Multi-System Factors Associated with Metatarsophalangeal Joint Deformity in Individuals with Type 2 Diabetes
Abstract
:1. Introduction
2. Experimental Section
2.1. Participant Characteristics
2.2. MTP Joint Deformity Assessment
2.3. Musculoskeletal System Assessment
2.4. Vascular System Assessment
2.5. Endocrine and Immune Systems Assessment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Engelgau, M.M.; Geiss, L.S.; Saaddine, J.B.; Boyle, J.P.; Benjamin, S.M.; Gregg, E.W.; Tierney, E.F.; Rios-Burrows, N.; Mokdad, A.H.; Ford, E.S.; et al. The evolving diabetes burden in the United States. Ann. Intern. Med. 2004, 140, 945–950. [Google Scholar] [CrossRef]
- Hicks, C.W.; Selvarajah, S.; Mathioudakis, N.; Sherman, R.L.; Hines, K.F.; Abularrage, C.J. Burden of infected diabetic foot ulcers on hospital admissions and costs. Ann. Vasc. Surg. 2016, 33, 149–158. [Google Scholar] [CrossRef]
- Sochocki, M.P.; Verity, S.; Atherton, P.J.; Huntington, J.L.; Sloan, J.A.; Embil, J.M.; Trepman, E. Health related quality of life in patients with Charcot arthropathy of the foot and ankle. Foot Ankle Surg. 2008, 14, 11–15. [Google Scholar] [CrossRef]
- Raspovic, K.M.; Wukich, D.K. Self-reported quality of life in patients with diabetes: A comparison of patients with and without Charcot neuroarthropathy. Foot Ankle Int. 2014, 35, 195–200. [Google Scholar] [CrossRef]
- Massey, C.N.; Feig, E.H.; Duque-Serrano, L.; Wexler, D.; Moskowitz, J.T.; Huffman, J.C. Well-being interventions for individuals with diabetes: A systematic review. Diabetes Res. Clin. Pract. 2019, 147, 118–133. [Google Scholar] [CrossRef]
- Lavery, L.A.A.; Armstrong, D.G.G.; Vela, S.A.A.; Quebedeaux, T.L.L.; Fleischli, J.G.G. Practical criteria for screening patients at high risk for diabetic foot ulceration. Arch. Intern. Med. 1998, 158, 157–162. [Google Scholar] [CrossRef]
- Robertson, D.D.; Mueller, M.J.; Smith, K.E.; Commean, P.K.; Pilgram, T.; Johnson, J.E. Structural changes in the forefoot of individuals with diabetes and a prior plantar ulcer. J. Bone Jt. Surg. 2002, 84, 1395–1404. [Google Scholar] [CrossRef]
- Nikolaos, P.; Efstratios, M. Etiology, pathophysiology and classifications of the diabetic Charcot foot. Diabet. Foot Ankle 2013, 4, 1–5. [Google Scholar]
- La Fontaine, J.; Lavery, L.; Jude, E. Current concepts of Charcot foot in diabetic patients. Foot 2016, 26, 7–14. [Google Scholar] [CrossRef]
- Nomura, T.; Kawae, T.; Kataoka, H.; Ikeda, Y. Aging, physical activity, and diabetic complications related to loss of muscle strength in patients with type 2 diabetes. Phys. Ther. Res. 2018, 21, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, L.; Volpato, S. Muscle dysfunction in type 2 diabetes: A major threat to patient’s mobility and independence. Acta Diabetol. 2016, 53, 879–889. [Google Scholar] [CrossRef]
- Asada, F.; Nomura, T.; Tagami, M.; Kubota, M.; Ohashi, M.; Nomura, M. Lower-limb muscle strength according to bodyweight and muscle mass among middle age patients with type 2 diabetes without diabetic neuropathy. J. Phys. Ther. Sci. 2017, 29, 1181–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheuy, V.A.; Hastings, M.K.; Commean, P.K.; Ward, S.R.; Mueller, M.J. Intrinsic foot muscle deterioration is associated with metatarsophalangeal joint angle in people with diabetes and neuropathy. Clin. Biomech. 2013, 28, 1055–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheuy, V.A.; Hastings, M.K.; Commean, P.K.; Mueller, M.J. Muscle and joint factors associated with forefoot deformity in the diabetic neuropathic foot. Foot Ankle Int. 2016, 37, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Hastings, M.K.; Mueller, M.J.; Woodburn, J.; Strube, M.J.; Commean, P.; Johnson, J.E.; Cheuy, V.; Sinacore, D.R. Acquired midfoot deformity and function in individuals with diabetes and peripheral neuropathy. Clin. Biomech. 2016, 32, 261–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheuy, V.A.; Hastings, M.K.; Mueller, M.J. Metatarsophalangeal hyperextension movement pattern related to diabetic forefoot deformity. Phys. Ther. 2016, 96, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Vanhoutte, P.M. Macro- and microvascular endothelial dysfunction in diabetes. J. Diabetes 2017, 9, 434–449. [Google Scholar] [CrossRef] [Green Version]
