet Quality: A Cross-Sectional Analysis from the Australian Longitudinal Study on Women’s Health
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Participants
2.3. Dietary Intake
2.4. Outcome: Diet Quality
2.5. Independent Variable: Time Since the Last Childbirth
2.6. Confounders
2.6.1. Physical Activity
2.6.2. Age
2.6.3. Weight and BMI
2.6.4. Income
2.6.5. Education
2.6.6. Marital Status
2.6.7. Occupation
2.6.8. Employment at the Time of Childbirth
2.6.9. Maternity Leave Type (Paid/Unpaid)
2.6.10. Duration of Maternity Leave
2.6.11. Heath Provider Access
2.6.12. Breastfeeding
2.6.13. Smoking
2.6.14. Vitamin/Mineral Supplement Use
2.6.15. Depression and Anxiety
2.6.16. Polycystic Ovary Syndrome (PCOS)
2.6.17. Self-Rated Health
2.7. Outcome and Data Analysis
3. Results
3.1. Participant Characteristics
3.2. Dietary Intake
3.3. Total Diet Quality and Its Components Categorized by Their Time since Childbirth
3.4. Contributors of Demographic and Maternity-Related Factors to Total Diet Quality
4. Discussion
4.1. Strengths
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poston, L.; Caleyachetty, R.; Cnattingius, S.; Corvalán, C.; Uauy, R.; Herring, S. Preconceptional and maternal obesity: Epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016, 4, 1025–1036. [Google Scholar] [CrossRef]
- World Health Organization. Nutrition: Nutrition of Women in the Preconception Period, during Pregnancy and the Breastfeeding Period; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Australian Institute of Health and Welfare. A Picture of Overweight and Obesity in Australia 2017; Australian Institute of Health and Welfare: Canberra, Australia, 2017.
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, K.M.; Catalano, P.M.; Yaktine, A.L. New guidelines for weight gain during pregnancy: What obstetrician/gynecologists should know. Curr. Opin. Obstet. Gyn. 2009, 21, 521–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, J.T.; Schalinski, E.; Gauger, U.; Hellmeyer, L. Antenatal body mass index (BMI) and weight gain in pregnancy - Its association with pregnancy and birthing complications. J. Perinat. Med. 2016, 44, 397–404. [Google Scholar] [CrossRef]
- Rai, R.K.; Singh, L.; Singh, P.K. Is maternal body mass index associated with neonatal mortality? A pooled analysis of nationally representative data from nine Asian countries. Nutr. J. 2017, 41, 68–72. [Google Scholar] [CrossRef]
- Garmendia, M.L.; Zamudio, C.; Araya, M.; Kain, J. Association between prepregnancy obesity and metabolic risk in Chilean premenopausal women 10 y postpartum. Nutr. J 2017, 38, 20–27. [Google Scholar] [CrossRef]
- Fraser, A.; Tilling, K.; Macdonald-Wallis, C.; Hughes, R.; Sattar, N.; Nelson, S.M. Associations of gestational weight gain with maternal body mass index, waist circumference, and blood pressure measured 16 y after pregnancy: The Avon Longitudinal Study of Parents and Children (ALSPAC). Am. J. Clin. Nutr. 2011, 93, 1285–1292. [Google Scholar] [CrossRef] [Green Version]
- Luke, S.; Kirby, R.S.; Wright, L. Postpartum weight retention and subsequent pregnancy outcomes. J. Perinat. Neonatal Nurs. 2016, 30, 292–301. [Google Scholar] [CrossRef]
- Aljadani, H.M.; Patterson, A.; Sibbritt, D.; Hutchesson, M.J.; Jensen, M.E.; Collins, C.E. Diet quality, measured by fruit and vegetable intake, predicts weight change in young women. J. Obes. 2013, 2013, 525161. [Google Scholar] [CrossRef]
- Shah, B.S.; Freeland-Graves, J.H.; Cahill, J.M.; Lu, H.; Graves, G.R. Diet quality as measured by the healthy eating index and the association with lipid profile in low-income women in early postpartum. J. Am. Diet. Assoc. 2010, 110, 274–279. [Google Scholar] [CrossRef]
- Fung, T.T.; Pan, A.; Hou, T.; Chiuve, S.E.; Tobias, D.K.; Mozaffarian, D. Long-term change in diet quality is associated with body weight change in men and women. Nutr. J. 2015, 145, 1850–1856. [Google Scholar] [CrossRef] [Green Version]
