Artificial Intelligence in Ophthalmology: A Meta-Analysis of Deep Learning Models for Retinal Vessels Segmentation
Abstract
:1. Introduction
1.1. Rationale
1.2. Solution Statement
1.3. Goal of Investigation
2. Deep Learning (DL)
2.1. Artificial Neural Network (ANN)
2.2. Convolutional Neural Network (CNN)
2.2.1. Convolutional Layer
2.2.2. Activation Function
2.2.3. Max Pooling
2.2.4. Fully Connected Layer
2.3. Retinal Image Processing
3. Methods
3.1. Research Design
3.2. Search Methods for Identification of Studies
3.2.1. Electronic Database Search
3.2.2. Searching for Other Sources
3.3. Eligibility Criteria
3.4. Selection Process
3.5. Data Extraction
3.6. Assessment of Bias Risk
3.7. Statistical Analysis
4. Results
4.1. Study Screening
4.2. Study Characteristics
4.3. Deep Learning Performance in Retinal Vessel Segmentation
4.4. Performance Comparison for Models in the Different Databases
5. Discussion
5.1. Principal Findings
5.2. Research and Clinical Implications
5.3. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical Approval
References
- Tsai, S.-Y.; Cheng, C.-Y.; Hsu, W.-M.; Su, T.; Liu, J.-H.; Chou, P. Association between visual impairment and depression in the elderly. J. Formos. Med. Assoc. 2003, 102, 86–90. [Google Scholar] [PubMed]
- Rein, D.B.; Wittenborn, J.S.; Zhang, X.; Honeycutt, A.A.; Lesesne, S.B.; Saaddine, J. Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments. Arch. Ophthalmol. 2009, 127, 533–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varma, R.; Vajaranant, T.S.; Burkemper, B.; Wu, S.; Torres, M.; Hsu, C.; Choudhury, F.; McKean-Cowdin, R. Visual impairment and blindness in adults in the United States: Demographic and geographic variations from 2015 to 2050. JAMA Ophthalmol. 2016, 134, 802–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, A.; Mukesh, B.N.; McCarty, C.A.; Taylor, H.R. Risk factors associated with the incidence of open-angle glaucoma: The visual impairment project. Invest. Ophthalmol. Vis. Sci. 2003, 44, 3783–3789. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.; Indian, R.; Zhang, X.; Geiss, L.; Duenas, M.; Saaddine, J.B. Visual impairment and eye care among older adults-five States, 2005. MMWR. Morb. Mortal. Wkly. Rep. 2006, 55, 1321–1325. [Google Scholar]
- Guo, Y.; Budak, Ü.; Vespa, L.J.; Khorasani, E.; Şengür, A. A retinal vessel detection approach using convolution neural network with reinforcement sample learning strategy. Measurement 2018, 125, 586–591. [Google Scholar] [CrossRef]
- Islam, M.M.; Yang, H.-C.; Poly, T.N.; Jian, W.-S.; Li, Y.-C.J. Deep Learning Algorithms for Detection of Diabetic Retinopathy in Retinal Fundus Photographs: A Systematic Review and Meta-Analysis. Comput. Methods Programs Biomed. 2020, 105320. [Google Scholar] [CrossRef]
- Miri, M.; Amini, Z.; Rabbani, H.; Kafieh, R. A comprehensive study of retinal vessel classification methods in fundus images. J. Med Signals Sens. 2017, 7, 59. [Google Scholar]
- Xiao, S.; Bucher, F.; Wu, Y.; Rokem, A.; Lee, C.S.; Marra, K.V.; Fallon, R.; Diaz-Aguilar, S.; Aguilar, E.; Friedlander, M. Fully automated, deep learning segmentation of oxygen-induced retinopathy images. JCI Insight 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Memari, N.; Ramli, A.R.; Saripan, M.I.B.; Mashohor, S.; Moghbel, M. Retinal Blood Vessel Segmentation by Using Matched Filtering and Fuzzy C-means Clustering with Integrated Level Set Method for Diabetic Retinopathy Assessment. J. Med Biol. Eng. 2019, 39, 713–731. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Xu, Y.; Lin, S.; Wong, D.W.K.; Liu, J. Deepvessel: Retinal vessel segmentation via deep learning and conditional random field. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Germany, 2016; pp. 132–139. [Google Scholar]
