Network Mapping of Connectivity Alterations in Disorder of Consciousness: Towards Targeted Neuromodulation
Abstract
:1. Introduction
2. Material and Methods
2.1. Literature Search
2.2. ALE Maps Computation
2.3. Neuroimaging Analysis
2.3.1. MRI Dataset
2.3.2. fMRI Preprocessing
2.3.3. Seed-Based Functional Connectivity
2.4. Clustering Analysis
2.5. Similarity Index
3. Results
3.1. ALE Meta-Analysis
3.2. Task-Based Map
3.3. Resting-State Maps
3.4. Functional Connectivity Mapping
3.5. DoC Networks and RSNs
3.6. Biophysical Modeling Results
4. Discussion
4.1. Brain Activations and Deactivations in DoC
4.2. Network Mapping
4.3. Potential Therapeutic Interventions
4.4. Limitations of the Study and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Langlois, J.A.; Rutland-Brown, W.; Wald, M.M. The epidemiology and impact of traumatic brain injury: A brief overview. J. Head Trauma Rehabil. 2006, 21, 375–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisa, F.E.; Biasutti, E.; Drigo, D.; Barbone, F. The Prevalence of Vegetative and Minimally Conscious States: A Systematic Review and Methodological Appraisal. J. Head Trauma Rehabil. 2014, 29, E23–E30. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Plum and Posner’s-Diagnosis of Stupor and Coma, Fourth Edition. Eur. J. Neurol. 2009, 16, e29. [Google Scholar] [CrossRef]
- Jennett, B.; Plum, F. Persistent vegetative state after brain damage. A syndrome in search of a name. Lancet Lond. Engl. 1972, 1, 734–737. [Google Scholar] [CrossRef]
- Laureys, S.; Celesia, G.G.; Cohadon, F.; Lavrijsen, J.; León-Carrión, J.; Sannita, W.G.; Sazbon, L.; Schmutzhard, E.; von Wild, K.R.; Zeman, A.; et al. Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Med. 2010, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Giacino, J.T.; Ashwal, S.; Childs, N.; Cranford, R.; Jennett, B.; Katz, D.I.; Kelly, J.P.; Rosenberg, J.H.; Whyte, J.; Zafonte, R.D.; et al. The minimally conscious state: Definition and diagnostic criteria. Neurology 2002, 58, 349–353. [Google Scholar] [CrossRef]
- Nakase-Thompson, R.; Sherer, M.; Yablon, S.A.; Nick, T.G.; Trzepacz, P.T. Acute confusion following traumatic brain injury. Brain Inj. 2004, 18, 131–142. [Google Scholar] [CrossRef]
- Zeman, A. Consciousness. Brain 2001, 124, 1263–1289. [Google Scholar] [CrossRef] [Green Version]
- Vanhaudenhuyse, A.; Demertzi, A.; Schabus, M.; Noirhomme, Q.; Bredart, S.; Boly, M.; Phillips, C.; Soddu, A.; Luxen, A.; Moonen, G.; et al. Two distinct neuronal networks mediate the awareness of environment and of self. J. Cogn. Neurosci. 2011, 23, 570–578. [Google Scholar] [CrossRef] [Green Version]
- Bodart, O.; Gosseries, O.; Wannez, S.; Thibaut, A.; Annen, J.; Boly, M.; Rosanova, M.; Casali, A.G.; Casarotto, S.; Tononi, G.; et al. Measures of metabolism and complexity in the brain of patients with disorders of consciousness. NeuroImage Clin. 2017, 14, 354–362. [Google Scholar] [CrossRef]
- Massimini, M.; Ferrarelli, F.; Sarasso, S.; Tononi, G. Cortical mechanisms of loss of consciousness: Insight from TMS/EEG studies. Arch. Ital. Biol. 2012, 150, 44–55. [Google Scholar]
- Massimini, M.; Boly, M.; Casali, A.; Rosanova, M.; Tononi, G. A perturbational approach for evaluating the brain’s capacity for consciousness. In Progress in Brain Research; Laureys, S., Schiff, N.D., Owen, A.M., Eds.; Coma Science: Clinical and Ethical Implications; Elsevier: San Diego, CA, USA, 2009; Volume 177, pp. 201–214. [Google Scholar]
- Laureys, S.; Tononi, G. The Neurology of Consciousness: Cognitive Neuroscience and Neuropathology; Academic Press: Cambridge, MA, USA, 2011; ISBN 978-0-08-092102-0. [Google Scholar]
