Classic and Novel Biomarkers as Potential Predictors of Ventricular Arrhythmias and Sudden Cardiac Death
Abstract
:1. Introduction
2. ‘Classic’ Inflammatory Biomarkers as Potential Predictors of Ventricular Arrhythmias
2.1. C-Reactive Protein (CRP) and High-Sensitive (hs) CRP
2.2. Interleukin 6 (IL-6)
3. ‘Classic’ Cardiac Biomarkers as Potential Predictors of Ventricular Arrhythmias
3.1. Brain Natriuretic Peptides (BNP and Non-Terminal (NT)-proBNP)
3.2. Troponins
4. ‘Novel and Alternative’ Biomarkers as Potential Predictors of Ventricular Arrhythmias
4.1. Soluble ST2 (sST2)
4.2. Galectin-3
4.3. Heart-Type Fatty Acid Binding Protein (H-FABP)
4.4. Metalloproteinases (MMP) and Procollagens
4.5. Endothelin
4.6. Uric Acid
4.7. Other Promising Biomarkers
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- WHO International. Available online: https://www.who.int/health-topics/cardiovascular-diseases/ #tab=tab_1 (accessed on 28 January 2020).
- Greene, H.L. Sudden arrhythmic cardiac death—Mechanisms, resuscitation and classification: The Seattle perspective. Am. J. Cardiol. 1990, 65, 4B–12B. [Google Scholar] [CrossRef]
- Zipes, D.P.; Wellens, H.J. Sudden cardiac death. Circulation 1998, 98, 2334–2351. [Google Scholar] [CrossRef] [PubMed]
- Schocken, D.D.; Arrieta, M.I.; Leaverton, P.E.; Ross, E.A. Prevalence and mortality rate of congestive heart failure in the United States. J. Am. Coll. Cardiol. 1992, 20, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Tomaselli, G.F.; Beuckelmann, D.J.; Calkins, H.G.; Berger, R.D.; Kessler, P.D.; Lawrence, J.H.; Kass, D.; Feldman, A.M.; Marban, E. Sudden cardiac death in heart failure. The role of abnormal repolarization. Circulation 1994, 90, 2534–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echt, D.S.; Liebson, P.R.; Mitchell, L.B.; Peters, R.W.; Obias-Manno, D.; Barker, A.H.; Arensberg, D.; Baker, A.; Friedman, L.; Greene, H.L.; et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N. Engl. J. Med. 1991, 324, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.J.; Zareba, W.; Hall, W.J.; Klein, H.; Wilber, D.J.; Cannom, D.S.; Daubert, J.P.; Higgins, S.L.; Brown, M.W.; Andrews, M.L.; et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 2002, 346, 877–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardy, G.H.; Lee, K.L.; Mark, D.B.; Poole, J.E.; Packer, D.L.; Boineau, R.; Domanski, M.; Troutman, C.; Anderson, J.; Johnson, G.; et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 2005, 352, 225–237. [Google Scholar] [CrossRef]
- Priori, S.G.; Blomstrom-Lundqvist, C.; Mazzanti, A.; Blom, N.; Borggrefe, M.; Camm, J.; Elliott, P.M.; Fitzsimons, D.; Hatala, R.; Hindricks, G.; et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac Death. The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology. G. Ital. Cardiol. 2016, 17, 108–170. [Google Scholar] [CrossRef]
- Bostwick, J.M.; Sola, C.L. An updated review of implantable cardioverter/defibrillators, induced anxiety, and quality of life. Psychiatr. Clin. North. Am. 2007, 30, 677–688. [Google Scholar] [CrossRef]
- Gould, P.A.; Krahn, A.D.; Canadian Heart Rhythm Society Working Group on Device Advisories. Complications associated with implantable cardioverter-defibrillator replacement in response to device advisories. JAMA 2006, 295, 1907–1911. [Google Scholar] [CrossRef]
- Lane, R.E.; Cowie, M.R.; Chow, A.W. Prediction and prevention of sudden cardiac death in heart failure. Heart 2005, 91, 674–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motloch, L.J.; Akar, F.G. Gene therapy to restore electrophysiological function in heart failure. Expert Opin. Biol. Ther. 2015, 15, 803–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paar, V.; Jirak, P.; Larbig, R.; Zagidullin, N.S.; Brandt, M.C.; Lichtenauer, M.; Hoppe, U.C.; Motloch, L.J. Pathophysiology of Calcium Mediated Ventricular Arrhythmias and Novel Therapeutic Options with Focus on Gene Therapy. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, R.M.; Rudy, Y. The vulnerable window for unidirectional block in cardiac tissue: Characterization and dependence on membrane excitability and intercellular coupling. J. Cardiovasc. Electrophysiol. 1995, 6, 115–131. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013, 62, e147–e239. [Google Scholar] [CrossRef] [Green Version]
- Tiong, A.Y.; Brieger, D. Inflammation and coronary artery disease. Am. Heart J. 2005, 150, 11–18. [Google Scholar] [CrossRef]
- Mountantonakis, S.; Deo, R. Biomarkers in atrial fibrillation, ventricular arrhythmias, and sudden cardiac death. Cardiovasc. Ther. 2012, 30, e74–e80. [Google Scholar] [CrossRef]
- Calabro, P.; Willerson, J.T.; Yeh, E.T. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 2003, 108, 1930–1932. [Google Scholar] [CrossRef]
- Yasojima, K.; Schwab, C.; McGeer, E.G.; McGeer, P.L. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol. 2001, 158, 1039–1051. [Google Scholar] [CrossRef] [Green Version]
- Albert, C.M.; Ma, J.; Rifai, N.; Stampfer, M.J.; Ridker, P.M. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 2002, 105, 2595–2599. [Google Scholar] [CrossRef]
- Carnes, C.A.; Chung, M.K.; Nakayama, T.; Nakayama, H.; Baliga, R.S.; Piao, S.; Kanderian, A.; Pavia, S.; Hamlin, R.L.; McCarthy, P.M.; et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ. Res. 2001, 89, e32–e38. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, A.; Chimenti, C.; Bellocci, F.; Morgante, E.; Russo, M.A.; Maseri, A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 1997, 96, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.A.; Gottdiener, J.S.; Bartz, T.M.; Sotoodehnia, N.; DeFilippi, C.; See, V.; Deo, R.; Siscovick, D.; Stein, P.K.; Lloyd-Jones, D. Inflammation and sudden cardiac death in a community-based population of older adults: The Cardiovascular Health Study. Heart Rhythm 2013, 10, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Luc, G.; Bard, J.M.; Juhan-Vague, I.; Ferrieres, J.; Evans, A.; Amouyel, P.; Arveiler, D.; Fruchart, J.C.; Ducimetiere, P.; Group, P.S. C-reactive protein, interleukin-6, and fibrinogen as predictors of coronary heart disease: The PRIME Study. Arter. Thromb. Vasc. Biol. 2003, 23, 1255–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodzic, E.; Drakovac, A.; Begic, E. Troponin and CRP as Indicators of Possible Ventricular Arrhythmias in Myocardial Infarction of the Anterior and Inferior Walls of the Heart. Mater. Sociomed. 2018, 30, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Biasucci, L.M.; Giubilato, G.; Biondi-Zoccai, G.; Sanna, T.; Liuzzo, G.; Piro, M.; De Martino, G.; Ierardi, C.; dello Russo, A.; Pelargonio, G.; et al. C reactive protein is associated with malignant ventricular arrhythmias in patients with ischaemia with implantable cardioverter-defibrillator. Heart 2006, 92, 1147–1148. [Google Scholar] [CrossRef] [Green Version]
