Effect of Glucose Improvement on Nocturnal Sleep Breathing Parameters in Patients with Type 2 Diabetes: The Candy Dreams Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Statement on Ethics
2.2. Study Design and Description of the Study Population
2.3. Sleep Breathing Measurements
2.4. Type 2 Diabetes Treatment at Baseline and during Glycemic Intensification
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lecube, A.; Simó, R.; Pallayova, M.; Punjabi, N.M.; López-Cano, C.; Turino, C.; Hernández, C.; Barbé, F. Pulmonary Function and Sleep Breathing: Two New Targets for Type 2 Diabetes Care. Endocr Rev. 2017, 38, 550–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisbrod, C.J.; Eastwood, P.R.; O’Driscoll, G.; Green, D.J. Abnormal ventilatory responses to hypoxia in Type 2 diabetes. Diabet. Med. 2005, 22, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Lecube, A.; Sampol, G.; Hernandez, C.; Romero, O.; Ciudin, A.; Simo, R. Characterization of sleep breathing pattern in patients with type 2 diabetes: Sweet sleep study. PLoS ONE 2015, 10, e0119073. [Google Scholar] [CrossRef]
- Lecube, A.; Sampol, G.; Lloberes, P.; Romero, O.; Mesa, J.; Hernández, C.; Simó, R. Diabetes is an independent risk factor for severe nocturnal hypoxemia in obese patients. A case-control study. PLoS ONE 2009, 4, e4692. [Google Scholar] [CrossRef] [PubMed]
- Lecube, A.; Sánchez, E.; Gómez-Peralta, F.; Abreu, C.; Valls, J.; Mestre, O.; Romero, O.; Martínez, M.D.; Sampol, G.; Ciudin, A.; et al. Global assessment of the impact of type 2 diabetes on sleep through specific questionnaires. A case-control study. PLoS ONE 2016, 11, e0157579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekstedt, M.; Akerstedt, T.; Söderström, M. Microarousals during sleep are associated with increased levels of lípids, cortisol, and blood pressure. Psychosom. Med. 2004, 66, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Chouchou, F.; Pichot, V.; Pépin, J.L.; Tamisier, R.; Celle, S.; Maudoux, D.; Garcin, A.; Lévy, P.; Barthélémy, J.C.; Roche, F.; et al. Sympathetic overactivity due to sleep fragmentation is associated with elevated diurnal systolic blood pressure in healthy elderly subjects: The PROOF-SYNAPSE study. Eur. Heart, J. 2013, 34, 2122–2131. [Google Scholar] [CrossRef] [Green Version]
- Ficker, J.H.; Dertinger, S.H.; Siegfried, W.; König, H.J.; Pentz, M.; Sailer, D.; Katalinic, A.; Hahn, E.G. Obstructive sleep apnoea and diabetes mellitus: The role of cardiovascular autonomic neuropathy. Eur. Respir. 1998, 11, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Lecube, A.; Ciudin, A.; Sampol, G.; Valladares, S.; Hernández, C.; Simó, R. Effect of glycemic control on nocturnal arterial oxygen saturation: A case-control study in type 2 diabetic patients. J. Diabetes 2015, 7, 133–138. [Google Scholar] [CrossRef]
- Drager, L.F.; Togeiro, S.M.; Polotsky, V.Y.; Lorenzi-Filho, G. Obstructive sleep apnea: A cardiometabolic risk in obesity and the metabolic syndrome. J. Am. Coll. Cardiol. 2013, 62, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Ambrosi, J.; Silva, C.; Catalán, V.; Rodríguez, A.; Galofré, J.C.; Escalada, J.; Valentí, V.; Rotellar, F.; Romero, S.; Ramírez, B.; et al. Clinical usefulness of a new equation for estimating body fat. Diabetes Care 2012, 35, 383–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonora, E.; Micciolo, R.; Ghiatas, A.A.; Lancaster, J.L.; Alyassin, A.; Muggeo, M.; DeFronzo, R.A. Is it possible to derive a reliable estimate of human visceral and subcutaneous abdominal adipose tissue from simple anthropometric measurements? Metabolism 1995, 44, 1617–1625. [Google Scholar] [CrossRef]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical Care in Diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strausz, S.; Havulinna, A.S.; Tuomi, T.; Bachour, A.; Groop, L.; Mäkitie, A.; Koskinen, S.; Salomaa, V.; Palotie, A.; Ripatti, S.; et al. Obstructive sleep apnoea and the risk for coronary heart disease and type 2 diabetes: A longitudinal population-based study in Finland. BMJ Open 2018, 8, e022752. [Google Scholar] [PubMed]