- Tobias, D.; Zhang, C.; Chavarro, J.; Olsen, S.; Bao, W.; Bjerregaard, A. Healthful dietary patterns and long-term weight change among women with a history of gestational diabetes mellitus. IJO 2016, 40, 1748–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamora, D.; Gordon-Larsen, P.; He, K.; Jacobs, D.R.; Shikany, J.M.; Popkin, B.M. Are the 2005 Dietary Guidelines for Americans Associated With reduced risk of type 2 diabetes and cardiometabolic risk factors? Twenty-year findings from the CARDIA study. Diabetes Care 2011, 34, 1183–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cespedes Feliciano, E.M.; Tinker, L.; Manson, J.E.; Allison, M.; Rohan, T.; Zaslavsky, O. Change in Dietary Patterns and Change in Waist Circumference and DXA Trunk Fat Among Postmenopausal Women. J. Obes. 2016, 24, 2176–2184. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, K.M.; McNaughton, S.A. Diet quality is associated with obesity and hypertension in Australian adults: A cross sectional study. BMC Public Health 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boggs, D.A.; Rosenberg, L.; Rodríguez-Bernal, C.L.; Palmer, J.R. Long-term diet quality is associated with lower obesity risk in young African American women with normal BMI at baseline. Nutr. J. 2013, 143, 1636–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNaughton, S.A.; Ball, K.; Crawford, D.; Mishra, G.D. An index of diet and eating patterns is a valid measure of diet quality in an Australian population. Nutr. J. 2008, 138, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Wiltheiss, G.A.; Lovelady, C.A.; West, D.G.; Brouwer, R.J.N.; Krause, K.M.; Østbye, T. Diet Quality and Weight Change among Overweight and Obese Postpartum Women Enrolled in a Behavioral Intervention Program. J. Acad. Nutr. Diet. 2013, 113, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Hure, A.; Young, A.; Smith, R.; Collins, C. Diet and pregnancy status in Australian women. Public Health Nutr. 2009, 12, 853–861. [Google Scholar] [CrossRef] [Green Version]
- George, G.C.; Milani, T.J.; Hanss-Nuss, H.; Freeland-Graves, J.H. Compliance with dietary guidelines and relationship to psychosocial factors in low-income women in late postpartum. J. Am. Diet. Assoc. 2005, 105, 916–926. [Google Scholar] [CrossRef]
- Kay, M.C.; Wasser, H.; Adair, L.S.; Thompson, A.L.; Siega-Riz, A.M.; Suchindran, C.M. Consumption of key food groups during the postpartum period in low-income, non-Hispanic black mothers. Appetite 2017, 117, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Laster, L.E.R.; Lovelady, C.A.; West, D.G.; Wiltheiss, G.A.; Brouwer, R.J.; Stroo, M. Diet quality of overweight and obese mothers and their preschool children. J. Acad. Nutr. Diet. 2013, 113, 1476–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, L.J.; Sui, Z.; Cramp, C.S.; Dodd, J.M. A decrease in diet quality occurs during pregnancy in overweight and obese women which is maintained post-partum. IJO 2013, 37, 704–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian Longitudinal Study on Women’s Health. Available online: http://www.alswh.org.au (accessed on 12 June 2019).
- Dobson, A.J.; Hockey, R.; Brown, W.J.; Byles, J.E.; Loxton, D.J.; McLaughlin, D. Cohort profile update: Australian longitudinal study on women’s health. Int. J. Epidemiol. 2015, 44, 1547a–1547f. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, W.J.; Bryson, L.; Byles, J.E.; Dobson, A.J.; Lee, C.; Mishra, G. Women’s Health Australia: Recruitment for a National Longitudinal Cohort Study. J. Womens Health 1999, 28, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.; Loxton, D. The impact of attrition in an 11-year prospective longitudinal study of younger women. Ann. Epidemiol. 2010, 20, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Dobson, A.J.; Brown, W.J.; Bryson, L.; Byles, J.; Warner-Smith, P. Cohort Profile: The Australian Longitudinal Study on Women’s Health. Int. J. Epidemiol. 2005, 34, 987–991. [Google Scholar] [CrossRef] [Green Version]
- Australian Bureau of Statistics. One for the Country: Recent Trends in Fertility. Available online: http://www.abs.gov.au/AUSSTATS/[email protected]/Lookup/4102.0Main+Features10Dec+2010 (accessed on 24 July 2019).