- Sardu, C.; Marfella, R.; Santamaria, M.; Papini, S.; Parisi, Q.; Sacra, C.; Colaprete, D.; Paolisso, G.; Rizzo, M.R.; Barbieri, M. Stretch, Injury and Inflammation Markers Evaluation to Predict Clinical Outcomes After Implantable Cardioverter Defibrillator Therapy in Heart Failure Patients With Metabolic Syndrome. Front. Physiol. 2018, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- Bonny, A.; Lellouche, N.; Ditah, I.; Hidden-Lucet, F.; Yitemben, M.T.; Granger, B.; Larrazet, F.; Frank, R.; Fontaine, G. C-reactive protein in arrhythmogenic right ventricular dysplasia/cardiomyopathy and relationship with ventricular tachycardia. Cardiol. Res. Pr. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Lazzerini, P.E.; Laghi-Pasini, F.; Bertolozzi, I.; Morozzi, G.; Lorenzini, S.; Simpatico, A.; Selvi, E.; Bacarelli, M.R.; Finizola, F.; Vanni, F.; et al. Systemic inflammation as a novel QT-prolonging risk factor in patients with torsades de pointes. Heart 2017, 103, 1821–1829. [Google Scholar] [CrossRef]
- Jialal, I.; Devaraj, S.; Venugopal, S.K. C-reactive protein: Risk marker or mediator in atherothrombosis? Hypertension 2004, 44, 6–11. [Google Scholar] [CrossRef]
- Helal, I.; Zerelli, L.; Krid, M.; ElYounsi, F.; Ben Maiz, H.; Zouari, B.; Adelmoula, J.; Kheder, A. Comparison of C-reactive protein and high-sensitivity C-reactive protein levels in patients on hemodialysis. Saudi J. Kidney Dis. Transpl. 2012, 23, 477–483. [Google Scholar] [PubMed]
- Theuns, D.A.; Smith, T.; Szili-Torok, T.; Muskens-Heemskerk, A.; Janse, P.; Jordaens, L. Prognostic role of high-sensitivity C-reactive protein and B-type natriuretic peptide in implantable cardioverter-defibrillator patients. Pacing Clin. Electrophysiol. 2012, 35, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Blangy, H.; Sadoul, N.; Dousset, B.; Radauceanu, A.; Fay, R.; Aliot, E.; Zannad, F. Serum BNP, hs-C-reactive protein, procollagen to assess the risk of ventricular tachycardia in ICD recipients after myocardial infarction. Europace 2007, 9, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Streitner, F.; Kuschyk, J.; Veltmann, C.; Ratay, D.; Schoene, N.; Streitner, I.; Brueckmann, M.; Schumacher, B.; Borggrefe, M.; Wolpert, C. Role of proinflammatory markers and NT-proBNP in patients with an implantable cardioverter-defibrillator and an electrical storm. Cytokine 2009, 47, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Biasucci, L.M.; Bellocci, F.; Landolina, M.; Rordorf, R.; Vado, A.; Menardi, E.; Giubilato, G.; Orazi, S.; Sassara, M.; Castro, A.; et al. Risk stratification of ischemic patients with implantable cardioverter defibrillators by C-reactive protein and a multi-markers strategy: Results of the CAMI-GUIDE study. Eur. Heart J. 2012, 33, 1344–1350. [Google Scholar] [CrossRef] [Green Version]
- Konstantino, Y.; Kusniec, J.; Reshef, T.; David-Zadeh, O.; Mazur, A.; Strasberg, B.; Battler, A.; Haim, M. Inflammatory biomarkers are not predictive of intermediate-term risk of ventricular tachyarrhythmias in stable CHF patients. Clin. Cardiol. 2007, 30, 408–413. [Google Scholar] [CrossRef]
- Parekh, R.S.; Plantinga, L.C.; Kao, W.H.; Meoni, L.A.; Jaar, B.G.; Fink, N.E.; Powe, N.R.; Coresh, J.; Klag, M.J. The association of sudden cardiac death with inflammation and other traditional risk factors. Kidney Int. 2008, 74, 1335–1342. [Google Scholar] [CrossRef] [Green Version]
- Schieffer, B.; Schieffer, E.; Hilfiker-Kleiner, D.; Hilfiker, A.; Kovanen, P.T.; Kaartinen, M.; Nussberger, J.; Harringer, W.; Drexler, H. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: Potential implications for inflammation and plaque instability. Circulation 2000, 101, 1372–1378. [Google Scholar] [CrossRef] [Green Version]
- Safranow, K.; Dziedziejko, V.; Rzeuski, R.; Czyzycka, E.; Bukowska, H.; Wojtarowicz, A.; Binczak-Kuleta, A.; Jakubowska, K.; Olszewska, M.; Ciechanowicz, A.; et al. Inflammation markers are associated with metabolic syndrome and ventricular arrhythmia in patients with coronary artery disease. Postep. Hig. Med. Dosw. 2016, 70, 56–66. [Google Scholar] [CrossRef]
- Streitner, F.; Kuschyk, J.; Veltmann, C.; Brueckmann, M.; Streitner, I.; Brade, J.; Neumaier, M.; Bertsch, T.; Schumacher, B.; Borggrefe, M.; et al. Prospective study of interleukin-6 and the risk of malignant ventricular tachyarrhythmia in ICD-recipients—A pilot study. Cytokine 2007, 40, 30–34. [Google Scholar] [CrossRef]
- Cheng, A.; Zhang, Y.; Blasco-Colmenares, E.; Dalal, D.; Butcher, B.; Norgard, S.; Eldadah, Z.; Ellenbogen, K.A.; Dickfeld, T.; Spragg, D.D.; et al. Protein biomarkers identify patients unlikely to benefit from primary prevention implantable cardioverter defibrillators: Findings from the Prospective Observational Study of Implantable Cardioverter Defibrillators (PROSE-ICD). Circ. Arrhythm. Electrophysiol. 2014, 7, 1084–1091. [Google Scholar] [CrossRef] [Green Version]
- Ottani, F.; Galvani, M.; Nicolini, F.A.; Ferrini, D.; Pozzati, A.; Di Pasquale, G.; Jaffe, A.S. Elevated cardiac troponin levels predict the risk of adverse outcome in patients with acute coronary syndromes. Am. Heart J. 2000, 140, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Oremus, M.; McKelvie, R.; Don-Wauchope, A.; Santaguida, P.L.; Ali, U.; Balion, C.; Hill, S.; Booth, R.; Brown, J.A.; Bustamam, A.; et al. A systematic review of BNP and NT-proBNP in the management of heart failure: Overview and methods. Heart Fail. Rev. 2014, 19, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Mountantonakis, S.; Gerstenfeld, E.P. Atrial Tachycardias Occurring After Atrial Fibrillation Ablation: Strategies for Mapping and Ablation. J. Atr. Fibrillation 2010, 3, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, P.A.; Barry, J.; Roberts, P.R.; Morgan, J.M. Brain natriuretic peptide for the prediction of sudden cardiac death and ventricular arrhythmias: a meta-analysis. Eur J Heart Fail 2009, 11, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Golukhova, E.Z.; Gromova, O.; Grigoryan, M.; Merzlyakov, V.; Shumkov, K.; Bockeria, L.; Serebruany, V.L. Noninvasive Predictors of Malignant Arrhythmias. Cardiology 2016, 135, 36–42. [Google Scholar] [CrossRef]