- Melinščak, M.; Prentašić, P.; Lončarić, S. Retinal vessel segmentation using deep neural networks. In Proceedings of the 10th International Conference on Computer Vision Theory and Applications (VISAPP 2015), Berlin, Germany, 11–14 March 2015. [Google Scholar]
- Dasgupta, A.; Singh, S. A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017; pp. 248–251. [Google Scholar]
- Kirbas, C.; Quek, F. A review of vessel extraction techniques and algorithms. ACM Comput. Surv. (CSUR) 2004, 36, 81–121. [Google Scholar] [CrossRef]
- Patton, N.; Aslam, T.M.; MacGillivray, T.; Deary, I.J.; Dhillon, B.; Eikelboom, R.H.; Yogesan, K.; Constable, I.J. Retinal image analysis: Concepts, applications and potential. Prog. Retin. Eye Res. 2006, 25, 99–127. [Google Scholar] [CrossRef] [PubMed]
- Abramoff, M.; Garvin, M.; Sonka, M. Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, R.; Sanchez-Ante, G.; Falcon-Morales, L.E.; Sossa, H.; Guevara, E. Retinal vessel extraction using lattice neural networks with dendritic processing. Comput. Biol. Med. 2015, 58, 20–30. [Google Scholar] [CrossRef]
- Suh, C.H.; Park, S.H. Successful publication of systematic review and meta-analysis of studies evaluating diagnostic test accuracy. Korean J. Radiol. 2016, 17, 5–6. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Islam, M.M.; Nasrin, T.; Walther, B.A.; Wu, C.-C.; Yang, H.-C.; Li, Y.-C. Prediction of sepsis patients using machine learning approach: A meta-analysis. Comput. Methods Programs Biomed. 2019, 170, 1–9. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Samuel, P.M.; Veeramalai, T. Multilevel and Multiscale Deep Neural Network for Retinal Blood Vessel Segmentation. Symmetry 2019, 11, 946. [Google Scholar] [CrossRef] [Green Version]
- Jebaseeli, T.J.; Durai, C.A.D.; Peter, J.D. Retinal blood vessel segmentation from diabetic retinopathy images using tandem PCNN model and deep learning based SVM. Optik 2019, 199, 163328. [Google Scholar] [CrossRef]
- Li, D.; Dharmawan, D.A.; Ng, B.P.; Rahardja, S. Residual U-Net for Retinal Vessel Segmentation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1425–1429. [Google Scholar]
- Hu, J.; Wang, H.; Gao, S.; Bao, M.; Liu, T.; Wang, Y.; Zhang, J. S-UNet: A Bridge-Style U-Net Framework With a Saliency Mechanism for Retinal Vessel Segmentation. IEEE Access 2019, 7, 174167–174177. [Google Scholar] [CrossRef]
- Dharmawan, D.A.; Li, D.; Ng, B.P.; Rahardja, S. A new hybrid algorithm for retinal vessels segmentation on fundus images. IEEE Access 2019, 7, 41885–41896. [Google Scholar] [CrossRef]
- Jin, Q.; Chen, Q.; Meng, Z.; Wang, B.; Su, R. Construction of retinal vessel segmentation models based on convolutional neural network. Neural Process. Letters 2019, 4, 1–18. [Google Scholar] [CrossRef]