- Freeman, R. Diabetic autonomic neuropathy. In Handbook of Clinical Neurology, 1st ed.; Zochodne, D.W., Malik, R.A., Eds.; Elsevier BV: London, UK, 2014; Volume 126. [Google Scholar]
- Shanbhogue, V.V.; Hansen, S.; Frost, M.; Brixen, K.; Hermann, A.P. Bone disease in diabetes: Another manifestation of microvascular disease? Lancet Diabetes Endocrinol. 2017, 5, 827–838. [Google Scholar] [CrossRef]
- Yan, S.F.; Ramasamy, R.; Schmidt, A.M. Mechanisms of Disease: Advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 285–293. [Google Scholar] [CrossRef]
- Bus, S.A.; Yang, Q.X.; Wang, J.H.; Smith, M.B.; Wunderlich, R.; Cavanagh, P.R. Intrinsic muscle atrophy and toe deformity in the diabetic neuropathic foot: A magnetic resonance imaging study. Diabetes Care 2002, 25, 1444–1450. [Google Scholar] [CrossRef] [Green Version]
- Bus, S.A.; Maas, M.; Michels, R.P.J.; Levi, M. Role of intrinsic muscle atrophy in the etiology of claw toe deformity in diabetic neuropathy may not be as straightforward as widely believed. Diabetes Care 2009, 32, 1063–1067. [Google Scholar] [CrossRef] [Green Version]
- Mahieu, R.; Coenen, M.N.O.; van Bemmel, T.; van der Zaag-Loonen, H.J.; Theuvenet, W.J. Detecting intrinsic muscle weakness of the hallux as an addition to early-stage screening of the feet in patients with diabetes. Diabetes Res. Clin. Pract. 2016, 119, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A. Diabetic foot syndrome: Immune-inflammatory features as possible cardiovascular markers in diabetes. World J. Orthop. 2015, 6, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergis, D.; Bergis, P.M.; Hermanns, N.; Zink, K.; Haak, T. Coronary artery disease as an independent predictor of survival in patients with type 2 diabetes and Charcot neuro-osteoarthropathy. Acta Diabetol. 2014, 51, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Microvascular complications and foot care: Standards of medical care in diabetesd. Diabetes Care 2019, 42, 124–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, D.; Lavery, L.; Vela, S.; Quebedeaux, T.; Fleischli, J. Choosing a practical screening instrument to identify patients at risk for diabetic foot ulceration. Arch. Intern. Med. 1998, 158, 289–292. [Google Scholar] [CrossRef] [Green Version]
- Moghtaderi, A.; Bakhshipour, A.; Rashidi, H. Validation of Michigan neuropathy screening instrument for diabetic peripheral neuropathy. Clin. Neurol. Neurosurg. 2006, 108, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.; Dean, R.; Patel, S.; Wu, B.; Molyneaux, L.; Yue, D.K. TBI or not TBI: That is the question. Is it better to measure toe pressure than ankle pressure in diabetic patients? Diabet. Med. 2001, 18, 528–532. [Google Scholar] [CrossRef]
- American Diabetes Association. Peripheral arterial disease in people with diabetes. Diabetes Care 2003, 26, 3333–3341. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.L.; Irrgang, J.J.; Burdett, R.G.; Conti, S.F.; Van Swearingen, J.M. Evidence of validity for the Foot and Ankle Ability Measure (FAAM). Foot Ankle Int. 2005, 26, 968–983. [Google Scholar] [CrossRef]