- Suzuki, S.; Yoshimura, M.; Nakayama, M.; Mizuno, Y.; Harada, E.; Ito, T.; Nakamura, S.; Abe, K.; Yamamuro, M.; Sakamoto, T.; et al. Plasma level of B-type natriuretic peptide as a prognostic marker after acute myocardial infarction: A long-term follow-up analysis. Circulation 2004, 110, 1387–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepojarvi, E.S.; Huikuri, H.V.; Piira, O.P.; Kiviniemi, A.M.; Miettinen, J.A.; Kentta, T.; Ukkola, O.; Perkiomaki, J.S.; Tulppo, M.P.; Junttila, M.J. Biomarkers as predictors of sudden cardiac death in coronary artery disease patients with preserved left ventricular function (ARTEMIS study). PLoS ONE 2018, 13, e0203363. [Google Scholar] [CrossRef] [Green Version]
- Tapanainen, J.M.; Lindgren, K.S.; Makikallio, T.H.; Vuolteenaho, O.; Leppaluoto, J.; Huikuri, H.V. Natriuretic peptides as predictors of non-sudden and sudden cardiac death after acute myocardial infarction in the beta-blocking era. J. Am. Coll. Cardiol. 2004, 43, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Berger, R.; Huelsman, M.; Strecker, K.; Bojic, A.; Moser, P.; Stanek, B.; Pacher, R. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation 2002, 105, 2392–2397. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, J.; Shinozaki, T.; Shiba, N.; Fukahori, K.; Koseki, Y.; Karibe, A.; Sakuma, M.; Miura, M.; Kagaya, Y.; Shirato, K. Accumulation of risk markers predicts the incidence of sudden death in patients with chronic heart failure. Eur. J. Heart Fail. 2006, 8, 237–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, A.; Moss, A.J.; McNitt, S.; Zareba, W.; Wang, P.J.; Goldenberg, I. Brain natriuretic peptide and the risk of ventricular tachyarrhythmias in mildly symptomatic heart failure patients enrolled in MADIT-CRT. Heart Rhythm 2016, 13, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Christ, M.; Sharkova, J.; Bayrakcioglu, S.; Herzum, I.; Mueller, C.; Grimm, W. B-type natriuretic peptide levels predict event-free survival in patients with implantable cardioverter defibrillators. Eur. J. Heart Fail. 2007, 9, 272–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagahara, D.; Nakata, T.; Hashimoto, A.; Wakabayashi, T.; Kyuma, M.; Noda, R.; Shimoshige, S.; Uno, K.; Tsuchihashi, K.; Shimamoto, K. Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J. Nucl. Med. 2008, 49, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Kilicaslan, F.; Martin, D.O.; Minor, S.; Starling, R.; Marrouche, N.F.; Almahammed, S.; Wazni, O.M.; Duggal, S.; Zuzek, R.; et al. Preimplantation B-type natriuretic peptide concentration is an independent predictor of future appropriate implantable defibrillator therapies. Heart 2006, 92, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Vrtovec, B.; Knezevic, I.; Poglajen, G.; Sebestjen, M.; Okrajsek, R.; Haddad, F. Relation of B-type natriuretic peptide level in heart failure to sudden cardiac death in patients with and without QT interval prolongation. Am. J. Cardiol. 2013, 111, 886–890. [Google Scholar] [CrossRef]
- Kubo, T.; Kitaoka, H.; Okawa, M.; Yamanaka, S.; Hirota, T.; Baba, Y.; Hayato, K.; Yamasaki, N.; Matsumura, Y.; Yasuda, N.; et al. Combined measurements of cardiac troponin I and brain natriuretic peptide are useful for predicting adverse outcomes in hypertrophic cardiomyopathy. Circ. J. 2011, 75, 919–926. [Google Scholar] [CrossRef] [Green Version]
- Minami, Y.; Haruki, S.; Kanbayashi, K.; Maeda, R.; Itani, R.; Hagiwara, N. B-type natriuretic peptide and risk of sudden death in patients with hypertrophic cardiomyopathy. Heart Rhythm 2018, 15, 1484–1490. [Google Scholar] [CrossRef]
- Bayes-Genis, A.; Vazquez, R.; Puig, T.; Fernandez-Palomeque, C.; Fabregat, J.; Bardaji, A.; Pascual-Figal, D.; Ordonez-Llanos, J.; Valdes, M.; Gabarrus, A.; et al. Left atrial enlargement and NT-proBNP as predictors of sudden cardiac death in patients with heart failure. Eur. J. Heart Fail. 2007, 9, 802–807. [Google Scholar] [CrossRef] [Green Version]
- Tigen, K.; Karaahmet, T.; Kahveci, G.; Tanalp, A.C.; Bitigen, A.; Fotbolcu, H.; Bayrak, F.; Mutlu, B.; Basaran, Y. N-terminal pro brain natriuretic peptide to predict prognosis in dilated cardiomyopathy with sinus rhythm. Heart Lung Circ. 2007, 16, 290–294. [Google Scholar] [CrossRef]
- Simon, T.; Becker, R.; Voss, F.; Bikou, O.; Hauck, M.; Licka, M.; Katus, H.A.; Bauer, A. Elevated B-type natriuretic peptide levels in patients with nonischemic cardiomyopathy predict occurrence of arrhythmic events. Clin. Res. Cardiol. 2008, 97, 306–309. [Google Scholar] [CrossRef]
- Scott, P.A.; Townsend, P.A.; Ng, L.L.; Zeb, M.; Harris, S.; Roderick, P.J.; Curzen, N.P.; Morgan, J.M. Defining potential to benefit from implantable cardioverter defibrillator therapy: The role of biomarkers. Europace 2011, 13, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, R.; Zugck, C.; Becker, R.; Schellberg, D.; Heinze, G.; Kell, R.; Remppis, A.; Schoels, W.; Katus, H.A.; Dengler, T.J. Raised B-type natriuretic peptide predicts implantable cardioverter-defibrillator therapy in patients with ischemic cardiomyopathy. Heart 2006, 92, 1323–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manios, E.G.; Kallergis, E.M.; Kanoupakis, E.M.; Mavrakis, H.E.; Kambouraki, D.C.; Arfanakis, D.A.; Vardas, P.E. Amino-terminal pro-brain natriuretic peptide predicts ventricular arrhythmogenesis in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillators. Chest 2005, 128, 2604–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Oswald, H.; Gardiwal, A.; Lissel, C.; Klein, G. Comparison of N-terminal pro-brain natriuretic peptide versus electrophysiologic study for predicting future outcomes in patients with an implantable cardioverter defibrillator after myocardial infarction. Am. J. Cardiol. 2007, 100, 635–639. [Google Scholar] [CrossRef]
- Levine, Y.C.; Rosenberg, M.A.; Mittleman, M.; Samuel, M.; Methachittiphan, N.; Link, M.; Josephson, M.E.; Buxton, A.E. B-type natriuretic peptide is a major predictor of ventricular tachyarrhythmias. Heart Rhythm 2014, 11, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Aarsetoy, R.; Aarsetoy, H.; Hagve, T.A.; Strand, H.; Staines, H.; Nilsen, D.W.T. Initial Phase NT-proBNP, but Not Copeptin and High-Sensitivity Cardiac Troponin-T Yielded Diagnostic and Prognostic Information in Addition to Clinical Assessment of Out-of-Hospital Cardiac Arrest Patients With Documented Ventricular Fibrillation. Front. Cardiovasc. Med. 2018, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Luchner, A.; Hengstenberg, C.; Lowel, H.; Riegger, G.A.; Schunkert, H.; Holmer, S. Effect of compensated renal dysfunction on approved heart failure markers: Direct comparison of brain natriuretic peptide (BNP) and N-terminal pro-BNP. Hypertension 2005, 46, 118–123. [Google Scholar] [CrossRef]
