Metabolic Alterations Associated with Early-Stage Hepatocellular Carcinoma and Their Correlation with Aging and Enzymatic Activity in Patients with Viral Hepatitis-Induced Liver Cirrhosis: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Serum Biochemical Analysis
2.3. MR Imaging and Spectroscopy
2.4. MR Spectra Analysis
2.5. Statistical Analysis
3. Results
3.1. Comparison of Serum Enzymatic Activities
3.2. Comparison of the Degree of Steatosis and Hepatocellular Metabolite Levels for Lac+TG, Cho, and TG
3.3. Correlation of Lac+TG and Cho Levels with Enzymatic Activities of LDH and ALP and Age
3.4. GEE Analysis for Risk Factors Associated with Metabolic Changes of Lac+TG and Cho
3.5. ROC Analysis for the Diagnosis of Early-Stage HCC using Lac+TG and Cho Levels
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Perman, W.H.; Balci, N.C.; Akduman, I. Review of magnetic resonance spectroscopy in the liver and the pancreas. Top. Magn. Reson. Imaging 2009, 20, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.R.; Wang, H.; Rosas, H.; Menias, C.O.; Narra, V.R.; Middleton, W.D.; Heiken, J.P. Fat-containing lesions of the liver: Radiologic-pathologic correlation. Radiographics 2005, 25, 321–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flemming, J.A.; Yang, J.D.; Vittinghoff, E.; Kim, W.R.; Terrault, N.A. Risk prediction of hepatocellular carcinoma in patients with cirrhosis: The ADRESS-HCC risk model. Cancer 2014, 120, 3485–3493. [Google Scholar] [CrossRef] [PubMed]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, F.X.; Ribes, J.; Díaz, M.; Cléries, R. Primary liver cancer: Worldwide incidence and trends. Gastroenterology 2004, 127, 5–16. [Google Scholar] [CrossRef]
- GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar] [CrossRef]
- Efremidis, S.C.; Hytiroglou, P. The multistep process of hepatocarcinogenesis in cirrhosis with imaging correlation. Eur. Radiol. 2002, 12, 753–764. [Google Scholar] [CrossRef]
- Kim, S.Y.; An, J.; Lim, Y.S.; Han, S.; Lee, J.Y.; Byun, J.H.; Won, H.J.; Lee, S.J.; Lee, H.C.; Lee, Y.S. MRI with liver-specific contrast for surveillance of patients with cirrhosis at high risk of hepatocellular carcinoma. JAMA Oncol. 2017, 3, 456–463. [Google Scholar] [CrossRef]
- Kim, T.H.; Jun, H.Y.; Kim, K.J.; Lee, Y.H.; Lee, M.S.; Choi, K.H.; Yun, K.J.; Jeong, Y.Y.; Jun, C.H.; Cho, E.Y.; et al. Hepatic alanine differentiates nonalcoholic steatohepatitis from simple steatosis in humans and mice: A proton MR spectroscopy study with long echo time. J. Magn. Reson. Imaging 2017, 46, 1298–1310. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, X.; Ouyang, H.; Wang, S.; Zhou, C. Diagnostic value of 3.0T (1)H MRS with choline-containing compounds ratio (∆CCC) in primary malignant hepatic tumors. Cancer Imaging 2016, 16, 25. [Google Scholar] [CrossRef] [Green Version]
- Dagnelie, P.C.; Leij-Halfwerk, S. Magnetic resonance spectroscopy to study hepatic metabolism in diffuse liver diseases, diabetes and cancer. World J. Gastroenterol. 2010, 16, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Li, X.; Yang, Z.H.; Xie, J.X. In vivo 1H MR spectroscopy in the evaluation of the serial development of hepatocarcinogenesis in an experimental rat model. Acad. Radiol. 2006, 13, 1532–1537. [Google Scholar] [CrossRef] [PubMed]
- Erstad, D.J.; Tanabe, K.K. Hepatocellular carcinoma: Early-stage management challenges. J. Hepatocell. Carcinoma 2017, 4, 81–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, D.G.; Bruix, J.; Sherman, M.; Sirlin, C.B. LI-RADS (Liver Imaging Reporting and Data System): Summary, discussion, and consensus of the LI-RADS Management Working Group and future directions. Hepatology 2015, 61, 1056–1065. [Google Scholar] [CrossRef]