- Posner, M.I. Attention: The mechanisms of consciousness. Proc. Natl. Acad. Sci. USA 1994, 91, 7398–7403. [Google Scholar] [CrossRef] [Green Version]
- Boly, M.; Tshibanda, L.; Vanhaudenhuyse, A.; Noirhomme, Q.; Schnakers, C.; Ledoux, D.; Boveroux, P.; Garweg, C.; Lambermont, B.; Phillips, C.; et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum. Brain Mapp. 2009, 30, 2393–2400. [Google Scholar] [CrossRef] [Green Version]
- Ovadia-Caro, S.; Nir, Y.; Soddu, A.; Ramot, M.; Hesselmann, G.; Vanhaudenhuyse, A.; Dinstein, I.; Tshibanda, J.-F.L.; Boly, M.; Harel, M.; et al. Reduction in Inter-Hemispheric Connectivity in Disorders of Consciousness. PLoS ONE 2012, 7, e37238. [Google Scholar] [CrossRef] [Green Version]
- Vanhaudenhuyse, A.; Noirhomme, Q.; Tshibanda, L.J.-F.; Bruno, M.-A.; Boveroux, P.; Schnakers, C.; Soddu, A.; Perlbarg, V.; Ledoux, D.; Brichant, J.-F.; et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010, 133, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.-H.; Yuan, R.; Huang, Y.-C.; Yeh, M.-Y.; Lin, C.-P.; Biswal, B.B. Disruption of brain connectivity in acute stroke patients with early impairment in consciousness. Front. Psychol. 2014, 4, 956. [Google Scholar] [CrossRef] [Green Version]
- Buckner, R.L.; Vincent, J.L. Unrest at rest: Default activity and spontaneous network correlations. NeuroImage 2007, 37, 1091–1096. [Google Scholar] [CrossRef]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef] [Green Version]
- McKiernan, K.A.; D’Angelo, B.R.; Kaufman, J.N.; Binder, J.R. Interrupting the “stream of consciousness”: An fMRI investigation. NeuroImage 2006, 29, 1185–1191. [Google Scholar] [CrossRef] [Green Version]
- Ingvar, D.H. “Hyperfrontal” distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol. Scand. 1979, 60, 12–25. [Google Scholar] [CrossRef]
- Demertzi, A.; Gómez, F.; Crone, J.S.; Vanhaudenhuyse, A.; Tshibanda, L.; Noirhomme, Q.; Thonnard, M.; Charland-Verville, V.; Kirsch, M.; Laureys, S.; et al. Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Cortex 2014, 52, 35–46. [Google Scholar] [CrossRef]
- Huang, Z.; Dai, R.; Wu, X.; Yang, Z.; Liu, D.; Hu, J.; Gao, L.; Tang, W.; Mao, Y.; Jin, Y.; et al. The self and its resting state in consciousness: An investigation of the vegetative state: Self and Resting State in Consciousness. Hum. Brain Mapp. 2014, 35, 1997–2008. [Google Scholar] [CrossRef]
- Norton, L.; Hutchison, R.M.; Young, G.B.; Lee, D.H.; Sharpe, M.D.; Mirsattari, S.M. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology 2012, 78, 175–181. [Google Scholar] [CrossRef]
- Ragazzoni, A.; Cincotta, M.; Giovannelli, F.; Cruse, D.; Young, G.B.; Miniussi, C.; Rossi, S. Clinical neurophysiology of prolonged disorders of consciousness: From diagnostic stimulation to therapeutic neuromodulation. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2017, 128, 1629–1646. [Google Scholar] [CrossRef] [Green Version]
- Bourdillon, P.; Hermann, B.; Sitt, J.D.; Naccache, L. Electromagnetic Brain Stimulation in Patients with Disorders of Consciousness. Front. Neurosci. 2019, 13, 223. [Google Scholar] [CrossRef] [Green Version]
- Thibaut, A.; Schiff, N.; Giacino, J.; Laureys, S.; Gosseries, O. Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol. 2019, 18, 600–614. [Google Scholar] [CrossRef]
- Giacino, J.T.; Fins, J.J.; Laureys, S.; Schiff, N.D. Disorders of consciousness after acquired brain injury: The state of the science. Nat. Rev. Neurol. 2014, 10, 99–114. [Google Scholar] [CrossRef]