- Wang, A.Y.; Lam, C.W.; Chan, I.H.; Wang, M.; Lui, S.F.; Sanderson, J.E. Sudden cardiac death in end-stage renal disease patients: A 5-year prospective analysis. Hypertension 2010, 56, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Kruzan, R.M.; Herzog, C.A.; Wu, A.; Sang, Y.; Parekh, R.S.; Matsushita, K.; Hwang, S.; Cheng, A.; Coresh, J.; Powe, N.R.; et al. Association of NTproBNP and cTnI with outpatient sudden cardiac death in hemodialysis patients: The Choices for Healthy Outcomes in Caring for ESRD (CHOICE) study. BMC Nephrol. 2016, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Winkler, K.; Wanner, C.; Drechsler, C.; Lilienthal, J.; Marz, W.; Krane, V. Change in N-terminal-pro-B-type-natriuretic-peptide and the risk of sudden death, stroke, myocardial infarction, and all-cause mortality in diabetic dialysis patients. Eur. Heart J. 2008, 29, 2092–2099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coats, C.J.; Gallagher, M.J.; Foley, M.; O’Mahony, C.; Critoph, C.; Gimeno, J.; Dawnay, A.; McKenna, W.J.; Elliott, P.M. Relation between serum N-terminal pro-brain natriuretic peptide and prognosis in patients with hypertrophic cardiomyopathy. Eur. Heart J. 2013, 34, 2529–2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajtar-Salwa, R.; Hladij, R.; Dimitrow, P.P. Elevated Level of Troponin but Not N-Terminal Probrain Natriuretic Peptide Is Associated with Increased Risk of Sudden Cardiac Death in Hypertrophic Cardiomyopathy Calculated According to the ESC Guidelines 2014. Dis. Markers 2017, 2017, 9417908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sajadieh, A.; Nielsen, O.W.; Rasmussen, V.; Ole Hein, H.; Hansen, J.F. Increased ventricular ectopic activity in relation to C-reactive protein, and NT-pro-brain natriuretic peptide in subjects with no apparent heart disease. Pacing Clin. Electrophysiol. 2006, 29, 1188–1194. [Google Scholar] [CrossRef]
- Skranes, J.B.; Einvik, G.; Namtvedt, S.K.; Randby, A.; Hrubos-Strom, H.; Brynildsen, J.; Hagve, T.A.; Somers, V.K.; Rosjo, H.; Omland, T. Biomarkers of cardiovascular injury and stress are associated with increased frequency of ventricular ectopy: A population-based study. BMC Cardiovasc. Disord. 2016, 16, 233. [Google Scholar] [CrossRef] [Green Version]
- Korngold, E.C.; Januzzi, J.L., Jr.; Gantzer, M.L.; Moorthy, M.V.; Cook, N.R.; Albert, C.M. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac death among women. Circulation 2009, 119, 2868–2876. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, A.S.; Ordonez-Llanos, J. High-sensitivity cardiac troponin: From theory to clinical practice. Rev. Esp. Cardiol. 2013, 66, 687–691. [Google Scholar] [CrossRef]
- Sato, Y.; Yamada, T.; Taniguchi, R.; Nagai, K.; Makiyama, T.; Okada, H.; Kataoka, K.; Ito, H.; Matsumori, A.; Sasayama, S.; et al. Persistently increased serum concentrations of cardiac troponin t in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation 2001, 103, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Q.; Cui, L.Q. Association between serum cardiac troponin I and myocardial remodeling in patients with chronic heart failure. Zhonghua Xin Xue Guan Bing Za Zhi 2006, 34, 437–439. [Google Scholar]
- Hussein, A.A.; Gottdiener, J.S.; Bartz, T.M.; Sotoodehnia, N.; deFilippi, C.; Dickfeld, T.; Deo, R.; Siscovick, D.; Stein, P.K.; Lloyd-Jones, D. Cardiomyocyte injury assessed by a highly sensitive troponin assay and sudden cardiac death in the community: The Cardiovascular Health Study. J. Am. Coll. Cardiol. 2013, 62, 2112–2120. [Google Scholar] [CrossRef] [Green Version]
- Baba, Y.; Kubo, T.; Yamanaka, S.; Hirota, T.; Tanioka, K.; Yamasaki, N.; Sugiura, T.; Kitaoka, H. Clinical significance of high-sensitivity cardiac troponin T in patients with dilated cardiomyopathy. Int. Heart J. 2015, 56, 309–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawahara, C.; Tsutamoto, T.; Nishiyama, K.; Yamaji, M.; Sakai, H.; Fujii, M.; Yamamoto, T.; Horie, M. Prognostic role of high-sensitivity cardiac troponin T in patients with nonischemic dilated cardiomyopathy. Circ. J. 2011, 75, 656–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, T.; Kitaoka, H.; Yamanaka, S.; Hirota, T.; Baba, Y.; Hayashi, K.; Iiyama, T.; Kumagai, N.; Tanioka, K.; Yamasaki, N.; et al. Significance of high-sensitivity cardiac troponin T in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2013, 62, 1252–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daidoji, H.; Arimoto, T.; Nitobe, J.; Tamura, H.; Kutsuzawa, D.; Ishigaki, D.; Ishino, M.; Takahashi, H.; Shishido, T.; Miyashita, T.; et al. Circulating heart-type fatty acid binding protein levels predict the occurrence of appropriate shocks and cardiac death in patients with implantable cardioverter-defibrillators. J. Card. Fail. 2012, 18, 556–563. [Google Scholar] [CrossRef]
- Nodera, M.; Suzuki, H.; Matsumoto, Y.; Kamioka, M.; Kaneshiro, T.; Yoshihisa, A.; Ohira, T.; Takeishi, Y. Association between Serum Uric Acid Level and Ventricular Tachyarrhythmia in Heart Failure Patients with Implantable Cardioverter-Defibrillator. Cardiology 2018, 140, 47–51. [Google Scholar] [CrossRef]
- Flevari, P.; Theodorakis, G.; Leftheriotis, D.; Kroupis, C.; Kolokathis, F.; Dima, K.; Anastasiou-Nana, M.; Kremastinos, D. Serum markers of deranged myocardial collagen turnover: Their relation to malignant ventricular arrhythmias in cardioverter-defibrillator recipients with heart failure. Am. Heart J. 2012, 164, 530–537. [Google Scholar] [CrossRef]
- Francia, P.; Adduci, C.; Semprini, L.; Borro, M.; Ricotta, A.; Sensini, I.; Santini, D.; Caprinozzi, M.; Balla, C.; Simmaco, M.; et al. Osteopontin and galectin-3 predict the risk of ventricular tachycardia and fibrillation in heart failure patients with implantable defibrillators. J. Cardiovasc. Electrophysiol. 2014, 25, 609–616. [Google Scholar] [CrossRef]
- Ahmad, T.; Fiuzat, M.; Neely, B.; Neely, M.L.; Pencina, M.J.; Kraus, W.E.; Zannad, F.; Whellan, D.J.; Donahue, M.P.; Pina, I.L.; et al. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure. JACC Heart Fail. 2014, 2, 260–268. [Google Scholar] [CrossRef]
- Skali, H.; Gerwien, R.; Meyer, T.E.; Snider, J.V.; Solomon, S.D.; Stolen, C.M. Soluble ST2 and Risk of Arrhythmias, Heart Failure, or Death in Patients with Mildly Symptomatic Heart Failure: Results from MADIT-CRT. J. Cardiovasc. Transl. Res. 2016, 9, 421–428. [Google Scholar] [CrossRef]
- Pascual-Figal, D.A.; Ordonez-Llanos, J.; Tornel, P.L.; Vazquez, R.; Puig, T.; Valdes, M.; Cinca, J.; de Luna, A.B.; Bayes-Genis, A.; Investigators, M. Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 2009, 54, 2174–2179. [Google Scholar] [CrossRef] [Green Version]