- Moran, L.; Brown, W.; McNaughton, S.; Joham, A.; Teede, H. Weight management practices associated with PCOS and their relationships with diet and physical activity. Hum. Repro. 2017, 32, 669–678. [Google Scholar] [CrossRef]
- Moran, L.; Ranasinha, S.; Zoungas, S.; McNaughton, S.; Brown, W.; Teede, H. The contribution of diet, physical activity and sedentary behaviour to body mass index in women with and without polycystic ovary syndrome. Hum. Repro. 2013, 28, 2276–2283. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A.; Patterson, A.J.; Brown, W.J.; Ireland, P.; Giles, G. The Anti Cancer Council of Victoria FFQ: Relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust. N. Z. J. Public Health 2000, 24, 576–583. [Google Scholar] [CrossRef]
- Cancer Council Victoria. Dietary Questionnaire for Epidemiological Studies. Version 2. Available online: http://www.cancervic.org.au/research/epidemiology/nutritional_assessment_services (accessed on 24 July 2019).
- Lewis, J.; Milligan, G.C.; Hunt, A. NUTTAB 95: Nutrient Data Table for Use in Australia; Australian Government Publishing Service: Canberra, Australia, 1995.
- Romano, M.; Cacciatore, A.; Giordano, R.; La Rosa, B. Postpartum period: Three distinct but continuous phases. J. Prenat. Med. 2010, 4, 22–25. [Google Scholar] [PubMed]
- Chojenta, C.; Harris, S.; Reilly, N.; Forder, P.; Austin, M.P.; Loxton, D. History of pregnancy loss increases the risk of mental health problems in subsequent pregnancies but not in the postpartum. PLoS ONE 2014, 9, e95038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, T.; Bauman, A.E.; Davies, J. Physical Activity Patterns of Australian Adults: Results of the 1999 National Physical Activity Survey; Australian Institute of Health and Welfare: Canberra, Australia, 2000.
- Brown, W.J.; Bauman, A.E.; Bull, F.; Burton, N.W. Development of Evidence-based Physical Activity Recommendations for Adults (18–64 Years); Australian Government Department of Health: Canberra, Australia, 2012.
- Brown, W.J.; Pavey, T. Physical activity in mid-age and older women: Lessons from the Australian Longitudinal Study on Women’s Health. Kinesiology 2016, 5, 87–97. [Google Scholar] [CrossRef]
- World Health Organization. World Health Organization Global Database on Body Mass Index. Available online: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html (accessed on 3 August 2019).
- Australian Government Department of Health and Ageing. The Australian Longitudinal Study on Women’s Health Data Book for the 2009 Phase 5 Survey of the 1973–1978 Cohort (Aged 31–36 Years); University of Newcastle: Newcastle, Australia, 2010.
- Sundararajan, K.; Campbell, M.K.; Choi, Y.H.; Sarma, S. The relationship between diet quality and adult obesity: Evidence from Canada. J. Am. Coll. Nutr. 2014, 33, 1–17. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 15. Available online: https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/ (accessed on 4 February 2020).