- Cincotta, M.; Giovannelli, F.; Chiaramonti, R.; Bianco, G.; Godone, M.; Battista, D.; Cardinali, C.; Borgheresi, A.; Sighinolfi, A.; D’Avanzo, A.M.; et al. No effects of 20 Hz-rTMS of the primary motor cortex in vegetative state: A randomised, sham-controlled study. Cortex 2015, 71, 368–376. [Google Scholar] [CrossRef]
- Mancuso, M.; Abbruzzese, L.; Canova, S.; Landi, G.; Rossi, S.; Santarnecchi, E. Transcranial Random Noise Stimulation Does Not Improve Behavioral and Neurophysiological Measures in Patients with Subacute Vegetative-Unresponsive Wakefulness State (VS-UWS). Front. Hum. Neurosci. 2017, 11, 524. [Google Scholar] [CrossRef] [Green Version]
- Fox, M.D.; Halko, M.A.; Eldaief, M.C.; Pascual-Leone, A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage 2012, 62, 2232–2243. [Google Scholar] [CrossRef] [Green Version]
- Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Corbetta, M.; Essen, D.C.V.; Raichle, M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 2005, 102, 9673–9678. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.M.; Barch, D.M. Cognition and resting-state functional connectivity in schizophrenia. Neurosci. Biobehav. Rev. 2016, 61, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Dmochowski, J.P.; Datta, A.; Bikson, M.; Su, Y.; Parra, L.C. Optimized multi-electrode stimulation increases focality and intensity at target. J. Neural Eng. 2011, 8, 046011. [Google Scholar] [CrossRef]
- Miranda, P.C.; Mekonnen, A.; Salvador, R.; Ruffini, G. The electric field in the cortex during transcranial current stimulation. NeuroImage 2013, 70, 48–58. [Google Scholar] [CrossRef]
- Ruffini, G.; Fox, M.D.; Ripolles, O.; Miranda, P.C.; Pascual-Leone, A. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. NeuroImage 2014, 89, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Brem, A.-K.; Almquist, J.N.-F.; Mansfield, K.; Plessow, F.; Sella, F.; Santarnecchi, E.; Orhan, U.; McKanna, J.; Pavel, M.; Mathan, S.; et al. Modulating fluid intelligence performance through combined cognitive training and brain stimulation. Neuropsychologia 2018, 118, 107–114. [Google Scholar] [CrossRef]
- Fischer, D.B.; Fried, P.J.; Ruffini, G.; Ripolles, O.; Salvador, R.; Banus, J.; Ketchabaw, W.T.; Santarnecchi, E.; Pascual-Leone, A.; Fox, M.D. Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. NeuroImage 2017, 157, 34–44. [Google Scholar] [CrossRef]
- Neri, F.; Mencarelli, L.; Menardi, A.; Giovannelli, F.; Rossi, S.; Sprugnoli, G.; Rossi, A.; Pascual-Leone, A.; Salvador, R.; Ruffini, G.; et al. A Novel tDCS Sham Approach Based on Model-Driven Controlled Shunting. Brain Stimulat. 2019, 13, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Dagan, M.; Herman, T.; Harrison, R.; Zhou, J.; Giladi, N.; Ruffini, G.; Manor, B.; Hausdorff, J.M. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2018, 33, 642–646. [Google Scholar] [CrossRef]
- Sprugnoli, G.; Monti, L.; Lippa, L.; Neri, F.; Mencarelli, L.; Ruffini, G.; Salvador, R.; Oliveri, G.; Batani, B.; Momi, D.; et al. Reduction of intratumoral brain perfusion by noninvasive transcranial electrical stimulation. Sci. Adv. 2019, 5, eaau9309. [Google Scholar] [CrossRef] [Green Version]
- Thibaut, A.; Russo, C.; Hurtado-Puerto, A.M.; Morales-Quezada, J.L.; Deitos, A.; Petrozza, J.C.; Freedman, S.; Fregni, F. Effects of Transcranial Direct Current Stimulation, Transcranial Pulsed Current Stimulation, and Their Combination on Brain Oscillations in Patients with Chronic Visceral Pain: A Pilot Crossover Randomized Controlled Study. Front. Neurol. 2017, 8, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Espejo, D.; Junque, C.; Cruse, D.; Bernabeu, M.; Roig-Rovira, T.; Fábregas, N.; Rivas, E.; Mercader, J.M. Combination of diffusion tensor and functional magnetic resonance imaging during recovery from the vegetative state. BMC Neurol. 