- Oz, F.; Onur, I.; Elitok, A.; Ademoglu, E.; Altun, I.; Bilge, A.K.; Adalet, K. Galectin-3 correlates with arrhythmogenic right ventricular cardiomyopathy and predicts the risk of ventricular-arrhythmias in patients with implantable defibrillators. Acta Cardiol. 2017, 72, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Daidoji, H.; Arimoto, T.; Iwayama, T.; Ishigaki, D.; Hashimoto, N.; Kumagai, Y.; Nishiyama, S.; Takahashi, H.; Shishido, T.; Miyamoto, T.; et al. Circulating heart-type fatty acid-binding protein levels predict ventricular fibrillation in Brugada syndrome. J. Cardiol. 2016, 67, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zachariah, J.P.; Colan, S.D.; Lang, P.; Triedman, J.K.; Alexander, M.E.; Walsh, E.P.; Berul, C.I.; Cecchin, F. Circulating matrix metalloproteinases in adolescents with hypertrophic cardiomyopathy and ventricular arrhythmia. Circ. Heart Fail. 2012, 5, 462–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emet, S.; Dadashov, M.; Sonsoz, M.R.; Cakir, M.O.; Yilmaz, M.; Elitok, A.; Bilge, A.K.; Mercanoglu, F.; Oncul, A.; Adalet, K.; et al. Galectin-3: A Novel Biomarker Predicts Sudden Cardiac Death in Hypertrophic Cardiomyopathy. Am. J. Med. Sci. 2018, 356, 537–543. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Kurl, S.; Zaccardi, F.; Laukkanen, J.A. Baseline and long-term fibrinogen levels and risk of sudden cardiac death: A new prospective study and meta-analysis. Atherosclerosis 2016, 245, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Yamade, M.; Sugimoto, M.; Uotani, T.; Nishino, M.; Kodaira, C.; Furuta, T. Resistance of Helicobacter pylori to quinolones and clarithromycin assessed by genetic testing in Japan. J. Gastroenterol. Hepatol. 2011, 26, 1457–1461. [Google Scholar] [CrossRef]
- Deo, R.; Sotoodehnia, N.; Katz, R.; Sarnak, M.J.; Fried, L.F.; Chonchol, M.; Kestenbaum, B.; Psaty, B.M.; Siscovick, D.S.; Shlipak, M.G. Cystatin C and sudden cardiac death risk in the elderly. Circ. Cardiovasc. Qual. Outcomes 2010, 3, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Jouven, X.; Charles, M.A.; Desnos, M.; Ducimetiere, P. Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation 2001, 104, 756–761. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Figal, D.A.; Januzzi, J.L. The biology of ST2: The International ST2 Consensus Panel. Am. J. Cardiol. 2015, 115, 3B–7B. [Google Scholar] [CrossRef]
- Shah, R.V.; Januzzi, J.L., Jr. ST2: A novel remodeling biomarker in acute and chronic heart failure. Curr. Heart Fail. Rep. 2010, 7, 9–14. [Google Scholar] [CrossRef]
- Brint, E.K.; Fitzgerald, K.A.; Smith, P.; Coyle, A.J.; Gutierrez-Ramos, J.C.; Fallon, P.G.; O’Neill, L.A. Characterization of signaling pathways activated by the interleukin 1 (IL-1) receptor homologue T1/ST2. A role for Jun N-terminal kinase in IL-4 induction. J. Biol. Chem. 2002, 277, 49205–49211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakkar, R.; Lee, R.T. The IL-33/ST2 pathway: Therapeutic target and novel biomarker. Nat. Rev. Drug Discov. 2008, 7, 827–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, R.A.; Miller, A.M.; Murphy, G.E.; Clements, S.; Steedman, T.; Connell, J.M.; McInnes, I.B.; Dargie, H.J.; McMurray, J.J. Serum soluble ST2: A potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J. Am. Coll. Cardiol. 2010, 55, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, T.; Dieplinger, B.; Gegenhuber, A.; Poelz, W.; Pacher, R.; Haltmayer, M. Increased plasma concentrations of soluble ST2 are predictive for 1-year mortality in patients with acute destabilized heart failure. Clin. Chem. 2008, 54, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Januzzi, J.L., Jr.; Peacock, W.F.; Maisel, A.S.; Chae, C.U.; Jesse, R.L.; Baggish, A.L.; O’Donoghue, M.; Sakhuja, R.; Chen, A.A.; van Kimmenade, R.R.; et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: Results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J. Am. Coll. Cardiol. 2007, 50, 607–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ky, B.; French, B.; McCloskey, K.; Rame, J.E.; McIntosh, E.; Shahi, P.; Dries, D.L.; Tang, W.H.; Wu, A.H.; Fang, J.C.; et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ. Heart Fail. 2011, 4, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Dejgaard, L.A.; Skjolsvik, E.T.; Lie, O.H.; Ribe, M.; Stokke, M.K.; Hegbom, F.; Scheirlynck, E.S.; Gjertsen, E.; Andresen, K.; Helle-Valle, T.M.; et al. The Mitral Annulus Disjunction Arrhythmic Syndrome. J. Am. Coll. Cardiol. 2018, 72, 1600–1609. [Google Scholar] [CrossRef]
- Scheirlynck, E.; Dejgaard, L.A.; Skjolsvik, E.; Lie, O.H.; Motoc, A.; Hopp, E.; Tanaka, K.; Ueland, T.; Ribe, M.; Collet, C.; et al. Increased levels of sST2 in patients with mitral annulus disjunction and ventricular arrhythmias. Open Heart 2019, 6, e001016. [Google Scholar] [CrossRef]
- Vasta, G.R. Galectins as pattern recognition receptors: Structure, function, and evolution. Adv. Exp. Med. Biol. 2012, 946, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Dumic, J.; Dabelic, S.; Flogel, M. Galectin-3: An open-ended story. Biochim. Biophys. Acta 2006, 1760, 616–635. [Google Scholar] [CrossRef]
- Haudek, K.C.; Spronk, K.J.; Voss, P.G.; Patterson, R.J.; Wang, J.L.; Arnoys, E.J. Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim. Biophys. Acta 2010, 1800, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrynchyshyn, N.; Jourdain, P.; Desnos, M.; Diebold, B.; Funck, F. Galectin-3: A new biomarker for the diagnosis, analysis and prognosis of acute and chronic heart failure. Arch. Cardiovasc. Dis. 2013, 106, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Alvarez, L.; Ortega, E. The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens. Mediat. Inflamm. 2017, 2017, 9247574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, N.C.; Mackinnon, A.C.; Farnworth, S.L.; Kipari, T.; Haslett, C.; Iredale, J.P.; Liu, F.T.; Hughes, J.; Sethi, T. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol. 2008, 172, 288–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parikh, R.H.; Seliger, S.L.; Christenson, R.; Gottdiener, J.S.; Psaty, B.M.; deFilippi, C.R. Soluble ST2 for Prediction of Heart Failure and Cardiovascular Death in an Elderly, Community-Dwelling Population. J. Am. Heart Assoc. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- de Boer, R.A.; van Veldhuisen, D.J.; Gansevoort, R.T.; Muller Kobold, A.C.; van Gilst, W.H.; Hillege, H.L.; Bakker, S.J.; van der Harst, P. The fibrosis marker galectin-3 and outcome in the general population. J. Intern. Med. 2012, 272, 55–64. [Google Scholar] [CrossRef]