- Hamilton, G.; Yokoo, T.; Bydder, M.; Cruite, I.; Schroeder, M.E.; Sirlin, C.B.; Middleton, M.S. In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed. 2011, 24, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Ter Voert, E.G.; Heijmen, L.; van Laarhoven, H.W.; Heerschap, A. In vivo magnetic resonance spectroscopy of liver tumors and metastases. World J. Gastroenterol. 2011, 17, 5133–5149. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Li, Z.; Yang, J.; Huang, C.; Liang, R.; Liu, Z.; Zhou, R. (1)H-NMR-based metabolomics of tumor tissue for the metabolic characterization of rat hepatocellular carcinoma formation and metastasis. Tumor Biol. 2011, 32, 223–231. [Google Scholar] [CrossRef]
- Darpolor, M.M.; Yen, Y.F.; Chua, M.S.; Xing, L.; Clarke-Katzenberg, R.H.; Shi, W.; Mayer, D.; Josan, S.; Hurd, R.E.; Pfefferbaum, A.; et al. In vivo MRSI of hyperpolarized [1-(13)C] pyruvate metabolism in rat hepatocellular carcinoma. NMR Biomed. 2011, 24, 506–513. [Google Scholar] [CrossRef] [Green Version]
- Moon, C.M.; Shin, S.S.; Heo, S.H.; Lim, H.S.; Moon, M.J.; Surendran, S.P.; Kim, G.E.; Park, I.W.; Jeong, Y.Y. Metabolic changes in different stages of liver fibrosis: In vivo hyperpolarized 13C MR spectroscopy and metabolic imaging. Mol. Imaging Biol. 2019, 21, 842–851. [Google Scholar] [CrossRef]
- Moon, C.M.; Shin, S.S.; Lim, N.Y.; Kim, S.K.; Kang, Y.J.; Kim, H.O.; Lee, S.J.; Beak, B.H.; Kim, Y.H.; Jeong, G.W. Metabolic alterations in a rat model of hepatic ischemia reperfusion injury: In vivo hyperpolarized 13C MRS and metabolic imaging. Liver Int. 2018, 38, 1117–1127. [Google Scholar] [CrossRef]
- Moon, C.M.; Oh, C.H.; Ahn, K.Y.; Yang, J.S.; Kim, J.Y.; Shin, S.S.; Lim, H.S.; Heo, S.H.; Seon, H.J.; Kim, J.W.; et al. Metabolic biomarkers for non-alcoholic fatty liver disease induced by high-fat diet: In vivo magnetic resonance spectroscopy of hyperpolarized [1-13C] pyruvate. Biochem. Biophys. Res. Commun. 2017, 482, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Soper, R.; Himmelreich, U.; Painter, D.; Somorjai, R.L.; Lean, C.L.; Dolenko, B.; Mountford, C.E.; Russell, P. Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classification strategy. Pathology 2002, 34, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, B.; Huang, Y.; Liu, X.; Zhang, S.W.; Xin, X.G.; Zheng, J.Z. 3.0 T proton magnetic resonance spectroscopy of the liver: Quantification of choline. World J. Gastroenterol. 2013, 19, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
Variables | NC (n = 30) | LC without HCC (n = 30) | LC with HCC (n = 30) | P-Value | ||
---|---|---|---|---|---|---|
P1 | P2 | P3 | ||||
Age (years) | 49.0 ± 22.1 | 54.5 ± 18.9 | 62.1 ± 23.4 | 1.000 * | 0.064 * | 0.064 * |
Sex (male/female) | 16/14 | 15/15 | 15/15 | 0.957 † | ||
Serum biochemical analysis | ||||||
Aspartate aminotransferase (AST, U/L) | 24.0 ± 10.2 | 42.8 ± 16.9 | 77.5 ± 39.2 | 0.119 * | 0.002 * | 0.671 * |
Alanine aminotransferase (ALT, U/L) | 33.2 ± 20.0 | 36.5 ± 14.3 | 55.1 ± 32.6 | 0.771 * | 0.546 * | 0.984 * |
Lactate dehydrogenase (LDH, U/L) | 385.8 ± 84.7 | 431.7 ± 110.8 | 461.8 ± 172.1 | 0.356 * | 0.041 * | 0.524 * |
Alkaline phosphatase (ALP, U/L) | 93.4 ± 43.4 | 116.8 ± 50.2 | 147.7 ± 79.6 | 0.007 * | 0.299 * | 0.247 * |
Glucose (mg/dL) | 102.2 ± 20.2 | 116.9 ± 55.4 | 121.3 ± 36.1 | 0.104 * | 0.001 * | 0.023 * |
Triglyceride (TG, mg/dL) | 161.6 ± 79.5 | 127.7 ± 104.3 | 117.2 ± 41.6 | 0.586 * | 0.141 * | 0.867 * |
Albumin (g/dL) | 4.1 ± 1.8 | 4.2 ± 1.6 | 3.9 ± 1.6 | 0.601 * | 0.125 * | 0.681 * |
Total bilirubin (mg/dL) | 0.9 ± 0.4 | 1.2 ± 0.5 | 1.5 ± 0.8 | 0.231 * | 0.547 * | 0.694 * |