- Hämmig, O.; Bauer, G. Work-life imbalance and mental health among male and female employees in Switzerland. Int. J. Public Health 2009, 54, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Collins, C.E.; Young, A.F.; Hodge, A. Diet quality is associated with higher nutrient intake and self-rated health in mid-aged women. J. Am. Coll. Nutr. 2008, 27, 146–157. [Google Scholar] [CrossRef]
- Pinho, M.G.M.; Mackenbach, J.D.; Charreire, H.; Oppert, J.M.; Bárdos, H.; Glonti, K. Exploring the relationship between perceived barriers to healthy eating and dietary behaviours in European adults. Eur. J. Nutr. 2018, 57, 1761–1770. [Google Scholar] [CrossRef] [Green Version]
- Råberg Kjøllesdal, M.K.; Telle Hjellset, V.; Bjørge, B.; Holmboe-Ottesen, G.; Wandel, M. Barriers to healthy eating among Norwegian-Pakistani women participating in a culturally adapted intervention. Scand. J. Public Health 2010, 38, 52–59. [Google Scholar] [CrossRef]
- Smith, K.J.; McNaughton, S.A.; Gall, S.L.; Blizzard, L.; Dwyer, T.; Venn, A.J. Involvement of young Australian adults in meal preparation: Cross-sectional associations with sociodemographic factors and diet quality. J. Am. Diet. Assoc. 2010, 110, 1363–1367. [Google Scholar] [CrossRef]
- Montgomery-Downs, H.E.; Insana, S.P.; Clegg-Kraynok, M.M.; Mancini, LM. Normative longitudinal maternal sleep: The first 4 postpartum months. AJOG 2010, 203, 465.e1–465.e7. [Google Scholar] [CrossRef] [Green Version]
- Shelton, S.L.; Cormier, E. Depressive Symptoms and Influencing Factors in Low-Risk Mothers. Issues Ment. Health Nurs. 2018, 39, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Nash, D.M.; Gilliland, J.A.; Evers, S.E.; Wilk, P.; Campbell, M.K. Determinants of diet quality in pregnancy: Sociodemographic, pregnancy-specific, and food environment influences. J. Nutr. Educ. Behav. 2013, 45, 627–634. [Google Scholar] [CrossRef] [PubMed]
- The Department of Health. Introducing Solids. Available online: https://www.health.gov.au/internet/publications/publishing.nsf/Content/gug-director-toc~gug-solids (accessed on 3 August 2019).
- Moores, C.J.; Miller, J.; Daniels, L.A.; Vidgen, H.A.; Magarey, A.M. Pre-post evaluation of a weight management service for families with overweight and obese children, translated from the efficacious lifestyle intervention Parenting, Eating and Activity for Child Health (PEACH). Br. J. Nutr. 2018, 119, 1434–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.; Park, S.Y.; Shvetsov, Y.B.; Wilkens, L.R.; Marchand, L.L.; Boushey, C.J.; Paik, H.Y. Gender differences in sociodemographic and lifestyle factors associated with diet quality in a multiethnic population. Nutr. J. 2019, 66, 147–152. [Google Scholar] [CrossRef]
- Alkerwi, A.A.; Baydarlioglu, B.; Sauvageot, N.; Stranges, S.; Lemmens, P.; Shivappa, N. Smoking status is inversely associated with overall diet quality: Findings from the ORISCAV-LUX study. Clin. Nutr. 2017, 36, 1275–1282. [Google Scholar] [CrossRef]
- Subar, A.F.; Harlan, L.C.; Mattson, M.E. Food and nutrient intake differences between smokers and non-smokers in the US. Am. J. Public Health 1990, 80, 1323–1329. [Google Scholar] [CrossRef] [Green Version]
- Burton, N.W.; Brown, W.; Dobson, A. Accuracy of body mass index estimated from self-reported height and weight in mid-aged Australian women. Aust. N. Z J. Public Health 2010, 34, 620–623. [Google Scholar] [CrossRef]
- Kuczmarski, M.F.; Kuczmarski, R.J.; Najjar, M. Effects of age on validity of self-reported height, weight, and body mass index: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. J. Am. Diet. Assoc. 2001, 101, 28–34. [Google Scholar] [CrossRef]
- Dietary Assessment Primer. Food Frequency Questionnaire at a Glance. Available online: http://dietassessmentprimer.cancer.gov/profiles/questionnaire/ (accessed on 15 September 2019).