- Smith, K.E.; Commean, P.K.; Robertson, D.D.; Pilgram, T.; Mueller, M.J. Precision and accuracy of computed tomography foot measurements. Arch. Phys. Med. Rehabil. 2001, 82, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Cheuy, V.A.; Commean, P.K.; Hastings, M.K.; Mueller, M.J. Reliability and validity of a magnetic resonance-based volumetric analysis of the intrinsic foot muscles. J. Magn. Reson. Imaging 2013, 38, 1083–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commean, P.K.; Tuttle, L.J.; Hastings, M.K.; Strube, M.J.; Mueller, M.J. Magnetic resonance imaging measurement reproducibility for calf muscle and adipose tissue volume. J. Magn. Reson. Imaging 2011, 34, 1285–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commean, P.K.; Kennedy, J.A.; Bahow, K.A.; Hildebolt, C.F.; Liu, L.; Smith, K.E.; Hastings, M.K.; Ju, T.; Prior, F.W.; Sinacore, D.R. Volumetric quantitative computed tomography measurement precision for volumes and densities of tarsal and metatarsal bones. J. Clin. Densitom. 2011, 14, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commean, P.K.; Ju, T.; Liu, L.; Sinacore, D.R.; Hastings, M.K.; Mueller, M.J. Tarsal and metatarsal bone mineral density measurement using volumetric quantitative computed tomography. J. Digit. Imaging 2009, 22, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Hastings, M.K.; Woodburn, J.; Mueller, M.J.; Strube, M.J.; Johnson, J.E.; Beckert, K.S.; Stein, M.L.; Sinacore, D.R. Radiographic-directed local coordinate systems critical in kinematic analysis of walking in diabetes-related medial column foot deformity. Gait Posture 2014, 40, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Wright, C.J.; Arnold, B.L.; Coffey, T.G.; Pidcoe, P.E. Repeatability of the modified Oxford foot model during gait in healthy adults. Gait Posture 2011, 33, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Ediger, M.N.; Olson, B.P.; Maynard, J.D. Noninvasive optical screening for diabetes. J. Diabetes Sci. Technol. 2009, 3, 776–780. [Google Scholar] [CrossRef] [Green Version]
- Sinacore, D.R.; Bohnert, K.L.; Smith, K.E.; Hastings, M.K.; Commean, P.K.; Gutekunst, D.J.; Johnson, J.E.; Prior, F.W. Persistent inflammation with pedal osteolysis 1 year after Charcot neuropathic osteoarthropathy. J. Diabetes Complicat. 2017, 31, 1014–1020. [Google Scholar] [CrossRef]
- Binder-Markey, B.I.; Dewald, J.P.A.; Murray, W.M. The biomechanical basis of the claw finger deformity: A computational simulation study. J. Hand Surg. Am. 2019, 44, 751–761. [Google Scholar] [CrossRef]
- Jelinek, H.F.; Austin, M. The ankle-brachial index in clinical decision making. Foot 2006, 16, 153–157. [Google Scholar] [CrossRef]
- Moon, J.S.; Clark, V.M.; Beabout, J.W.; Swee, R.G.; Dyck, P.J. A controlled study of medial arterial calcification of legs: Implications for diabetic polyneuropathy. Arch. Neurol. 2011, 68, 1290–1294. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Badiwala, M.V.; Weisel, R.D.; Li, S.H.; Wang, C.H.; Fedak, P.W.M.; Li, R.K.; Mickle, D.A.G.; Wahba, A.; Milano, C.A.; et al. C-reactive protein activates the nuclear factor-κB signal transduction pathway in saphenous vein endothelial cells: Implications for atherosclerosis and restenosis. J. Thorac. Cardiovasc. Surg. 2003, 126, 1886–1891. [Google Scholar] [CrossRef] [Green Version]
- Paradela-Dobarro, B.; Raposeiras-Roubín, S.; Rodiño-Janeiro, B.K.; Grigorian-Shamagian, L.; García-Acuña, J.M.; Aguiar-Souto, P.; Jacquet-Hervet, M.; Reino-Maceiras, M.V.; González-Juanatey, J.R.; Álvarez, E. Statins modulate feedback regulation mechanisms between advanced glycation end-products and C-reactive protein: Evidence in patients with acute myocardial infarction. Eur. J. Pharm. Sci. 2013, 49, 512–518. [Google Scholar] [CrossRef]
- Gorska-Ciebiada, M.; Saryusz-Wolska, M.; Borkowska, A.; Ciebiada, M.; Loba, J. C-reactive protein, advanced glycation end products, and their receptor in type 2 diabetic, elderly patients with mild cognitive impairment. Front. Aging Neurosci. 2015, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, M.J.; Tuttle, L.J.; Lemaster, J.W.; Strube, M.J.; McGill, J.B.; Hastings, M.K.; Sinacore, D.R. Weight-bearing versus nonweight-bearing exercise for persons with diabetes and peripheral neuropathy: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2013, 94, 829–838. [Google Scholar] [CrossRef] [Green Version]
