Effects of Liraglutide on Myocardial Function After Cardiac Surgery: A Secondary Analysis of the Randomised Controlled GLOBE Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomisation and Masking
2.4. Procedures
2.5. Data collection and Outcomes
2.6. Statistical Analysis
2.7. Role of the Funding Source
3. Results
3.1. Echocardiography
3.2. Haemodynamics
3.3. Biomarkers
4. Discussion
Limitations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hulst, A.H.; Plummer, M.P.; Hollmann, M.W.; Devries, J.H.; Preckel, B.; Deane, A.M.; Hermanides, J. Systematic review of incretin therapy during peri-operative and intensive care. Crit. Care 2018, 22, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hulst, A.H.; Visscher, M.J.; Godfried, M.B.; Thiel, B.; Gerritse, B.M.; Scohy, T.V.; Bouwman, R.A.; Willemsen, M.G.A.; Hollmann, M.W.; Preckel, B.; et al. Liraglutide for perioperative management of hyperglycaemia in cardiac surgery patients: A multicentre randomized superiority trial. Diabetes Obes. Metab. 2019, 68, 1–9. [Google Scholar] [CrossRef]
- Aravindhan, K.; Bao, W.; Harpel, M.R.; Willette, R.N.; Lepore, J.J.; Jucker, B.M. Cardioprotection resulting from glucagon-like peptide-1 administration involves shifting metabolic substrate utilization to increase energy efficiency in the rat heart. PLoS ONE 2015, 10, 1–18. [Google Scholar] [CrossRef]
- Kim, M.; Platt, M.J.; Shibasaki, T.; Quaggin, S.E.; Backx, P.H.; Seino, S.; Simpson, J.A.; Drucker, D.J. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat. Med. 2013, 19, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Ravassa, S.; Zudaire, A.; Díez, J. GLP-1 and cardioprotection: From bench to bedside. Cardiovasc. Res. 2012, 94, 316–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giblett, J.P.; Clarke, S.J.; Dutka, D.P.; Hoole, S.P. Glucagon-Like Peptide-1: A Promising Agent for Cardioprotection during Myocardial Ischemia. JACC Basic Transl. Sci. 2016, 1, 267–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolaidis, L.A.; Mankad, S.; Sokos, G.G.; Miske, G.; Shah, A.; Elahi, D.; Shannon, R.P. Effects of Glucagon-Like Peptide-1 in Patients with Acute Myocardial Infarction and Left Ventricular Dysfunction after Successful Reperfusion. Circulation 2004, 109, 962–965. [Google Scholar] [CrossRef] [Green Version]
- Read, P.A.; Hoole, S.P.; White, P.A.; Khan, F.Z.; O’Sullivan, M.; West, N.E.; Dutka, D.P. A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ. Cardiovasc. Interv. 2011, 4, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Read, P.A.; Khan, F.Z.; Dutka, D.P. Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart 2012, 98, 408–413. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef]
- Hulst, A.H.; Visscher, M.J.; Godfried, M.B.; Thiel, B.; Gerritse, B.M.; Scohy, T.V.; Bouwman, R.A.; Willemsen, M.G.A.; Hollmann, M.W.; Devries, J.H.; et al. Study protocol of the randomised placebo-controlled GLOBE trial: GLP-1 for bridging of hyperglycaemia during cardiac surgery. BMJ Open 2018, 8, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, 340, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Lønborg, J.; Kelbæk, H.; Vejlstrup, N.; Bøtker, H.E.; Kim, W.Y.; Holmvang, L.; Jørgensen, E.; Helqvist, S.; Saunamäki, K.; Terkelsen, C.J.; et al. Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischemia. Circ. Cardiovasc. Interv. 2012, 5, 288–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, J.S.; Kim, W.; Ha, S.J.; Kim, J.B.; Kim, S.-J.; Kim, W.-S.; Seon, H.J.; Kim, K.S. Cardioprotective Effects of Exenatide in Patients With ST-Segment–Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2252–2260. [Google Scholar] [CrossRef] [Green Version]
- Besch, G.; Perrotti, A.; Mauny, F.; Puyraveau, M.; Baltres, M.; Flicoteaux, G.; Du Mont, L.S.; Barrucand, B.; Samain, E.; Chocron, S.; et al. Clinical Effectiveness of Intravenous Exenatide Infusion in Perioperative Glycemic Control after Coronary Artery Bypass Graft Surgery. Anesthesiology 2017, 127, 775–787. [Google Scholar] [CrossRef]