- Gehlken, C.; Suthahar, N.; Meijers, W.C.; de Boer, R.A. Galectin-3 in Heart Failure: An Update of the Last 3 Years. Heart Fail. Clin. 2018, 14, 75–92. [Google Scholar] [CrossRef]
- Glatz, J.F.; van Bilsen, M.; Paulussen, R.J.; Veerkamp, J.H.; van der Vusse, G.J.; Reneman, R.S. Release of fatty acid-binding protein from isolated rat heart subjected to ischemia and reperfusion or to the calcium paradox. Biochim. Biophys. Acta 1988, 961, 148–152. [Google Scholar] [CrossRef]
- Kleine, A.H.; Glatz, J.F.; Van Nieuwenhoven, F.A.; Van der Vusse, G.J. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol. Cell. Biochem. 1992, 116, 155–162. [Google Scholar] [CrossRef]
- Otaki, Y.; Watanabe, T.; Takahashi, H.; Hirayama, A.; Narumi, T.; Kadowaki, S.; Honda, Y.; Arimoto, T.; Shishido, T.; Miyamoto, T.; et al. Association of heart-type fatty acid-binding protein with cardiovascular risk factors and all-cause mortality in the general population: The Takahata study. PLoS ONE 2014, 9, e94834. [Google Scholar] [CrossRef]
- Sieira, J.; Brugada, P. The definition of the Brugada syndrome. Eur. Heart J. 2017, 38, 3029–3034. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, M.L.; Iyer, R.P.; Jung, M.; DeLeon-Pennell, K.Y.; Ma, Y. Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J. Mol. Cell. Cardiol. 2016, 91, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, E.M.; Gunasinghe, H.R.; Coker, M.L.; Sprunger, P.; Lee-Jackson, D.; Bozkurt, B.; Deswal, A.; Mann, D.L.; Spinale, F.G. Plasma matrix metalloproteinase and inhibitor profiles in patients with heart failure. J. Card. Fail. 2002, 8, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Cicoira, M.; Rossi, A.; Bonapace, S.; Zanolla, L.; Golia, G.; Franceschini, L.; Caruso, B.; Marino, P.N.; Zardini, P. Independent and additional prognostic value of aminoterminal propeptide of type III procollagen circulating levels in patients with chronic heart failure. J. Card. Fail. 2004, 10, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988, 332, 411–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, M.; Luscher, T.F. Endothelin antagonists for hypertension and renal disease. Curr. Opin. Nephrol. Hypertens. 1999, 8, 549–556. [Google Scholar] [CrossRef]
- Marasciulo, F.L.; Montagnani, M.; Potenza, M.A. Endothelin-1: The yin and yang on vascular function. Curr. Med. Chem. 2006, 13, 1655–1665. [Google Scholar] [CrossRef]
- Abebe, W.; Agrawal, D.K. Role of tyrosine kinases in norepinephrine-induced contraction of vascular smooth muscle. J. Cardiovasc. Pharm. 1995, 26, 153–159. [Google Scholar] [CrossRef]
- Szokodi, I.; Horkay, F.; Merkely, B.; Solti, F.; Geller, L.; Kiss, P.; Selmeci, L.; Kekesi, V.; Vuolteenaho, O.; Ruskoaho, H.; et al. Intrapericardial infusion of endothelin-1 induces ventricular arrhythmias in dogs. Cardiovasc. Res. 1998, 38, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Salvati, P.; Chierchia, S.; Dho, L.; Ferrario, R.G.; Parenti, P.; Vicedomini, G.; Patrono, C. Proarrhythmic activity of intracoronary endothelin in dogs: Relation to the site of administration and to changes in regional flow. J. Cardiovasc. Pharm. 1991, 17, 1007–1014. [Google Scholar] [CrossRef]
- Yorikane, R.; Shiga, H.; Miyake, S.; Koike, H. Evidence for direct arrhythmogenic action of endothelin. Biochem. Biophys. Res. Commun. 1990, 173, 457–462. [Google Scholar] [CrossRef]
- Yorikane, R.; Koike, H.; Miyake, S. Electrophysiological effects of endothelin-1 on canine myocardial cells. J. Cardiovasc. Pharm. 1991, 17, S159–S162. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Lai, H.; Zhou, L.; Meng, G.; Wang, M.; Lai, Y.; Wang, Z.; Chen, H.; Zhou, X.; et al. Interaction between Endothelin-1 and Left Stellate Ganglion Activation: A Potential Mechanism of Malignant Ventricular Arrhythmia during Myocardial Ischemia. Oxid. Med. Cell. Longev. 2019, 2019, 6508328. [Google Scholar] [CrossRef]
- Kiesecker, C.; Zitron, E.; Scherer, D.; Lueck, S.; Bloehs, R.; Scholz, E.P.; Pirot, M.; Kathofer, S.; Thomas, D.; Kreye, V.A.; et al. Regulation of cardiac inwardly rectifying potassium current IK1 and Kir2.x channels by endothelin-1. J. Mol. Med. 2006, 84, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D.; Burger, A.J. Neurohumoral activation and ventricular arrhythmias in patients with decompensated congestive heart failure: Role of endothelin. Pacing Clin. Electrophysiol. 2003, 26, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Szucs, A.; Keltai, K.; Zima, E.; Vago, H.; Soos, P.; Roka, A.; Szabolcs, Z.; Geller, L.; Merkely, B. Effects of implantable cardioverter defibrillator implantation and shock application on serum endothelin-1 and big-endothelin levels. Clin. Sci. 2002, 103, 233S–236S. [Google Scholar] [CrossRef] [PubMed]
- Muiesan, M.L.; Agabiti-Rosei, C.; Paini, A.; Salvetti, M. Uric Acid and Cardiovascular Disease: An Update. Eur. Cardiol. 2016, 11, 54–59. [Google Scholar] [CrossRef]
- Anker, S.D.; Doehner, W.; Rauchhaus, M.; Sharma, R.; Francis, D.; Knosalla, C.; Davos, C.H.; Cicoira, M.; Shamim, W.; Kemp, M.; et al. Uric acid and survival in chronic heart failure: Validation and application in metabolic, functional, and hemodynamic staging. Circulation 2003, 107, 1991–1997. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S.; Suzuki, H.; Kamioka, M.; Kamiyama, Y.; Saitoh, S.; Takeishi, Y. Uric acid increases the incidence of ventricular arrhythmia in patients with left ventricular hypertrophy. Fukushima J. Med. Sci. 2012, 58, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Pieters, M.; Wolberg, A.S. Fibrinogen and fibrin: An illustrated review. Res. Pr. Thromb. Haemost. 2019, 3, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Stec, J.J.; Silbershatz, H.; Tofler, G.H.; Matheney, T.H.; Sutherland, P.; Lipinska, I.; Massaro, J.M.; Wilson, P.F.; Muller, J.E.; D’Agostino, R.B., Sr. Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham Offspring Population. Circulation 2000, 102, 1634–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.J.; Kasiske, B.; Herzog, C.; Chen, S.C.; Everson, S.; Constantini, E.; Grimm, R.; McBean, M.; Xue, J.; Chavers, B.; et al. Excerpts from the United States Renal Data System 2003 Annual Data Report: Atlas of end-stage renal disease in the United States. Am. J. Kidney Dis. 2003, 42, S1–230. [Google Scholar]