- Sartor, C.D.; Hasue, R.H.; Cacciari, L.P.; Butugan, M.K.; Watari, R.; Pássaro, A.C.; Giacomozzi, C.; Sacco, I.C. Effects of strengthening, stretching and functional training on foot function in patients with diabetic neuropathy: Results of a randomized controlled trial. BMC Musculoskelet. Disord. 2014, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kluding, P.M.; Bareiss, S.K.; Hastings, M.; Marcus, R.L.; Sinacore, D.R.; Mueller, M.J. Physical training and activity in people with diabetic peripheral neuropathy: Paragidm shift. Phys. Ther. 2017, 97, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Matos, M.; Mendes, R.; Silva, A.B.; Sousa, N. Physical activity and exercise on diabetic foot related outcomes: A systematic review. Diabetes Res. Clin. Pract. 2018, 139, 81–90. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Value 1 |
---|---|
Sex (male, female) | 26, 34 |
Age (years) | 67 (6) |
Body mass index (kg/m2) | 35 (7) |
Diabetes duration (years) | 19 (18) |
Hemoglobin A1C (%) | 7.1 (1.3) |
Michigan Neuropathy Score | 5 (1) |
Foot and Ankle Ability Measure Score | 80 (20) |
Outcome | n | Mean (SD) 1 |
---|---|---|
2nd MTP 2 joint angle (degrees) | 60 | 53.0 (12.8) |
Muscle deterioration ratio | 58 | 0.32 (0.18) |
Bone mineral density–mean of all tarsal, metatarsal bones (HU) 3 | 60 | 418 (58) |
MTP extension movement with sit to stand (degrees) | 59 | 16 (10) |
Maximum dorsiflexion (degrees) | 60 | 97.7 (8.1) |
Ankle-brachial index | 57 | 1.11 (0.13) |
Toe-brachial index | 58 | 1.12 (0.13) |
High sensitivity C-reactive protein (mg/L) | 56 | 3.5 (3.1) |
Hemoglobin A1C (%) | 59 | 7.1 (1.3) |
Skin intrinsic fluorescence (AU) 4 | 54 | 2.96 (0.69) |
2nd MTP Joint Angle | MDR | BMD | MTP Extension Movement | Maximum Dorsiflexion | ABI | SIF | HbA1C | |
---|---|---|---|---|---|---|---|---|
MDR 2 | 0.273 * | — | — | — | — | — | — | — |
BMD 3 | −0.352 ** | −0.138 | — | — | — | — | — | — |
MTP extension movement 4 | 0.504 ** | 0.310 * | −0.179 | — | — | — | — | — |
Maximum dorsiflexion | −0.311 ** | −0.243 | 0.246 | −0.284 * | — | — | — | — |
ABI 5 | 0.329 * | 0.123 | −0.067 | 0.138 | 0.068 | — | — | — |
SIF 6 | −0.268 | −0.062 | 0.014 | −0.355 | 0.051 | −0.163 | — | — |
HbA1C 7 | −0.124 | −0.102 | 0.131 | −0.150 | −0.033 | 0.059 | −0.078 | — |
hsCRP 8 | −0.005 | −0.049 | 0.191 | −0.097 | −0.102 | −0.182 | 0.379 ** | 0.129 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zellers, J.A.; Mueller, M.J.; Commean, P.K.; Chen, L.; Jeong, H.-J.; Hastings, M.K. Multi-System Factors Associated with Metatarsophalangeal Joint Deformity in Individuals with Type 2 Diabetes. J. Clin. Med. 2020, 9, 1012. https://doi.org/10.3390/jcm9041012
Zellers JA, Mueller MJ, Commean PK, Chen L, Jeong H-J, Hastings MK. Multi-System Factors Associated with Metatarsophalangeal Joint Deformity in Individuals with Type 2 Diabetes. Journal of Clinical Medicine. 2020; 9(4):1012. https://doi.org/10.3390/jcm9041012
Chicago/Turabian StyleZellers, Jennifer A., Michael J. Mueller, Paul K. Commean, Ling Chen, Hyo-Jung Jeong, and Mary K. Hastings. 2020. "Multi-System Factors Associated with Metatarsophalangeal Joint Deformity in Individuals with Type 2 Diabetes" Journal of Clinical Medicine 9, no. 4: 1012. https://doi.org/10.3390/jcm9041012
APA StyleZellers, J. A., Mueller, M. J., Commean, P. K., Chen, L., Jeong, H. -J., & Hastings, M. K. (2020). Multi-System Factors Associated with Metatarsophalangeal Joint Deformity in Individuals with Type 2 Diabetes. Journal of Clinical Medicine, 9(4), 1012. https://doi.org/10.3390/jcm9041012