- Besch, G.; Perrotti, A.; Du Mont, L.S.; Puyraveau, M.; Ben-Said, X.; Baltres, M.; Barrucand, B.; Flicoteaux, G.; Vettoretti, L.; Samain, E.; et al. Impact of intravenous exenatide infusion for perioperative blood glucose control on myocardial ischemia-reperfusion injuries after coronary artery bypass graft surgery: Sub study of the phase II/III ExSTRESS randomized trial. Cardiovasc. Diabetol. 2018, 17, 140. [Google Scholar] [CrossRef]
- Holman, R.R.; Bethel, M.A.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Claggett, B.; Diaz, R.; Dickstein, K.; Gerstein, H.C.; Køber, L.V.; Lawson, F.C.; Ping, L.; Wei, X.; Lewis, E.F.; et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 2015, 373, 2247–2257. [Google Scholar] [CrossRef]
- Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006, 368, 1696–1705. [Google Scholar] [CrossRef]
- Muskiet, M.H.A.; Tonneijck, L.; Smits, M.M.; Van Baar, M.J.; Kramer, M.H.H.; Hoorn, E.J.; Joles, J.A.; Van Raalte, D.H. GLP-1 and the kidney: From physiology to pharmacology and outcomes in diabetes. Nat. Rev. Nephrol. 2017, 13, 605–628. [Google Scholar] [CrossRef] [PubMed]
All | Liraglutide | Placebo | |||
---|---|---|---|---|---|
261 | 129 | 132 | |||
Age, mean (SD), years | 65.0 (10.9) | 64.6 (11.2) | 65.3 (10.7) | ||
Male sex, No. (%) | 211 (81) | 105 (81) | 106 (80) | ||
ASA score III, No. (%) | 189 (72) | 94 (73) | 95 (72) | ||
Smoker past year, No. (%) | 54 (21) | 26 (20) | 28 (21) | ||
Hypertension, No. (%) | 111 (43) | 57 (44) | 54 (43) | ||
BMI, mean (SD), kg/m2 | 27.5 (4.2) | 27.3 (4.0) | 27.7 (4.4) | ||
Diabetes mellitus type 2, No. (%) | 42 (16) | 21 (16) | 21 (16) | ||
Creatinine clearance, mean (SD), mL/min | 80.4 (16.6) | 80.6 (17.0) | 80.2 (16.2) | ||
Glycated haemoglobin, mean (SD), mmol/mol | 40 (8.9) | 40 (9.7) | 40 (8.1) | ||
EuroSCORE II, median (IQR), % | 1.27 (0.89–1.97) | 1.22 (0.84–1.93) | 1.34 (0.90–2.05) | ||
Left ventricular function < 50%, No. (%) | 64 (25) | 34 (26) | 30 (23) | ||
Type of surgery, No. (%) | |||||
CABG-only procedure | 92 (35) | 46 (36) | 46 (35) | ||
Single non-CABG procedure | 102 (39) | 52 (40) | 50 (38) | ||
Combined procedures | 67 (26) | 31 (24) | 36 (27) | ||
Duration of surgery, median (IQR), min | 222 (165–293) | 222 (162–276) | 219 (169–308) | ||
Type of anaesthesia maintenance, No. (%) | |||||
Propofol | 16 (6) | 8 (6) | 8 (6) | ||
Sevoflurane | 245 (94) | 121 (94) | 124 (94) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hulst, A.H.; Visscher, M.J.; Cherpanath, T.G.V.; van de Wouw, L.; Godfried, M.B.; Thiel, B.; Gerritse, B.M.; Scohy, T.V.; Bouwman, R.A.; Willemsen, M.G.A.; et al. Effects of Liraglutide on Myocardial Function After Cardiac Surgery: A Secondary Analysis of the Randomised Controlled GLOBE Trial. J. Clin. Med. 2020, 9, 673. https://doi.org/10.3390/jcm9030673
Hulst AH, Visscher MJ, Cherpanath TGV, van de Wouw L, Godfried MB, Thiel B, Gerritse BM, Scohy TV, Bouwman RA, Willemsen MGA, et al. Effects of Liraglutide on Myocardial Function After Cardiac Surgery: A Secondary Analysis of the Randomised Controlled GLOBE Trial. Journal of Clinical Medicine. 2020; 9(3):673. https://doi.org/10.3390/jcm9030673
Chicago/Turabian StyleHulst, Abraham H., Maarten J. Visscher, Thomas G. V. Cherpanath, Lieke van de Wouw, Marc B. Godfried, Bram Thiel, Bastiaan M. Gerritse, Thierry V. Scohy, R. Arthur Bouwman, Mark G. A. Willemsen, and et al. 2020. "Effects of Liraglutide on Myocardial Function After Cardiac Surgery: A Secondary Analysis of the Randomised Controlled GLOBE Trial" Journal of Clinical Medicine 9, no. 3: 673. https://doi.org/10.3390/jcm9030673
APA StyleHulst, A. H., Visscher, M. J., Cherpanath, T. G. V., van de Wouw, L., Godfried, M. B., Thiel, B., Gerritse, B. M., Scohy, T. V., Bouwman, R. A., Willemsen, M. G. A., Hollmann, M. W., DeVries, J. H., Preckel, B., & Hermanides, J. (2020). Effects of Liraglutide on Myocardial Function After Cardiac Surgery: A Secondary Analysis of the Randomised Controlled GLOBE Trial. Journal of Clinical Medicine, 9(3), 673. https://doi.org/10.3390/jcm9030673