- Levin, A.; Lan, J.H. Cystatin C and Cardiovascular Disease: Causality, Association, and Clinical Implications of Knowing the Difference. J. Am. Coll. Cardiol. 2016, 68, 946–948. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.T.; Kim, J.H.; Kang, E.J.; Lee, S.W.; Park, M.C.; Park, Y.B.; Lee, S.K. Osteopontin might be involved in bone remodeling rather than in inflammation in ankylosing spondylitis. Rheumatology 2008, 47, 1775–1779. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.X.; Denhardt, D.T. Osteopontin: Role in immune regulation and stress responses. Cytokine Growth Factor Rev. 2008, 19, 333–345. [Google Scholar] [CrossRef] [Green Version]
- Dinh, W.; Futh, R.; Lankisch, M.; Hess, G.; Zdunek, D.; Scheffold, T.; Kramer, F.; Klein, R.M.; Barroso, M.C.; Nickl, W. Growth-differentiation factor-15: A novel biomarker in patients with diastolic dysfunction? Arq Bras. Cardiol. 2011, 97, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Rueda, F.; Lupon, J.; Garcia-Garcia, C.; Cediel, G.; Aranda Nevado, M.C.; Serra Gregori, J.; Labata, C.; Oliveras, T.; Ferrer, M.; de Diego, O.; et al. Acute-phase dynamics and prognostic value of growth differentiation factor-15 in ST-elevation myocardial infarction. Clin. Chem. Lab. Med. 2019, 57, 1093–1101. [Google Scholar] [CrossRef]
- Garcia-Garcia, C.; Rueda, F.; Lupon, J.; Oliveras, T.; Labata, C.; Ferrer, M.; Cediel, G.; De Diego, O.; Rodriguez-Leor, O.; Carrillo, X.; et al. Growth differentiation factor-15 is a predictive biomarker in primary ventricular fibrillation: The RUTI-STEMI-PVF study. Eur. Heart J. Acute Cardiovasc. Care 2018. [Google Scholar] [CrossRef]
Heart Failure | Biomarker | Underlying Condition | Pacemaker/ICD | Arrhythmias | Outcome | Number of Patients | Study Design | FU-Duration | Specific Endpoint | Effect on SCD |
---|---|---|---|---|---|---|---|---|---|---|
Biasucci et al., 2006 [27] | CRP | ICM | ICD | VT/VF | CRP is associated with VT/VF | 65 | Prospective, single center | - | Appropriate ICD shocks for sVT/VF | SCD not directly investigated |
Theuns et al., 2012 [33] | hsCRP, BNP | CHF | ICD | VA | Independently associated with ICD appropriate therapy | 100 | Prospective, single center | 24 months | Appropriate ICD therapy, VA | Independent predictor of SCD * |
Blangy et al., 2007 [34] | hsCRP, BNP | ICM | ICD | VT | hsCRP and BNP associated with VTs | 121 | Prospective, single center | 1 year | VTs | SCD not directly investigated |
Streitner et al., 2009 [35] | hsCRP, IL-6, NT-proBNP | DCM, CAD | ICD | VT/VF | Correlation with occurrence of electrical storm | 86 | Prospective, single center | 9 months | VT/VF or electrical storm | SCD not directly investigated |
Biasucci et al., 2012 [36] | hsCRP | ICM | ICD/CRT-D | VT/VF | Not associated with SCD or VT/VF | 268 | Prospective, multicenter (CAMI-GUIDE study) | 2 years | VT/VF or SCD | No effect |
Kontantino et al., 2007 [37] | IL-6, TNFα, hsCRP, BNP | CHF | ICD | VT/VF | No correlation with VT/VF | 50 | Prospective, single center | 152±44 days | VT/VF | SCD not directly investigated |
Streitner et al., 2007 [41] | IL-6 | ICM | ICD | VT/VF | Associated with VT/VF | 47 | Prospective, single center | 9 months | VT/VF | SCD not directly investigated |
Cheng et al., 2014 [42] | IL-6, CRP, TNFα-receptor II, pro-BNP | CHF | ICD | VA | IL-6 predictive for appropriate ICD shocks | 1189 | Prospective, multicenter (PROSe-ICD study) | 4 years | Appropriate ICD shock | IL-6 independent predictor of SCD * |
Berger et al., 2002 [51] | BNP | CHF | None | SCD | Independent predictor of SCD | 452 | Prospective, single center | 3 years | SCD | Independent predictor of SCD |
Watanabe et al., 2006 [52] | BNP | CHF | None | SCD | Associated with SCD when combined with echo parameters, nsVTs and diabetes | 680 | Prospective, multicenter (CHART study) | - | SCD | Factor associated with SCD |
Medina et al., 2016 [53] | BNP | CHF | ICD/CRT-D | VT/VF | Independent predictor of VT/VF | 1197 | Sub-study, prospective, multicenter (MADIT-CRT study) | 1 year | VT/VF | SCD not directly investigated |
Christ et al., 2007 [54] | BNP | CHF | ICD | VT/VF | Predictive of VT/VF | 123 | Prospective, single center | 25 months | VT/VF | SCD not directly investigated |
Verma et al., 2006 [56] | BNP, CRP | CHF | ICD | Appropriate ICD therapy | BNP predictive of appropriate ICD shocks | 345 | Prospective cohort single center | 13 months | Appropriate ICD shocks | Independent predictor of SCD * |
Vrotovec et al., 2013 [57] | BNP | CHF | None | SCD | Not predictive of SCD | 512 | Prospective single center | 1 year | SCD | No effect |
Bayes-Genis et al., 2007 [60] | NT-proBNP | CHF | None | SCD | Predictive of SCD | 494 | Prospective, multicenter (MUSIC study) | 36 months | SCD | Independent predictor of SCD |
Simon et al., 2008 [62] | NT-proBNP | DCM | None | nsVTs | Correlation with occurrence of nsVTs | 30 | Prospective, single center | 21.6 ± 1.2 months | nsVTs | SCD not directly investigated |
Scott et al., 2011 [63] | NT-proBNP, sST2, CRP, IL-6 | CHF | ICD | Appropriate ICD therapy | NT-proBNP predictive of appropriate ICD therapy | 156 | Prospective, single center | 15 ± 3 months | Appropriate ICD therapy | Factor associated with SCD * |
Klingenberg et al., 2006 [64] | NT-proBNP | ICM | ICD | VA | Independent predictor of ICD therapy | 50 | Prospective, single center | 1 year | Appropriate ICD therapy | Independent predictor for SCD * |
Manios et al., 2005 [65] | NT-proBNP | ICM | ICD | VA | Predictive of VA | 35 | Prospective, single center | 1 year | VA | SCD not directly investigated |
Yu et al., 2007 [66] | NT-proBNP | ICM | ICD | VT/VF | Predictive of VT/VF | 99 | Prospective, single center | 18 months | VT/VF | SCD not directly investigated |
Levine et al., 2014 [67] | NT-proBNP, BNP | CHF | ICD | VA | Independently predictive of appropriate ICD therapy | 695 | Retrospective, multicenter | - | Appropriate ICD therapy | Independent predictor of SCD * |
Genetic | Biomarker | Underlying Condition | Pacemaker/ICD | Arrhythmias | Outcome | Number of Patients | Study Design | FU-Duration | Specific Endpoint | Effect on SCD |
---|---|---|---|---|---|---|---|---|---|---|
Bonny et al., 2010 [29] | CRP | ARVD/C | None | VT | Associated with VT | 91 | Prospective, single center | - | VT | SCD not directly investigated |
Minami et al., 2018 [59] | BNP | HCM | None | SCD | Independent predictor of SCD | 346 | Prospective, single center | 8.4 years | SCD | Independent predictor of SCD |
Coats et al., 2013 [73] | NT-proBNP | HCM | None | SCD | Independent predictor of all-cause mortality but not of SCD | 847 | Prospective, single center | 3.5 years | All-cause mortality (SCD) | No effect |
General Population | Biomarker | Underlying Condition | Arrhythmias | Outcome | Number of Patients | Study Design | FU-Duration | Specific Endpoint | Effect on SCD |