- Ireland, P.; Jolley, D.; Giles, G.; O’Dea, K.; Powles, J.; Rutishauser, I. Development of the Melbourne FFQ: A food frequency questionnaire for use in an Australian prospective study involving an ethnically diverse cohort. Asia Pac. J. Clin. Nutr. 1994, 3, 19–31. [Google Scholar]
- Sotres-Alvarez, D.; Herring, A.H.; Siega-Riz, A.M. Latent transition models to study women’s changing of dietary patterns from pregnancy to 1 year postpartum. AJE 2013, 177, 852–861. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Early Postpartum | Late Postpartum | Women >12 Months Post Childbirth | p-Value |
---|---|---|---|---|
(0–6 Months) | (7–12 Months) | n = 3434 | ||
n = 558 | n = 547 | |||
Age (years) | 33.6 (1.4) | 33.6 (1.4) | 34.0 (1.4) | <0.001 * |
Smoking status | 519 (93.2) | 499 (91.4) | 2854 (83.2) | <0.001 * |
Non-smoker | 38 (6.8) | 47 (8.6) | 575 (16.8) | |
Smoker | 71.2 (15.3) | 70.7 (15.1) | 71.7 (16.7) | |
Weight (kg) | 25.9 (5.2) | 25.6 (2.3) | 26.2 (5.9) | 0.386 |
BMI (kg/m2) | 0.023 **** | |||
Underweight (<18.5) | 4 (0.73) | 12 (2.2) | 96 (2.9) | |
Normal (18.5–24.9 kg/m2) | 280 (50.9) | 286 (53.1) | 1647 (49.1) | |
Overweight (25–29.9 kg/m2) | 164 (29.8) | 136 (25.2) | 900 (26.8) | |
Obese (≥30 kg/m2) | 102 (18.6) | 105 (19.5) | 710 (21.2) | |
Country of birth | 0.206 | |||
Australian born | 528 (95.3) | 503 (92.8) | 3198 (93.7) | |
Overseas born | 26 (4.7) | 39 (7.2) | 216 (6.3) | |
Personal annual income | <0.001 ** | |||
No income | 97 (19.5) | 99 (19.8) | 341 (11.0) | |
Low ($AUD > 0–36,399) | 217 (43.7) | 256 (51.3) | 1786 (57.4) | |
Medium ($AUD 36,400–77,999) | 138 (27.8) | 96 (19.2) | 783 (25.1) | |
High ($AUD > 77,999) | 45 (9.1) | 48 (9.6) | 204 (6.6) | |
Education | <0.001 * | |||
No formal /high school | 78 (14.2) | 93 (17.2) | 984 (29.5) | |
Trade/diploma | 126 (23) | 133 (24.6) | 1018 (30.5) | |
Degree | 344 (62.8) | 315 (58.2) | 1333 (40) | |
Occupation | <0.001 * | |||
No paid job | 231 (41.9) | 220 (40.7) | 849 (25.4) | |
Clerical trade | 32 (5.8) | 48 (8.9) | 799 (23.9) | |
Assoc. professional | 63 (11.4) | 73 (13.5) | 588 (17.6) | |
Professional | 225 (40.8) | 199 (36.9) | 1113 (33.2) | |
Employment | <0.001 ** | |||
Unemployed | 331 (59.3) | 244 (44.7) | 722 (21.1) | |
Volunteer | 55 (9.9) | 70 (12.8) | 295 (8.6) | |
Employed | 172 (30.8) | 232 (42.5) | 2403 (70.3) | |
Marital status | <0.001 * | |||
Married/defacto | 546 (98) | 529 (96.7) | 2990 (87.4) | |
Not married | 11 (2) | 18 (3.3) | 433 (12.7) | |
Breastfeeding | <0.001 ** | |||
Not currently breastfeeding | 428 (76.8) | 462 (84.8) | 3397 (99) | |
Currently breastfeeding | 129 (23.2) | 83 (15.2) | 35 (1) | |
Number of children | <0.001 * | |||
1 | 214 (38.4) | 201 (36.8) | 841 (24.5) | |
2 | 344 (61.6) | 346 (63.3) | 2593 (75.5) | |
Physical activity (MetMin) | 555.1 (668.4) | 669.8 (731.3) | 795.4 (1039.2) | <0.001 **** |