- Guo, S.; Wang, K.; Kang, H.; Zhang, Y.; Gao, Y.; Li, T. BTS-DSN: Deeply supervised neural network with short connections for retinal vessel segmentation. Int. J. Med. Inform. 2019, 126, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Leopold, H.A.; Orchard, J.; Zelek, J.S.; Lakshminarayanan, V. Pixelbnn: Augmenting the pixelcnn with batch normalization and the presentation of a fast architecture for retinal vessel segmentation. J. Imaging 2019, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Zhang, H.; Hu, G. Automatic retinal vessel segmentation via deeply supervised and smoothly regularized network. IEEE Access 2018, 7, 57717–57724. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, H.; Wang, Y.; Ko, S.-B. Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput. Med. Imaging Graph. 2018, 68, 1–15. [Google Scholar] [CrossRef]
- Sekou, T.B.; Hidane, M.; Olivier, J.; Cardot, H. Retinal Blood Vessel Segmentation Using a Fully Convolutional Network–Transfer Learning from Patch-to Image-Level. In International Workshop on Machine Learning in Medical Imaging; Springer: Cham, Germany, 2018; pp. 170–178. [Google Scholar]
- Hajabdollahi, M.; Esfandiarpoor, R.; Najarian, K.; Karimi, N.; Samavi, S.; Reza-Soroushmeh, S. Low complexity convolutional neural network for vessel segmentation in portable retinal diagnostic devices. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2785–2789. [Google Scholar]
- Yan, Z.; Yang, X.; Cheng, K.-T. A three-stage deep learning model for accurate retinal vessel segmentation. IEEE J. Biomed. Health Inform. 2018, 23, 1427–1436. [Google Scholar] [CrossRef]
- Guo, Y.; Budak, Ü.; Şengür, A. A novel retinal vessel detection approach based on multiple deep convolution neural networks. Comput. Methods Programs Biomed. 2018, 167, 43–48. [Google Scholar] [CrossRef]
- Oliveira, A.; Pereira, S.; Silva, C.A. Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst. Appl. 2018, 112, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Soomro, T.A.; Hellwich, O.; Afifi, A.J.; Paul, M.; Gao, J.; Zheng, L. Strided U-Net model: Retinal vessels segmentation using dice loss. In Proceedings of the 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 10–13 December 2018; pp. 1–8. [Google Scholar]
- Tan, J.H.; Acharya, U.R.; Bhandary, S.V.; Chua, K.C.; Sivaprasad, S. Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J. Comput. Sci. 2017, 20, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Mo, J.; Zhang, L. Multi-level deep supervised networks for retinal vessel segmentation. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 2181–2193. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yu, Q.; Xu, X.; Gu, Y.; Yang, J. Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement. Comput. Methods Programs Biomed. 2017, 148, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Şengür, A.; Guo, Y.; Budak, Ü.; Vespa, L.J. A retinal vessel detection approach using convolution neural network. In Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017; pp. 1–4. [Google Scholar]
- Orlando, J.I.; Prokofyeva, E.; Blaschko, M.B. A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 2016, 64, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Z.; Zhang, Z.; Xu, L.-Q. Convolutional neural network for retinal blood vessel segmentation. In Proceedings of the 2016 9th international symposium on Computational intelligence and design (ISCID), Hangzhou, China, 10–11 December 2016; pp. 406–409. [Google Scholar]
- Li, Q.; Feng, B.; Xie, L.; Liang, P.; Zhang, H.; Wang, T. A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 2015, 35, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Maji, D.; Santara, A.; Mitra, P.; Sheet, D. Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images. arXiv 2016, arXiv:1603.04833. [Google Scholar]