---|---|---|---|---|---|---|---|---|---|
Hussein et al., 2013 [24] | CRP, IL-6 | Adults aged 65 years or older | SCD | CRP and IL-6 are associated with SCD | 5888 | Subgroup analysis of prospective multicenter (Cardiovascular Health Study) | 17 years (median 13.1 years) | SCD | Factor associated with SCD |
Albert et al., 2002 [21] | hsCRP | Healthy men | SCD | Associated with SCD | 97 | Sub-study, prospective (Physician`s Healthy Study) | 17 years | SCD | Factor associated with SCD |
Korngold et al., 2009 [77] | NT-proBNP, hsCRP | Healthy women | SCD | Associated with SCD | 32 828 | Prospective, nested, case-control study | 16 years | SCD | Factor associated with SCD |
Hussein et al., 2013 [81] | hs-TnT | Ambulatory participants | SCD | Associated with SCD | 4 431 | Subgroup analysis of prospective multicenter (Cardiovascular Health Study) | 13.1 years | SCD | Factor associated with SCD |
Heart Failure. | Biomarker | Underlying Condition | Pacemaker/ICD | Arrhythmias | Outcome | Number of Patients | Study Design | FU-Duration | Specific Endpoint | Effect on SCD |
---|---|---|---|---|---|---|---|---|---|---|
Daidoji et al., 2012 [85] | H-FABP | CMP | ICD | Appropriate ICD shocks or cardiac death | Correlation with levels of H-FABP | 107 | Prospective, single center | 33.6 month | appropriate ICD shock or cardiac death | Independent predictor of SCD * |
Nodera et al., 2018 [86] | Uric Acid | CHF | ICD | VT | Uric Acid predicts VT | 56 | Prospective, single center | 30 ± 8 months | appropriate ICD shock | Independent predictor of SCD * |
Flevari et al., 2012 [87] | MMP-9 | CHF | ICD | VT | MMP-9 and PICP are predictive of VT | 74 | Prospective, single center | 1 year | appropriate intervention for sVT | Independent predictor of SCD * |
Sardu et al., 2018 [28] | sST2, NT-proBNP, CRP | HF patients with metabolic syndrome | ICD | Appropriate ICD therapy | Prediction of ICD shocks | MS: 99 vs. Non-MS: 107 | Prospective, multicenter | 1 year | appropriate and inappropriate ICD therapy | Independent predictor of SCD * |
Francia et al., 2014 [88] | OPN, galectin-3 | CHF | ICD | VF, VT | OPN and galectin-3 predict sVT/VF | 75 | Prospective, single center | 29 ± 17 months | first sVT/VF | Independent predictor of SCD * |
Ahmad et al., 2014 [89] | NT-proBNP, sST2, galectin-3 | CHF | None | SCD | Positive with NT-proBNP, mildly incremental when combined with novel biomarkers | 813 | Sub-study, Prospective, multicenter (HF-ACTION) | 2.5 years | SCD | Independent predictor of SCD |
Skali H et al., 2016 [90] | sST2 | HF | CRT Registry | VT | Predictive of VT | 684 | Sub-study, prospectively, multicenter (MADIT) | 1 year | VT /VF or death | SCD not directly investigated |
Pascual-Figal et al., 2009 [91] | sST2 NT-proBNP | CHF | None | SCD | Positive when Combined with NT-proBNP levels | 36 SCD matched 63 Controls | Sub-group analysis, case-control design of prospective, multicenter MUSIC study | 3-years | SCD | Independent predictor of SCD |
Genetic | Biomarker | Underlying Condition | Pacemaker/ICD | Arrhythmias | Outcome | Number of Patients | Study Design | FU-Duration | Specific Endpoint | Effect on SCD |
---|---|---|---|---|---|---|---|---|---|---|
Oz et al., 2017 [92] | Galectin-3 | ARVD | ICD | VF, VT | Correlation with Galectin-3 | 29 vs. 24 controls | Retrospective, multicenter | - | nsVT/sVT | SCD not directly investigated |
Daidoji et al., 2016 [93] | H-FABP | Brugada syndrome | ICD | Appropriate ICD shock, VF | Correlation with VA | 31 | Prospective, single-center | 5 years | appropriate ICD shock | Independent predictor of SCD * |
Zachariah et al., 2012 [94] | MMP3 | HCM | ICD | VT/VF | MMP3 predicts VA | 45 | Retrospective, single Center | 6 months | CA, sVT/VF with ICD shock | SCD not directly investigated |
Emet et al., 2018 [95] | Galectin-3 | HCM | ICD | SCD | Predictive 5 year risk of SCD | 52 | Cross-sectional data | - | Correlation between the estimated 5-year risk of SCD | SCD not directly investigated |
General Population | Biomarker | Underlying Condition | Arrhythmias | Outcome | Number of Patients | Study Design | FU-Duration | Specific Endpoint | Effect on SCD |
---|---|---|---|---|---|---|---|---|---|
Kunutsor et al., 2016 [96] | Fibrinogen | Non | SCD | Fibrinogen is associated with SCD | 1773 | Prospective cohort study, multicenter | 22 years | SCD | Independent predictor of SCD |
Yamade at al., 2011 [97] | Uric acid | Non-specific LVH | VT | Uric acid predicts VT | 167 | Prospective, single center | 24 h | Correlation with VT in 24h- Holter ECG | SCD not directly investigated |
Deo et al., 2010 [98] | Cystatin C | Age/no cardio-vascular disease | SCD | Correlation with cystatin C | 4465 | Subgroup analysis of Prospective, multicenter CHS (Cardiovascular health study) | 11.2 years | SCD | Independent predictor of SCD |
Jouven et al., 2001 [99] | circulating nonesterified fatty acids | Non | SCD | independent risk factor for SCD | 5250 | Cohort-Study(Paris Prospective Study I) | 22 years | SCD | Independent predictor of SCD |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shomanova, Z.; Ohnewein, B.; Schernthaner, C.; Höfer, K.; Pogoda, C.A.; Frommeyer, G.; Wernly, B.; Brandt, M.C.; Dieplinger, A.-M.; Reinecke, H.; et al. Classic and Novel Biomarkers as Potential Predictors of Ventricular Arrhythmias and Sudden Cardiac Death. J. Clin. Med. 2020, 9, 578. https://doi.org/10.3390/jcm9020578
Shomanova Z, Ohnewein B, Schernthaner C, Höfer K, Pogoda CA, Frommeyer G, Wernly B, Brandt MC, Dieplinger A-M, Reinecke H, et al. Classic and Novel Biomarkers as Potential Predictors of Ventricular Arrhythmias and Sudden Cardiac Death. Journal of Clinical Medicine. 2020; 9(2):578. https://doi.org/10.3390/jcm9020578
Chicago/Turabian StyleShomanova, Zornitsa, Bernhard Ohnewein, Christiane Schernthaner, Killian Höfer, Christian A. Pogoda, Gerrit Frommeyer, Bernhard Wernly, Mathias C. Brandt, Anna-Maria Dieplinger, Holger Reinecke, and et al. 2020. "Classic and Novel Biomarkers as Potential Predictors of Ventricular Arrhythmias and Sudden Cardiac Death" Journal of Clinical Medicine 9, no. 2: 578. https://doi.org/10.3390/jcm9020578
APA StyleShomanova, Z., Ohnewein, B., Schernthaner, C., Höfer, K., Pogoda, C. A., Frommeyer, G., Wernly, B., Brandt, M. C., Dieplinger, A. -M., Reinecke, H., Hoppe, U. C., Strohmer, B., Pistulli, R., & Motloch, L. J. (2020). Classic and Novel Biomarkers as Potential Predictors of Ventricular Arrhythmias and Sudden Cardiac Death. Journal of Clinical Medicine, 9(2), 578. https://doi.org/10.3390/jcm9020578