2010, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Monti, M.M.; Pickard, J.D.; Owen, A.M. Visual cognition in disorders of consciousness: From V1 to top-down attention. Hum. Brain Mapp. 2013, 34, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; Bonanno, L.; Ciurleo, R.; Baglieri, A.; Morabito, R.; Guerrera, S.; Rifici, C.; Giorgio, A.; Bramanti, P.; De Stefano, N. Functional Evaluation of Awareness in Vegetative and Minimally Conscious State. Open Neuroimaging J. 2017, 11, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Kuhlmann, L.; Johnston, L.A.; Grayden, D.B.; Vogrin, S.; Crossley, R.; Fuller, K.; Lourensz, M.; Cook, M.J. Extending Communication for Patients with Disorders of Consciousness: fMRI of Disorders of Consciousness. J. Neuroimaging 2014, 24, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.M.; Menon, D.K.; Johnsrude, I.S.; Bor, D.; Scott, S.K.; Manly, T.; Williams, E.J.; Mummery, C.; Pickard, J.D. Detecting Residual Cognitive Function in Persistent Vegetative State. Neurocase 2002, 8, 394–403. [Google Scholar] [CrossRef]
- Laureys, S.; Faymonville, M.E.; Luxen, A.; Lamy, M.; Franck, G.; Maquet, P. Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 2000, 355, 1790–1791. [Google Scholar] [CrossRef] [Green Version]
- Bruno, M.-A.; Majerus, S.; Boly, M.; Vanhaudenhuyse, A.; Schnakers, C.; Gosseries, O.; Boveroux, P.; Kirsch, M.; Demertzi, A.; Bernard, C.; et al. Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. J. Neurol. 2012, 259, 1087–1098. [Google Scholar] [CrossRef] [Green Version]
- He, J.-H.; Yang, Y.; Zhang, Y.; Qiu, S.-Y.; Zhou, Z.-Y.; Dang, Y.-Y.; Dai, Y.-W.; Liu, Y.-J.; Xu, R.-X. Hyperactive external awareness against hypoactive internal awareness in disorders of consciousness using resting-state functional MRI: Highlighting the involvement of visuo-motor modulation: Imbalanced Internal and External Awareness in Disorders of Consciousness. NMR Biomed. 2014, 27, 880–886. [Google Scholar]
- Kim, Y.W.; Kim, H.S.; An, Y.-S.; Im, S.H. Voxel-based statistical analysis of cerebral glucose metabolism in patients with permanent vegetative state after acquired brain injury. Chin. Med. J. (Engl.) 2010, 5, 2853–2857. [Google Scholar]
- Kim, Y.W.; Kim, H.S.; An, Y.-S. Brain metabolism in patients with vegetative state after post-resuscitated hypoxic-ischemic brain injury: Statistical parametric mapping analysis of F-18 fluorodeoxyglucose positron emission tomography. Chin. Med. J. (Engl.) 2013, 7, 888–894. [Google Scholar]
- Koenig, M.A.; Holt, J.L.; Ernst, T.; Buchthal, S.D.; Nakagawa, K.; Stenger, V.A.; Chang, L. MRI Default Mode Network Connectivity is Associated with Functional Outcome After Cardiopulmonary Arrest. Neurocrit. Care 2014, 20, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, N. Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: An FDG-PET study with statistical parametric mapping analysis. J. Neurol. Neurosurg. Psychiatry 2006, 77, 856–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soddu, A.; Gómez, F.; Heine, L.; Di Perri, C.; Bahri, M.A.; Voss, H.U.; Bruno, M.-A.; Vanhaudenhuyse, A.; Phillips, C.; Demertzi, A.; et al. Correlation between resting state fMRI total neuronal activity and PET metabolism in healthy controls and patients with disorders of consciousness. Brain Behav. 2016, 6, e00424. [Google Scholar] [CrossRef] [Green Version]