- Lahiri, A.; Roy, A.G.; Sheet, D.; Biswas, P.K. Deep neural ensemble for retinal vessel segmentation in fundus images towards achieving label-free angiography. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1340–1343. [Google Scholar]
- Liskowski, P.; Krawiec, K. Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 2016, 35, 2369–2380. [Google Scholar] [CrossRef]
- Fu, H.; Xu, Y.; Wong, D.W.K.; Liu, J. Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In Proceedings of the 2016 IEEE 13th international symposium on biomedical imaging (ISBI), Prague, Czech, 13–16 April 2016; pp. 698–701. [Google Scholar]
- Chudzik, P.; Al-Diri, B.; Calivá, F.; Hunter, A. DISCERN: Generative framework for vessel segmentation using convolutional neural network and visual codebook. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5934–5937. [Google Scholar]
- Azzopardi, G.; Strisciuglio, N.; Vento, M.; Petkov, N. Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 2015, 19, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dashtbozorg, B.; Bekkers, E.; Pluim, J.P.; Duits, R.; ter Haar Romeny, B.M. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans. Med. Imaging 2016, 35, 2631–2644. [Google Scholar] [CrossRef] [Green Version]
- Roychowdhury, S.; Koozekanani, D.D.; Parhi, K.K. Iterative vessel segmentation of fundus images. IEEE Trans. Biomed. Eng. 2015, 62, 1738–1749. [Google Scholar] [CrossRef]
- Gargeya, R.; Leng, T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology 2017, 124, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Solanki, K.M.; Ramachandra, C.A.; Krupakar, S.B. Systems and Methods for Automated Interest Region Detection in Retinal Images. Google Patents U.S. 8879813, 4 November 2014. [Google Scholar]
- Sánchez Brea, L.; Andrade De Jesus, D.; Shirazi, M.F.; Pircher, M.; van Walsum, T.; Klein, S. Review on retrospective procedures to correct retinal motion artefacts in OCT imaging. Appl. Sci. 2019, 9, 2700. [Google Scholar] [CrossRef] [Green Version]
- Solanki, K.M.; Ramachandra, C.A.; Krupakar, S.B. Systems and Methods for Automated Detection of Regions of Interest in Retinal Images. Google Patents U.S. 14/500929, 23 April 2017. [Google Scholar]
Author | Year | Model | Dataset | SN/SP | Accuracy | AUROC |
---|---|---|---|---|---|---|
Samuel [22] | 2019 | CNN | DRIVE | 0.82/0.97 | 0.96 | 0.98 |
STARE | 0.89/0.97 | 0.96 | 0.99 | |||
HRF | 0.86/0.86 | 0.85 | 0.96 | |||
Jebaseeli [23] | 2019 | TPCNN | DRIVE | 0.80/0.99 | 0.98 | - |
STARE | 0.80/0.99 | 0.99 | - | |||
REVIEW | 0.80/0.98 | 0.99 | - | |||
HRF | 0.80/0.99 | 0.98 | - | |||
DRIONS | 0.80/0.99 | 0.99 | - | |||
Li [24] | 2019 | MResU-Net | DRIVE | 0.79/0.97 | - | 0.97 |
STARE | 0.81/0.97 | - | 0.98 | |||
Hu [25] | 2019 | S-UNet | DRIVE | 0.83/0.97 | 0.95 | 0.98 |
CHASEDB1 | 0.80/0.98 | 0.96 | 0.98 | |||
TONGREN | 0.78/0.98 | 0.96 | 0.98 | |||
Dharmawan [26] | 2019 | Hybrid U-Net | DRIVE | 0.83/0.97 | - | 0.97 |
STARE | 0.79/0.98 | - | 0.98 | |||
HRF | 0.81/0.97 | - | 0.98 | |||
Jin [27] | 2019 | CNN | DRIVE | 0.73/0.98 | 0.96 | 0.97 |
STARE | 0.80/0.98 | 0.96 | 0.98 | |||
Guo [28] | 2019 | BTS-DSN | DRIVE | 0.78/0.98 | 0.95 | 0.98 |
STARE | 0.82/0.98 | 0.96 | 0.98 | |||
CHASEDB1 | 0.78/0.98 | 0.96 | 0.98 | |||
Leopold [29] | 2019 | PixelBNN | DRIVE | 0.69/0.95 | 0.91 | 0.82 |
STARE | 0.64/0.94 | 0.90 | 0.79 | |||
CHASEDB1 | 0.86/0.89 | 0.89 | 0.87 | |||
Lin [30] | 2018 | CNN | DRIVE | 0.76/- | 0.95 | - |
STARE | 0.74/- | 0.96 | - | |||
CHASEDB1 | 0.78/- | 0.95 | - | |||