Vitamin/mineral supplement use | <0.001 ** | |||
Never | 27 (4.8) | 40 (7.3) | 707 (20.6) | |
Rarely | 31 (5.6) | 68 (12.4) | 631 (18.4) | |
Sometimes | 110 (19.7) | 143 (26.1) | 930 (27.1) | |
Often | 390 (69.9) | 296 (54.1) | 1161 (33.9) |
Early Postpartum (0–6 Months) n = 558 | Late Postpartum (7–12 Months) n = 547 | Women >12 Months post Childbirth n = 3430 | p-Value | |
---|---|---|---|---|
Energy (KJ/day) | 7879.5 (2357.6) | 7720.7 (2294.8) | 7088.0 (2304.0) | <0.001 * |
Energy (Kcal) | 1883.2 (563.5) | 1845.3 (548.5) | 1694.1 (550.7) | <0.001 * |
Protein (g/day) | 90.1 (27.7) | 91.5 (29) | 83.9 (28.8) | <0.001 * |
Protein (% energy) | 19.9 (3.0) | 20.8 (3.1) | 21.1 (3.4) | <0.001 ** |
Carbohydrate (g/day) | 201.8 (65.4) | 189.2 (59.5) | 169.5 (59.4) | <0.001 *** |
Carbohydrate (% energy) | 41.6 (4.8) | 40.1 (4.7) | 39.6 (5.6) | <0.001 ** |
Fat (g/day) | 77.5 (26.7) | 76.5 (26.3) | 69.8 (26.6) | <0.001 * |
Fat (% energy) | 36.7 (4.6) | 37.3 (4.1) | 37.6 (4.9) | 0.0003 **** |
Saturated fat (g/day) | 33.2 (12.6) | 32.4 (12.1) | 29.6 (12.2) | <0.001 * |
Saturated fat (% energy) | 15.7 (3.1) | 15.8 (2.7) | 15.9 (3.0) | 0.409 |
Monounsaturated fat (g/day) | 27.1 (9.6) | 27.1 (9.6) | 24.8 (9.7) | <0.001 * |
Monounsaturated fat (% energy) | 12.6 (1.8) | 12.9 (1.8) | 12.8 (2.0) | 0.097 |
Polyunsaturated fat (g/day) | 10.4 (4.7) | 10.4 (4.5) | 9.3 (4.3) | <0.001 * |
Polyunsaturated fat (% energy) | 4.9 (1.6) | 5.0 (1.5) | 4.8 (1.5) | 0.062 |
Alcohol (g/day) | 3.7 (6.6) | 5.9 (9.7) | 8.6 (12.8) | <0.001 *** |
Fiber (g/day) | 21.7 (7.8) | 21.2 (7.1) | 18.6 (6.8) | <0.001 * |
Cholesterol (mg/day) | 282.0 (106.5) | 289.7 (107.7) | 273.0 (110.9) | 0.002 ***** |
Glycemic index | 51.2 (3.7) | 50.9 (3.7) | 51.4 (4.1) | 0.031 ***** |
Glycemic load | 103.4 (35.9) | 96.5 (33.0) | 87.1 (33.5) | <0.001 *** |
Calcium (mg/day) | 990.1 (314.8) | 946.2 (296.1) | 842.3 (281.0) | <0.001 *** |
Iron (mg/day) | 13.5 (5.0) | 13.4 (4.9) | 11.7 (4.5) | <0.001 * |
Folate (µg/day) | 281.8 (96.3) | 275.6 (92.6) | 239.6 (84.7) | <0.001 * |
Sodium (mg/day) | 2514.8 (820.0) | 2503.9 (832.1) | 2305.5 (838.0) | <0.001 * |
Zinc (mg/day) | 11.9 (3.8) | 12.0 (3.9) | 11.0 (4.0) | <0.001 * |
Magnesium (mg/day) | 303.4 (96.2) | 296.2 (89.8) | 260.7 (84.4) | <0.001 * |
Phosphorus (mg/day) | 1601.1 (477.6) | 1576.7 (457.9) | 1414.1 (444.9) | <0.001 * |
Potassium (mg/day) | 2885.6 (801.4) | 2841.9 (795.8) | 2564.6 (755.4) | <0.001 * |
Beta-carotene (µg/day) | 2648.9 (1234.9) | 2821.5 (1369.2) | 2572.9 (1227.3) | <0.001 ***** |
Niacin (mg/day) | 22.3 (8.2) | 22.4 (8.2) | 19.5 (7.6) | <0.001 * |
Retinol (µg/day) | 371.6 (155.3) | 357.8 (149.5) | 318.3 (145.4) | <0.001 * |
Riboflavin (mg/day) | 2.6 (0.94) | 2.6 (0.89) | 2.2 (0.83) | <0.001 * |
Thiamin (mg/day) | 1.6 (0.63) | 1.6 (0.61) | 1.3 (0.56) | <0.001 * |
Vitamin C (mg/day) | 121.2 (64.0) | 108.8 (57.8) | 101.5 (52.5) | <0.001 *** |