- Thibaut, A.; Bruno, M.; Chatelle, C.; Gosseries, O.; Vanhaudenhuyse, A.; Demertzi, A.; Schnakers, C.; Thonnard, M.; Charland-Verville, V.; Bernard, C.; et al. Metabolic activity in external and internal awareness networks in severely brain-damaged patients. J. Rehabil. Med. 2012, 44, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Bruno, M.-A.; Vanhaudenhuyse, A.; Schnakers, C.; Boly, M.; Gosseries, O.; Demertzi, A.; Majerus, S.; Moonen, G.; Hustinx, R.; Laureys, S. Visual fixation in the vegetative state: An observational case series PET study. BMC Neurol. 2010, 10, 35. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Eickhoff, S.B.; Bzdok, D.; Laird, A.R.; Kurth, F.; Fox, P.T. Activation likelihood estimation meta-analysis revisited. NeuroImage 2012, 59, 2349–2361. [Google Scholar] [CrossRef] [Green Version]
- Eickhoff, S.B.; Laird, A.R.; Grefkes, C.; Wang, L.E.; Zilles, K.; Fox, P.T. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 2009, 30, 2907–2926. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, J. A fast diffeomorphic image registration algorithm. NeuroImage 2007, 38, 95–113. [Google Scholar] [CrossRef]
- Behzadi, Y.; Restom, K.; Liau, J.; Liu, T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 2007, 37, 90–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dice, L.R. Measures of the Amount of Ecologic Association between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Shirer, W.R.; Ryali, S.; Rykhlevskaia, E.; Menon, V.; Greicius, M.D. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex N. Y. N 1991 2012, 22, 158–165. [Google Scholar] [CrossRef]
- Dosenbach, N.U.F.; Fair, D.A.; Miezin, F.M.; Cohen, A.L.; Wenger, K.K.; Dosenbach, R.A.T.; Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E.; et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl. Acad. Sci. USA 2007, 104, 11073–11078. [Google Scholar] [CrossRef] [Green Version]
- Dosenbach, N.U.F.; Fair, D.A.; Cohen, A.L.; Schlaggar, B.L.; Petersen, S.E. A dual-networks architecture of top-down control. Trends Cogn. Sci. 2008, 12, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Corbetta, M.; Patel, G.; Shulman, G.L. The Reorienting System of the Human Brain: From Environment to Theory of Mind. Neuron 2008, 58, 306–324. [Google Scholar] [CrossRef] [Green Version]
- Yeo, B.T.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni, J.R.; et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 1125–1165. [Google Scholar]
- Uddin, L.Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 2015, 16, 55–61. [Google Scholar] [CrossRef]
- Menon, V.; Uddin, L.Q. Uddin Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct. 2010, 214, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Berlingeri, M.; Magnani, F.G.; Salvato, G.; Rosanova, M.; Bottini, G. Neuroimaging Studies on Disorders of Consciousness: A Meta-Analytic Evaluation. J. Clin. Med. 2019, 8, 516. [Google Scholar] [CrossRef] [Green Version]
- Müller, V.I.; Cieslik, E.C.; Laird, A.R.; Fox, P.T.; Radua, J.; Mataix-Cols, D.; Tench, C.R.; Yarkoni, T.; Nichols, T.E.; Turkeltaub, P.E.; et al. Ten simple rules for neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 2018, 84, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Hannawi, Y.; Lindquist, M.A. Resting brain activity in disorders of consciousness. Neurology 2015, 9, 1272–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiff, N.D.; Giacino, J.T.; Kalmar, K.; Victor, J.D.; Baker, K.; Gerber, M.; Fritz, B.; Eisenberg, B.; O’Connor, J.; Kobylarz, E.J.; et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 2007, 448, 600–603. [Google Scholar] [CrossRef] [PubMed]