Chudzik | 2018 | CNN | DRIVE | 0.78/0.97 | - | 0.96 |
STARE | 0.82/0.98 | - | 0.98 | |||
Jiang [31] | 2018 | CNN | DRIVE | 0.75/0.98 | 0.96 | 0.98 |
STARE | 0.83/0.98 | 0.97 | 0.99 | |||
CHASEDB1 | 0.86/0.98 | 0.96 | 0.98 | |||
HRF | 0.80/0.80 | 0.96 | 0.97 | |||
Sekou [32] | 2018 | CNN | DRIVE | 0.76/0.98 | 0.95 | 0.98 |
Hajabdollahi [33] | 2018 | CNN | STARE | 0.78/0.97 | 0.96 | - |
Yan [34] | 2018 | CNN | DRIVE | 0.76/0.98 | 0.95 | 0.97 |
STARE | 0.77/0.98 | 0.96 | 0.98 | |||
CHASEDB1 | 0.76/0.96 | 0.94 | 0.96 | |||
Guo [35] | 2018 | MDCNN | DRIVE | 0.78/0.97 | 0.95 | 0.97 |
STARE | - | - | - | |||
Oliveira [36] | 2018 | CNN | DRIVE | 0.80/0.98 | 0.95 | 0.98 |
STARE | 0.83/0.98 | 0.96 | 0.99 | |||
CHASEDB1 | 0.77/0.98 | 0.96 | 0.98 | |||
Soomro [37] | 2018 | CNN | DRIVE | 0.73/0.95 | 0.94 | 0.84 |
STARE | 0.74/0.96 | 0.94 | 0.85 | |||
Tan [38] | 2017 | CNN | DRIVE | 0.75/0.96 | - | - |
Mo [39] | 2017 | CNN | DRIVE | 0.77/0.97 | 0.95 | 0.97 |
STARE | 0.81/0.98 | 0.96 | 0.98 | |||
CHASEDB1 | 0.76/0.98 | 0.95 | 0.98 | |||
Zhou [40] | 2017 | CNN | DRIVE | 0.80/0.96 | 0.94 | - |
STARE | 0.80/0.97 | 0.95 | - | |||
CHASEDB1 | 0.75/0.97 | 0.95 | - | |||
HRF | 0.80/0.96 | 0.95 | - | |||
Dasgupta [13] | 2017 | CNN | DRIVE | - | 0.95 | 0.97 |
Şengür [41] | 2017 | CNN | DRIVE | - | 0.91 | 0.96 |
Orlando [42] | 2016 | CNN | DRIVE | 0.78/0.96 | 0.95 | |
STARE | 0.76/0.97 | - | ||||
CHASEDB1 | 0.72/0.97 | 0.95 | ||||
HRF | 0.78/0.95 | 0.93 | ||||
Yao [43] | 2016 | CNN | DRIVE | 0.77/0.96 | 0.93 | - |
Li [44] | 2016 | CNN | DRIVE | 0.75/0.98 | 0.95 | 0.97 |
STARE | 0.77/0.98 | 0.96 | 0.98 | |||
CHASEDB1 | 0.75/0.97 | 0.95 | 0.97 | |||
Maji [45] | 2016 | CNN | DRIVE | - | 0.94 | - |
Lahiri [46] | 2016 | CNN | DRIVE | - | 0.95 | 0.95 |
Liskowski [47] | 2016 | CNN | DRIVE | 0.75/0.98 | 0.95 | 0.97 |
STARE | 0.81/0.98 | 0.96 | 0.98 | |||
Fu [48] | 2016 | CNN | DRIVE | 0.72/- | 0.94 | - |
STARE | 0.71/- | 0.95 | - | |||
Fu [11] | 2016 | CNN + CRF layer | DRIVE | 0.76/- | 0.95 | - |
STARE | 0.74/- | 0.95 | - | |||
CHASEDB1 | 0.71/- | 0.94 | - | |||
Melinscak [12] | 2015 | CNN | DRIVE | 0.72/0.97 | 0.94 | 0.97 |
Dataset | Number of Image | Description | Camera | Resolution (Pixel) | Dataset Partition |
---|---|---|---|---|---|
DRIVE | 40 | Dataset was collected from 400 diabetic patients aged between 25 and 90 years. 40 photographs were randomly selected, 33 did not show any sign of DR, and 7 showed signs of mild early DR. Training set: Single manual segmentation Testing set: Two manual segmentation | Canon CR5 nonmydriatic 3CCD camera with a 45° field of view (FOV) | 565 × 584 | Yes Training: 20 Testing: 20 |
STARE | 20 | Images were collected from DR, PDR, ASR, HTR, etc. patients. Each image has pixel-level vessel annotation provided by two experts. Performance is computed with the segmentation of the first observer as ground truth. | TopCon TRV-50 fundus camera with a 35° FOV | 700 × 605 | No |
CHASE_DB1 | 28 | Subset of retinal images of multiethnic children from the Child Heart and Healthy Study in England. (https://blogs.kingston.ac.uk/retinal/chasedb1/) | Nidek NM-200-D fundus camera with a 30° FOV | 1280 × 960 | Yes Training: 20 Testing: 8 |
HRF | 45 | Data were collected from 15 healthy patients, 15 glaucomatous patients, and 15 diabetic retinopathy patients separately. It contains a binary gold standard vessel segmentation images that are determined by a group of experts (experience in retinal images analysis). | Canon CR-1 fundus camera with a field of view of 45° and different acquisition setting | 500 × 2500 | No |