- Siwasaranond, N.; Nimitphong, H.; Manodpitipong, A.; Saetung, S.; Chirakalwasan, N.; Thakkinstian, A.; Reutrakul, S. The Relationship between Diabetes-Related Complications and Obstructive Sleep Apnea in Type 2 Diabetes. J. Diabetes Res. 2018, 2018, 9269170. [Google Scholar] [CrossRef] [Green Version]
- Ioja, S.; Chasens, E.R.; Ng, J.; Strollo, P.J.; Korytkowski, M.T. Obstructive sleep apnea in adults with type 1 and type 2 diabetes: Perspectives from a quality improvement initiative in a university-based diabetes center. BMJ Open Diabetes Res. Care 2017, 5, e000433. [Google Scholar] [CrossRef] [Green Version]
- Hanis, C.L.; Redline, S.; Cade, B.E.; Bell, G.I.; Cox, N.J.; Below, J.E.; Brown, E.L.; Aguilar, D. Beyond type 2 diabetes, obesity and hypertension: An axis including sleep apnea, left ventricular hypertrophy, endothelial dysfunction, and aortic stiffness among Mexican Americans in Starr County, Texas. Cardiovasc. Diabetol. 2016, 15, 86. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhang, R.; Zhao, F.; Heeley, E.; Chai-Coetzer, C.L.; Liu, J.; Jing, B.; Han, P.; Li, Q.; Sun, L.; et al. The prevalence and characteristics of obstructive sleep apnea in hospitalized patients with type 2 diabetes in China. J. Sleep Res. 2016, 25, 39–46. [Google Scholar] [CrossRef]
- Huang, T.; Lin, B.M.; Stampfer, M.J.; Tworoger, S.S.; Hu, F.B.; Redline, S. A Population-Based Study of the Bidirectional Association Between Obstructive Sleep Apnea and Type 2 Diabetes in Three Prospective U.S. Cohorts. Diabetes Care 2018, 41, 2111–2119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aurora, R.N.; Punjabi, N.M. Obstructive sleep apnoea and type 2 diabetes mellitus: A bidirectional association. Lancet Respir. Med. 2013, 1, 329–338. [Google Scholar] [CrossRef]
- Huang, T.; Lin, B.M.; Markt, S.C.; Stampfer, M.J.; Laden, F.; Hu, F.B.; Tworoger, S.S.; Redline, S. Sex differences in the associations of obstructive sleep apnoea with epidemiological factors. Eur. Respir. J. 2018, 51, 1702421. [Google Scholar] [CrossRef] [PubMed]
- Labarca, G.; Reyes, T.; Jorqurera, J.; Dreyse, J.; Drake, L. CPAP in patients with obstructive sleep apnea and type 2 diabetes mellitus: Systematic review and meta-analysis. Clin. Respir. J. 2018, 12, 2361–2368. [Google Scholar] [CrossRef]
- Zhu, B.; Ma, C.; Chaiard, J.; Shi, C. Effect of continuous positive airway pressure on glucose metabolism in adults with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Sleep Breath. 2018, 22, 287–295. [Google Scholar] [CrossRef]
- Abud, R.; Salgueiro, M.; Drake, L.; Reyes, T.; Jorquera, J.; Labarca, G. Efficacy of continuous positive airway pressure (CPAP) preventing type 2 diabetes mellitus in patients with obstructive sleep apnea hypopnea syndrome (OSAHS) and insulin resistance: A systematic review and meta-analysis. Sleep Med. 2019, 62, 14–21. [Google Scholar] [CrossRef]
- Ramadan, W.; Dewasmes, G.; Petitjean, M.; Wiernsperger, N.; Delanaud, S.; Geloen, A.; Libert, J.P. Sleep apnea is induced by a high-fat diet and reversed and prevented by metformin in non-obese rats. Obesity 2007, 15, 1409–1418. [Google Scholar] [CrossRef]
- Hein, M.S.; Schlenker, E.H.; Patel, K.P. Altered control of ventilation in streptozotocin-induced diabetic rats. Proc. Soc. Exp. Biol. Med. 1994, 207, 213–219. [Google Scholar] [CrossRef]