- Castaigne, P.; Lhermitte, F.; Buge, A.; Escourolle, R.; Hauw, J.J.; Lyon-Caen, O. Paramedian thalamic and midbrain infarcts: Clinical and neuropathological study. Ann. Neurol. 1981, 10, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Santarnecchi, E.; Emmendorfer, A.; Pascual-Leone, A. Dissecting the parieto-frontal correlates of fluid intelligence: A comprehensive ALE meta-analysis study. Intelligence 2017, 63, 9–28. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cognit. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spreng, R.N.; Sepulcre, J.; Turner, G.R.; Stevens, W.D.; Schacter, D.L. Intrinsic Architecture Underlying the Relations among the Default, Dorsal Attention, and Frontoparietal Control Networks of the Human Brain. J. Cogn. Neurosci. 2012, 25, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Crone, J.S.; Soddu, A.; Höller, Y.; Vanhaudenhuyse, A.; Schurz, M.; Bergmann, J.; Schmid, E.; Trinka, E.; Laureys, S.; Kronbichler, M. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. NeuroImage Clin. 2013, 4, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Botvinick, M.M.; Cohen, J.D.; Carter, C.S. Conflict monitoring and anterior cingulate cortex: An update. Trends Cogn. Sci. 2004, 8, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Botvinick, M.M.; Carter, C.S.; Braver, T.S.; Carter, C.S.; Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 2001, 108, 624–652. [Google Scholar] [CrossRef]
- Crottaz-Herbette, S.; Menon, V. Where and When the Anterior Cingulate Cortex Modulates Attentional Response: Combined fMRI and ERP Evidence. J. Cogn. Neurosci. 2006, 18, 766–780. [Google Scholar] [CrossRef]
- Etkin, A.; Egner, T.; Peraza, D.M.; Kandel, E.R.; Hirsch, J. Resolving Emotional Conflict: A Role for the Rostral Anterior Cingulate Cortex in Modulating Activity in the Amygdala. Neuron 2006, 51, 871–882. [Google Scholar] [CrossRef] [Green Version]
- Mason, M.F.; Norton, M.I.; Van Horn, J.D.; Wegner, D.M.; Grafton, S.T.; Macrae, C.N. Wandering Minds: The Default Network and Stimulus-Independent Thought. Science 2007, 315, 393–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schilbach, L.; Eickhoff, S.B.; Rotarska-Jagiela, A.; Fink, G.R.; Vogeley, K. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious. Cogn. 2008, 17, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, I.I.; Harel, M.; Malach, R. When the brain loses its self: Prefrontal inactivation during sensorimotor processing. Neuron 2006, 50, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Lou, H.C.; Luber, B.; Crupain, M.; Keenan, J.P.; Nowak, M.; Kjaer, T.W.; Sackeim, H.A.; Lisanby, S.H. Parietal cortex and representation of the mental Self. Proc. Natl. Acad. Sci. USA 2004, 101, 6827–6832. [Google Scholar] [CrossRef] [Green Version]
- Greicius, M.D.; Krasnow, B.; Reiss, A.L.; Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 2003, 100, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Buckner, R.L.; DiNicola, L.M. The brain’s default network: Updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 2019, 20, 593–608. [Google Scholar] [CrossRef]
- Casarotto, S.; Comanducci, A.; Rosanova, M.; Sarasso, S.; Fecchio, M.; Napolitani, M.; Pigorini, A.G.; Casali, A.; Trimarchi, P.D.; Boly, M.; et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann. Neurol. 2016, 80, 718–729. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, R.; Tadayon, S.H.; Boucher, P.; Momi, D.; Karakhanvan, K.; Fox, M.D.; Halko, M.; Pascual-Leone, A.; Shafi, M.; Santarnecchi, E. Individualized Perturbation of the Human Connectome Reveals Reproducible Biomarkers of Network Dynamics Relevant to Cognition. Proc. Natl. Acad. Sci. USA. in press.