TONGRE | 30 | Images collected from 30 people at the Tongren Beijing Hospital, where five of these images show a pathological pattern (glaucoma). | NR | 1880 × 281 | Yes Training: 15 Test: 15 |
DRIONS | 110 | Dataset contains high resolution images of blood vessels, 25 images were from patients with chronic glaucoma while the remaining 85 images were from hypertensive retinopathy patients. | Analogical fundus camera approximately centered on the ONH | 600 × 400 | Yes Training: 60 Test: 50 |
REVIEW | 16 | The dataset includes retinal images with 193 vessel segments, demonstrating a variety of pathologies, and vessel types (8 high-resolution, 4 vascular diseases, 2 central light reflex, 2 kickpoint). It also contains 5066 manually marked profiles. It has been marked by three observers. | NR | 1360 × 1024 to 3584 × 2438 | No |
SE with 95% CI | SP with 95% CI | LR+ with 95% CI | LR− with 95% CI | DOR with 95% CI | |
---|---|---|---|---|---|
DRIVE | |||||
Human experts | 0.77 | 0.97 | NR | NR | NR |
DL * | 0.77 (0.77–0.77) | 0.97 (0.97–0.97) | 28.19 (24.21–32.82) | 0.23 (0.22–0.25) | 120.57 (99.66–145.86) |
STARE | |||||
Human experts | 0.89 | 0.93 | NR | NR | NR |
DL * | 0.79 (0.79–0.79) | 0.97 (0.97–0.97) | 31.02 (30.77–31.28) | 0.21 (0.21–0.21) | 136.67 (135.42–137.0) |
CHASE_DB1 | |||||
Human experts | 0.83 | 0.97 | NR | NR | NR |
DL * | 0.78 (0.78–0.78) | 0.97 (0.97–0.97) | 22.97 (22.75–23.20) | 0.23 (0.23–0.23) | 109.27 (108.0–110.56) |
HRF | |||||
Human experts | NR | NR | NR | NR | NR |
DL * | 0.81 (0.81–0.81) | 0.92 (0.92–0.92) | 10.32 (10.26–10.38) | 0.21 (0.21–0.21) | 51.75 (51.35–52.16) |
Methods | SN | SP | ACC | AUC |
---|---|---|---|---|
DRIVE | ||||
Unsupervised | ||||
Azzopardi et al. [50] | 0.76 | 0.97 | 0.94 | 0.96 |
Zhang et al. [51] | 0.77 | 0.97 | 0.94 | 0.96 |
Roychowdhury et al. [52] | 0.73 | 0.97 | 0.94 | 0.96 |
STARE | ||||
Unsupervised | ||||
Azzopardi et al. [50] | 0.77 | 0.97 | 0.94 | 0.95 |
Zhang et al. [51] | 0.77 | 0.97 | 0.95 | 0.97 |
Roychowdhury et al. [52] | 0.73 | 0.98 | 0.95 | 0.96 |
CHASE_DB1 | ||||
Unsupervised | ||||
Azzopardi et al. [50] | 0.75 | 0.95 | 0.93 | 0.94 |
Zhang et al. [51] | 0.76 | 0.96 | 0.94 | 0.96 |
Roychowdhury et al. [52] | 0.76 | 0.95 | 0.94 | 9.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.M.; Poly, T.N.; Walther, B.A.; Yang, H.C.; Li, Y.-C. Artificial Intelligence in Ophthalmology: A Meta-Analysis of Deep Learning Models for Retinal Vessels Segmentation. J. Clin. Med. 2020, 9, 1018. https://doi.org/10.3390/jcm9041018
Islam MM, Poly TN, Walther BA, Yang HC, Li Y-C. Artificial Intelligence in Ophthalmology: A Meta-Analysis of Deep Learning Models for Retinal Vessels Segmentation. Journal of Clinical Medicine. 2020; 9(4):1018. https://doi.org/10.3390/jcm9041018
Chicago/Turabian StyleIslam, Md. Mohaimenul, Tahmina Nasrin Poly, Bruno Andreas Walther, Hsuan Chia Yang, and Yu-Chuan (Jack) Li. 2020. "Artificial Intelligence in Ophthalmology: A Meta-Analysis of Deep Learning Models for Retinal Vessels Segmentation" Journal of Clinical Medicine 9, no. 4: 1018. https://doi.org/10.3390/jcm9041018
APA StyleIslam, M. M., Poly, T. N., Walther, B. A., Yang, H. C., & Li, Y. -C. (2020). Artificial Intelligence in Ophthalmology: A Meta-Analysis of Deep Learning Models for Retinal Vessels Segmentation. Journal of Clinical Medicine, 9(4), 1018. https://doi.org/10.3390/jcm9041018