Vitamin E (mg/day) | 6.3 (2.3) | 6.2 (2.2) | 5.5 (2.1) | <0.001 * |
Diet Quality Component | Early Postpartum (0–6 Months) n = 558 | Late Postpartum (7–12 Months) n = 547 | Women > 12 Months Post Childbirth n = 3434 | p-Value |
---|---|---|---|---|
Diet variety | 5.7 (1.2) | 5.6 (1.3) | 5.2 (1.4) | <0.001 * |
Vegetables | 4.3 (1.8) | 4.6 (1.9) | 4.4 (1.9) | 0.002 ** |
Fruit | 10.0 (0.43) | 9.9 (0.65) | 9.9 (0.79) | 0.429 |
Breads and cereals | 6.1 (2.3) | 5.9 (2.2) | 5.0 (2.3) | <0.001 * |
Wholegrain proportion | 7.6 (4.2) | 7.9 (4.1) | 6.7 (4.7) | <0.001 * |
Lean meat | 9.6 (1.1) | 9.7 (1.1) | 9.5 (1.3) | 0.011 *** |
Lean meat proportion | 8.3 (1.0) | 8.4 (1.0) | 8.2 (1.0) | 0.009 *** |
Dairy | 8.5 (1.9) | 8.3 (2.0) | 7.6 (2.3) | <0.001 * |
Type of milk consumed | 0.024 *** | |||
No milk, soya, skim milk | 165 (29.6) | 152 (27.8) | 1088 (31.7) | |
Reduced fat milk | 206 (36.9) | 205 (37.5) | 1094 (31.9) | |
Full cream milk | 187 (33.5) | 190 (34.7) | 1249 (36.4) | |
Saturated fat | 8.4 (1.1) | 8.3 (1.1) | 7.9 (1.2) | <0.001 * |
Extra foods | 0.043 **** | |||
≤2.5 serves/day) | 4 (0.72) | 9 (1.7) | 78 (2.3) | |
>2.5 serves per day | 554 (99.3) | 538 (98.4) | 3356 (97.7) | |
Total DGI | 89.8 (10.5) | 90.0 (10.2) | 85.2 (11.7) | <0.001 * |
Characteristics | Unadjusted β (95% CI) | p-Value | Adjusted β (95% CI) | p-Value |
---|---|---|---|---|
Age (years) | −0.14 (−0.34, 0.09) | 0.232 | 0.05 (−0.23, 0.32) | 0.742 |
Smoking status | ||||
Non-smoker | Ref | Ref | ||
Smoker | −7.0 (−7.9, −6.1) | <0.001 | −4.1 (−5.4, −2.8) | <0.001 |
BMI (kg/m2) | ||||
Underweight (<18.5) | −2.13 (−4.3, 0.05) | 0.056 | −1.0 (−3.6, 1.6) | 0.455 |
Normal weight (18.5–24.9) | Ref | Ref | Ref | |
Overweight (25–29.9) | −0.61 (−1.4, 0.20) | 0.138 | −0.07 (−1.0, 0.86) | 0.882 |
Obese (BMI ≥ 30) | −1.8 (−2.7, −0.93) | <0.001 | 0.08 (−1.1, 1.2) | 0.895 |
Education | ||||
No formal /high school | Ref | Ref | ||
Trade/diploma | 2.2 (1.3, 3.1) | <0.001 | 1.7 (0.49, 3.0) | 0.006 |
Degree | 6.2 (5.4, 7.0) | <0.001 | 4.4 (3.3, 5.5) | <0.001 |
Personal annual income | ||||
No income | Ref | Ref | ||
Low ($AUD > 0–36,399) | −2.3 (−3.4, −1.2) | <0.001 | −0.85 (−2.0, 0.30) | 0.148 |
Medium ($AUD 36,400–77,999) | −2.5 (−3.7, −1.3) | <0.001 | −2.0 (−3.3, −0.74) | 0.002 |
High ($AUD > 77,999) | −0.79 (−2.4, 0.82) | 0.335 | −1.1 (−2.8, 0.57) | 0.2 |
Employment | <0.001 | N/A | 0.964 | |
Unemployed | 1.9 (1.2, 2.7) | 0.032 | ||
Volunteer | 1.3 (0.11, 2.5) | |||
Employed | Ref | |||
Occupation | N/A | 0.124 | ||
No paid job | Ref | |||
Clerical trade | −3.3 (−4.3, −2.3) | <0.001 | ||
Associate professional | −2.1 (−3.1, −1.1) | <0.001 | ||
Professional | 0.94 (0.09, 1.8) | 0.03 | ||
Marital status | ||||
Married/defacto | Ref | Ref | ||
Not married | −4.1 (−5.2, −3.0) | <0.001 | −1.6 (−3.4, 0.11) | 0.067 |