- Thibaut, A.; Bruno, M.-A.; Ledoux, D.; Demertzi, A.; Laureys, S. tDCS in patients with disorders of consciousness: Sham-controlled randomized double-blind study. Neurology 2014, 82, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Liouta, E.; Andreadis, N.; Korfias, S.; Ktonas, P.; Stranjalis, G.; Sakas, D.E. Transcranial Direct Current Stimulation Effects in Disorders of Consciousness. Arch. Phys. Med. Rehabil. 2014, 95, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Estraneo, A.; Pascarella, A.; Moretta, P.; Masotta, O.; Fiorenza, S.; Chirico, G.; Crispino, E.; Loreto, V.; Trojano, L. Repeated transcranial direct current stimulation in prolonged disorders of consciousness: A double-blind cross-over study. J. Neurol. Sci. 2017, 375, 464–470. [Google Scholar] [CrossRef]
- Fox, M.D.; Buckner, R.L.; Liu, H.; Chakravarty, M.M.; Lozano, A.M.; Pascual-Leone, A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc. Natl. Acad. Sci. USA 2014, 111, E4367–E4375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eickhoff, S.B.; Nichols, T.E.; Laird, A.R.; Hoffstaedter, F.; Amunts, K.; Fox, P.T.; Bzdok, D.; Eickhoff, C.R. Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. NeuroImage 2016, 137, 70–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laakso, I.; Tanaka, S.; Koyama, S.; De Santis, V.; Hirata, A. Inter-subject Variability in Electric Fields of Motor Cortical tDCS. Brain Stimulat. 2015, 8, 906–913. [Google Scholar] [CrossRef] [PubMed]
Paper | Subjects | Etiology | Sex (F) | Age (Mean) | Reference | Foci | Imaging Modality | Contrast | Task Category | Modality | Task Type |
---|---|---|---|---|---|---|---|---|---|---|---|
Task-based studies | |||||||||||
Fernández-Espejo et al., 2010 [44] | 1 UWS | TBI | 0 | 48 | MNI | 2 | fMRI | For > back; listen > silence | passive | auditory | sentences listening |
Liang et al., 2014 [47] | 5 (2UWS, 3 MCS) | TBI | 2 | 42.8 | MNI | 10;6;11;4 | fMRI | Listen > rest; Navigation > rest; counting > rest; face > rest | active and passive | auditory | spoken sentenses and motor/mental imagery |
Monti et al., 2013 [45] | 1 MCS | TBI | --- | --- | MNI | 33 | fMRI | no contrast | passive | auditory | visual stimulation |
Owen et al., 2002 [48] | 3 UWS | acute febrile illness; TBI; cardiorespiratory arrest | 3 | 28 | MNI | 8 | PET | visual stimulation; familiar face perception; speech perception | passive | visual and auditory | visual stimulation |
Marino et al., 2017 [46] | 50 (23 UWS, 27 MCS) | TBI, anoxic brain injury; cerebro-vascular accident | 50 | MNI | 12 | fMRI | no contrast | passive | auditory | sentences listening | |
Laureys et al., 2000 [49] | 5 UWS | hypoxic origin | 3 | 44 | TAL | 4;8 | PET | no contrast; DOC<HC | passive | auditory | click |
Resting-State Studies | |||||||||||
Bruno et al., 2010 [58] | 10 UWS | cronic post-anoxic enephalopathy | 2 | 44.3 | MNI | 16 | PET | DOC < HC | |||
Bruno et al., 2012 [50] | 27 MCS | anoxia; TBI; subarachnoid hemorrhage; encephalitis; hypoglycemia; cerebro-vascular accident | 10 | 45 | MNI | 40 | PET | DOC < HC | |||
Demertzi et al., 2014 [23] | 53 (5coma, 24 UWS, 24 MCS) | brain insult | 23 | 50 | MNI | 50 | fMRI | DOC < HC | |||
He et al., 2014 [51] | 12 (9 UWS, 3MCS) | TBI; cerebro-vascular accident; anoxic brain injury | 4 | 44.7 | MNI | 8;8 | fMRI | DOC < HC; DOC > HC | |||
Kim et al., 2010 [52] | 12 UWS | anoxic brain injury | 5 | 41.7 | MNI | 4;3 | PET | DOC < HC; DOC > HC | |||
Kim et al., 2013 [53] | 17 MCS | hypoxic-ischemic brain injury | 8 | 40.5 | MNI | 16;5 | PET | DOC < HC; DOC > HC | |||
Koenig et al., 2014 [54] | 17 coma | cardio-pulmunary arrest | 3 | 55 | TAL | 3 | fMRI | DOC < HC | |||
Nakayama et al., 2006 [55] | 30 (17 UWS, 13 MCS) | TBI | 11 | 30 | TAL | 13;10 | PET | DOC < HC | |||
Norton et al., 2012 [25] | 13 (11 irreversible coma, 2 reversible coma) | cardiac arrest | 5 | 66.3 | MNI | 16 | fMRI | DOC < HC | |||