Metabolites | AST (U/L) | ALT (U/L) | LDH (U/L) | ALP (U/L) | Glucose (mg/dL) | TG (mg/dL) | Albumin (g/dL) | Total bilirubin (mg/dL) |
---|---|---|---|---|---|---|---|---|
Lac+TG (1.3 ppm) | 0.030 (p = 0.783) | 0.074 (p = 0.489) | 0.299 * (p = 0.004) | −0.083 (p = 0.439) | 0.113 (p = 0.289) | −0.143 (p = 0.441) | 0.046 (p = 0.675) | −0.078 (p = 0.481) |
Cho (3.2 ppm) | 0.127 (p = 0.237) | 0.114 (p = 0.179) | 0.047 (p = 0.657) | 0.338 * (p = 0.001) | −0.123 (p = 0.247) | −0.155 (p = 0.404) | 0.099 (p = 0.362) | −0.153 (p = 0.164) |
TG (0.9 ppm) | −0.114 (p = 0.366) | −0.027 (p = 0.830) | 0.103 (p = 0.410) | 0.155 (p = 0.214) | 0.041 (p = 0.743) | −0.051 (p = 0.819) | 0.114 (p = 0.376) | −0.096 (p = 0.465) |
TG (2.1 ppm) | 0.023 (p = 0.853) | 0.176 (p = 0.162) | −0.050 (p = 0.688) | −0.083 (p = 0.508) | −0005 (p = 0.967) | −0.090 (p = 0.683) | 0.016 (p = 0.903) | −0.135 (p = 0.302) |
Variables | Lac+TG Concentration | Cho Concentration | ||||
---|---|---|---|---|---|---|
OR | 95% CI | P-Value | OR | 95% CI | P-Value | |
40–50 years old a | 1.000 | - | - | 1.000 | - | - |
60–80 years old | 1.508 | 1.107–2.053 | 0.009 | 1.049 | 1.006–1.094 | 0.024 |
Interaction effect | ||||||
Female × 40–50 years old × LC group b | 1.000 | - | - | 1.000 | - | - |
Female × 40–50 years old × CLH group | 1.034 | 0.956–1.119 | 0.401 | 1.004 | 0.971–1.037 | 0.823 |
Female × 40–50 years old × HCC group | 4.764 | 3.071–7.389 | 0.001 | 1.061 | 0.994–1.133 | 0.073 |
Female × 60–80 years old × LC group | 1.115 | 1.047–1.187 | 0.001 | 0.949 | 0.909–0.990 | 0.064 |
Female × 60–80 years old × CLH group | 1.133 | 1.003–1.281 | 0.045 | 1.024 | 0.994–1.055 | 0.114 |
Female × 60–80 years old × HCC group | 5.265 | 3.257–8.508 | 0.001 | 1.251 | 1.163–1.346 | 0.001 |
Male × 40–50 years old × LC group | 1.013 | 0.935–1.097 | 0.752 | 0.99 | 0.955–1.027 | 0.606 |
Male × 40–50 years old × CLH group | 1.047 | 0.956–1.147 | 0.324 | 1.035 | 0.985–1.087 | 0.172 |
Male × 40–50 years old × HCC group | 7.465 | 4.481–12.428 | 0.001 | 1.183 | 1.023–1.369 | 0.054 |
Male × 60–80 years old × LC group | 1.132 | 1.025–1.250 | 0.014 | 1.037 | 0.978–1.099 | 0.223 |
Male × 60–80 years old × CLH group | 1.098 | 1.000–1.206 | 0.049 | 1.000 | 0.970–1.032 | 0.975 |
Male × 60–80 years old × HCC group | 15.184 | 7.726–29.839 | 0.001 | 1.152 | 1.060–1.251 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, C.-M.; Shin, S.S.; Heo, S.H.; Jeong, Y.Y. Metabolic Alterations Associated with Early-Stage Hepatocellular Carcinoma and Their Correlation with Aging and Enzymatic Activity in Patients with Viral Hepatitis-Induced Liver Cirrhosis: A Preliminary Study. J. Clin. Med. 2020, 9, 765. https://doi.org/10.3390/jcm9030765
Moon C-M, Shin SS, Heo SH, Jeong YY. Metabolic Alterations Associated with Early-Stage Hepatocellular Carcinoma and Their Correlation with Aging and Enzymatic Activity in Patients with Viral Hepatitis-Induced Liver Cirrhosis: A Preliminary Study. Journal of Clinical Medicine. 2020; 9(3):765. https://doi.org/10.3390/jcm9030765
Chicago/Turabian StyleMoon, Chung-Man, Sang Soo Shin, Suk Hee Heo, and Yong Yeon Jeong. 2020. "Metabolic Alterations Associated with Early-Stage Hepatocellular Carcinoma and Their Correlation with Aging and Enzymatic Activity in Patients with Viral Hepatitis-Induced Liver Cirrhosis: A Preliminary Study" Journal of Clinical Medicine 9, no. 3: 765. https://doi.org/10.3390/jcm9030765
APA StyleMoon, C. -M., Shin, S. S., Heo, S. H., & Jeong, Y. Y. (2020). Metabolic Alterations Associated with Early-Stage Hepatocellular Carcinoma and Their Correlation with Aging and Enzymatic Activity in Patients with Viral Hepatitis-Induced Liver Cirrhosis: A Preliminary Study. Journal of Clinical Medicine, 9(3), 765. https://doi.org/10.3390/jcm9030765