Physical activity (MetMin) | 0.002 (0.001, 0.002) | <0.001 | 0.001 (0.0007, 0.002) | <0.001 |
Maternal and child health access | ||||
Fair/poor | Ref | Ref | ||
Good | 1.2 (0.008, 2.4) | 0.048 | 1.1 (−0.35, 2.5) | 0.141 |
Excellent/very good | 2.3 (1.2, 3.4) | <0.001 | 1.4 (0.10, 2.6) | 0.034 |
Vitamin/mineral supplement use | ||||
Never | Ref | Ref | ||
Rarely | 0.96 (−0.19, 2.10) | 0.103 | 0.96 (−0.48, 2.4) | 0.192 |
Sometimes | 2.1 (1.0, 3.1) | <0.001 | 1.8 (0.47, 3.1) | 0.008 |
Often | 5.3 (4.3, 6.2) | <0.001 | 3.9 (2.6, 5.1) | <0.001 |
Time since last childbirth | ||||
0–6 months | 4.6 (3.6, 5.7) | <0.001 | 2.0 (0.79, 3.1) | 0.001 |
7–12 months | 4.8 (3.8, 5.8) | <0.001 | 2.4 (1.3, 3.5) | <0.001 |
Women >12 months post childbirth | Ref | Ref | ||
Depression/anxiety in the last 3 years | N/A | 0.749 | ||
No and no | Ref | |||
No and yes | −0.85 (−2.9, 1.2) | 0.417 | ||
Yes and no | −2.4 (−3.5, −1.3) | <0.001 | ||
Yes and yes | −1.7 (−3.2, −0.15) | 0.032 | ||
PCOS in the last 3 years | N/A | N/A | ||
No | Ref | |||
Yes | 1.0 (−0.60, 2.7) | 0.213 | ||
Paid maternity leave status | N/A | 0.156 | ||
No | Ref | |||
Yes | 3.0 (2.3, 3.8) | <0.001 | ||
Duration of maternity leave (months) | −0.02 (−0.06, 0.01) | 0.205 | N/A | N/A |
Specialist Doctor | N/A | 0.633 | ||
None | Ref | |||
1–4 times | 1.2 (0.40, 1.9) | 0.003 | ||
5–9 times | 3.0 (1.8, 4.3) | <0.001 | ||
10–12 times | 4.4 (3.2, 5.6) | <0.001 | ||
Breastfeeding | N/A | 0.188 | ||
Not currently breastfeeding | Ref | |||
Currently breastfeeding | 4.5 (3.0, 6.0) | <0.001 | ||
Self-rated health | N/A | 0.056 | ||
Fair/poor | Ref | |||
Good | 2.4 (1.1, 3.6) | <0.001 | ||
Very good | 4.2 (3.0, 5.4) | <0.001 | ||
Excellent | 5.8 (4.4, 7.2) | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, J.C.; Joham, A.E.; Mishra, G.D.; Hodge, A.M.; Moran, L.J.; Harrison, C.L. Postpartum Diet Quality: A Cross-Sectional Analysis from the Australian Longitudinal Study on Women’s Health. J. Clin. Med. 2020, 9, 446. https://doi.org/10.3390/jcm9020446
Martin JC, Joham AE, Mishra GD, Hodge AM, Moran LJ, Harrison CL. Postpartum Diet Quality: A Cross-Sectional Analysis from the Australian Longitudinal Study on Women’s Health. Journal of Clinical Medicine. 2020; 9(2):446. https://doi.org/10.3390/jcm9020446
Chicago/Turabian StyleMartin, Julie C., Anju E. Joham, Gita D. Mishra, Allison M. Hodge, Lisa J. Moran, and Cheryce L. Harrison. 2020. "Postpartum Diet Quality: A Cross-Sectional Analysis from the Australian Longitudinal Study on Women’s Health" Journal of Clinical Medicine 9, no. 2: 446. https://doi.org/10.3390/jcm9020446
APA StyleMartin, J. C., Joham, A. E., Mishra, G. D., Hodge, A. M., Moran, L. J., & Harrison, C. L. (2020). Postpartum Diet Quality: A Cross-Sectional Analysis from the Australian Longitudinal Study on Women’s Health. Journal of Clinical Medicine, 9(2), 446. https://doi.org/10.3390/jcm9020446