Soddu et al., 2016 [56] | 15 (11 UWS, 4 LIS) | anoxia; cerebro-vascular accident; TBI; hypoglycemia; occlusion basilar artery | 10 | 45 | TAL | 17 | PET/fMRI | DOC < HC | |||
Thibault et al., 2012 [57] | 70 (24 UWS, 28 MCS, 10 EMCS,8LIS) | TBI; cardiac arrest; stroke; intoxication; anoxia; hydrocephali; meningitis encephalopathy; aneurysm | 27 | 43.9 | MNI | 8;4 | PET | DOC < HC |
Region Number | Extrema Value Coordinates | Extrema Value | Brodmann Area | Hemisphere | Lobe | Label | ||
---|---|---|---|---|---|---|---|---|
x | y | z | ||||||
1 | −52 | −30 | 10 | 0.013 | 41 | L | Temporal | Superior Temporal Gyrus |
1 | −44 | −30 | 10 | 0.010 | 41 | L | Temporal | Superior Temporal Gyrus |
2 | 46 | −28 | 12 | 0.013 | 41 | R | Temporal | Transverse Temporal Gyrus |
2 | 50 | 20 | 10 | 0.010 | 41 | R | Temporal | Transverse Temporal Gyrus |
Region Number | Extrema Value Coordinates | Extrema Value | Brodmann Area | Hemisphere | Lobe | Label | ||
---|---|---|---|---|---|---|---|---|
x | y | z | ||||||
1 | 0 | −36 | 32 | 0.034 | 31 | L | Limbic | Cingulate Gyrus |
1 | 2 | −20 | 36 | 0.029 | 24 | L | Limbic | Cingulate Gyrus |
2 | 8 | −16 | 6 | 0.031 | R | Sub-lobar | Thalamus | |
2 | −4 | −14 | 6 | 0.024 | L | Sub-lobar | Thalamus | |
3 | 4 | 12 | 24 | 0.018 | 24 | R | Limbic | Cingulate Gyrus |
3 | 4 | 8 | 42 | 0.013 | 24 | R | Limbic | Cingulate Gyrus |
4 | 14 | 14 | 8 | 0.026 | R | Sub-lobar | Caudate | |
5 | −32 | 6 | 54 | 0.020 | 6 | L | Frontal | Middle Frontal Gyrus |
6 | −44 | −70 | 40 | 0.021 | 39 | L | Parietal | Angular Gyrus |
Region Number | Extrema Value Coordinates | Extrema Value | Brodmann Area | Hemisphere | Lobe | Label | ||
---|---|---|---|---|---|---|---|---|
x | y | z | ||||||
MCS patients | ||||||||
1 | 0 | −36 | 32 | 0.022 | 31 | L | Limbic | Cingulate Gyrus |
2 | 4 | −18 | 6 | 0.017 | . | R | Sub-lobar | Thalamus |
3 | 4 | 12 | 24 | 0.017 | 24 | R | Limbic | Cingulate Gyrus |
4 | 14 | 14 | 8 | 0.023 | . | R | Sub-lobar | Caudate |
5 | −8 | 12 | 10 | 0.021 | . | L | Sub-lobar | Caudate |
VS patients | ||||||||
1 | 10 | −18 | 4 | 0.019 | . | R | Sub-lobar | Thalamus |
2 | 0 | −38 | 34 | 0.015 | 31 | L | Limbic | Cingulate Gyrus |
2 | 4 | −36 | 24 | 0.008 | 23 | R | Limbic | Posterior Cingulate |
3 | 4 | −16 | 34 | 0.019 | 23 | R | Limbic | Cingulate Gyrus |
4 | −6 | −14 | 6 | 0.019 | . | L | Sub-lobar | Thalamus |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mencarelli, L.; Biagi, M.C.; Salvador, R.; Romanella, S.; Ruffini, G.; Rossi, S.; Santarnecchi, E. Network Mapping of Connectivity Alterations in Disorder of Consciousness: Towards Targeted Neuromodulation. J. Clin. Med. 2020, 9, 828. https://doi.org/10.3390/jcm9030828
Mencarelli L, Biagi MC, Salvador R, Romanella S, Ruffini G, Rossi S, Santarnecchi E. Network Mapping of Connectivity Alterations in Disorder of Consciousness: Towards Targeted Neuromodulation. Journal of Clinical Medicine. 2020; 9(3):828. https://doi.org/10.3390/jcm9030828
Chicago/Turabian StyleMencarelli, Lucia, Maria Chiara Biagi, Ricardo Salvador, Sara Romanella, Giulio Ruffini, Simone Rossi, and Emiliano Santarnecchi. 2020. "Network Mapping of Connectivity Alterations in Disorder of Consciousness: Towards Targeted Neuromodulation" Journal of Clinical Medicine 9, no. 3: 828. https://doi.org/10.3390/jcm9030828
APA StyleMencarelli, L., Biagi, M. C., Salvador, R., Romanella, S., Ruffini, G., Rossi, S., & Santarnecchi, E. (2020). Network Mapping of Connectivity Alterations in Disorder of Consciousness: Towards Targeted Neuromodulation. Journal of Clinical Medicine, 9(3), 828. https://doi.org/10.3390/jcm9030828