- Blackman, A.; Foster, G.D.; Zammit, G.; Rosenberg, R.; Aronne, L.; Wadden, T.; Claudius, B.; Jensen, C.B.; Mignot, E. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: The SCALE Sleep Apnea randomized clinical trial. Int. J. Obes. 2016, 40, 1310–1319. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Sun, Q.; Bai, X.Y.; Zhou, Y.F.; Zhou, Q.L.; Zhang, M. Effect of dapagliflozin on obstructive sleep apnea in patients with type 2 diabetes: A preliminary study. Nutr. Diabetes 2019, 9, 32. [Google Scholar] [CrossRef]
- Donovan, L.M.; Rueschman, M.; Weng, J.; Basu, N.; Dudley, K.A.; Bakker, J.P.; Wang, R.; Bertisch, S.M.; Patel, S.R. The effectiveness of an obstructive sleep apnea screening and treatment program in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2017, 134, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Borel, A.L.; Tamisier, R.; Böhme, P.; Priou, P.; Avignon, A.; Benhamou, P.Y.; Hanaire, H.; Pépin, J.L.; Kessler, L.; Valensi, P.; et al. Obstructive sleep apnoea syndrome in patients living with diabetes: Which patients should be screened? Diabetes Metab. 2019, 45, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, P.J.; Gunasekaran, K.; Edmonds, L.C. Neck Grasp Predicts Obstructive Sleep Apnea in Type 2 Diabetes Mellitus. Sleep Disord. 2019, 2019, 3184382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peres, B.U.; Hirsch Allen, A.J.; Fox, N.; Laher, I.; Hanly, P.; Skomro, R.; Almeida, F.; Ayas, N.T.; Canadian Sleep and Circadian Network. Circulating biomarkers to identify cardiometabolic complications in patients with Obstructive Sleep Apnea: A systematic review. Sleep Med. Rev. 2019, 44, 48–57. [Google Scholar] [CrossRef]
- Campbell, A.J.; Neill, A.M. Home set-up polysomnography in the assessment of suspected obstructive sleep apnea. J. Sleep Res. 2011, 20, 207–213. [Google Scholar] [CrossRef]
Baseline | End of Study | Mean Difference (95% CI) | p | |
---|---|---|---|---|
Entire population | ||||
n | 35 | 35 | - | - |
AHI (events per hour) | 28.5 (6.5 to 95.0) | 24.0 (4.0 to 62.4) | - | 0.022 |
CT90 (%) | 12.0 (0.0 to 87.8) | 8.2 (0.0 to 71.2) | - | <0.001 |
Epworth | 5.7 ± 3.5 | 4.9 ± 2.8 | −0.8 (−1.4 to −0.1) | 0.018 |
ODI 3% (events per hour) | 40.3 ± 21.9 | 33.7 ± 22.1 | −6.5 (−11.2 to −1.8) | 0.007 |
Baseline SaO2 (%) | 97.8 ± 1.2 | 98.1 ± 1.4 | 0.3 (−0.4 to 1.0) | 0.477 |
Average SaO2 (%) | 91.4 ± 2.1 | 91.6 ± 2.4 | 0.2 (−0.4 to 0.9) | 0.674 |
Minimum SaO2 (%) | 75.5 ± 9.5 | 75.0 ± 12.0 | −0.5 (−3.0 to 1.9) | 0,374 |
HbA1c (%) | 8.8 ± 0.9 | 7.8 ± 1.0 | −0.9 (−1.3 to −0.5) | <0.001 |
HbA1c (mmol/mol) | 72.7 ± 10.1 | 62.5 ± 11.2 | −10.1 (−14.2 to −6.0) | <0.001 |
BMI (kg/m2) | 35.1 ± 4.5 | 35.0 ± 4.5 | −0.05 (−0.2 to 0.1) | 0.665 |
Waist circumference (cm) | 116.3 ± 12.4 | 116.2 ± 12.3 | −0.0 (−1.3 to 1.1) | 0.892 |
Neck circumference (cm) | 41.9 ± 3.8 | 41.7 ± 3.9 | −0.2 (−0.5 to 0.1) | 0.188 |
CUN−BAE (%) | 41.4 ± 6.7 | 41.4 ± 6.7 | −0.0 (−0.3 to 0.2) | 0.705 |
Bonora equation (cm2) | 272.4 ± 79.4 | 273.9 ± 80.4 | 1.5 (−5.2 to 8.2) | 0.652 |
Good responders | ||||
n | 24 | 24 | - | - |
AHI (events/hour) | 26.1 (8.6 to 95.0) | 20.0 (4.0 to 62.4) | - | 0.002 |
CT90 (%) | 13.3 (0.4 to 69.0) | 8.1 (0.4 to 71.2) | - | 0.002 |
ODI 3% (events per hour) | 37.6 ± 21.2 | 28.6 ± 19.5 | −10.1 (−14.9 to −5.3) | <0.001 |
Epworth | 5.4 ± 3.1 | 4.7 ± 2.5 | −0.7 (−1.6 to 0.1) | 0.083 |
Baseline SaO2 (%) | 97.8 ± 1.1 | 98.0 ± 1.6 | 0.2 (−0.7 to 1.2) | 0.565 |
Average SaO2 (%) | 91.2 ± 1.9 | 91.4 ± 2.4 | 0.2 (−0.7 to 1.1) | 0.592 |
Minimum SaO2 (%) | 76.3 ± 10.2 | 76.7 ± 11.3 | 0.3 (−2.2 to 3.0) | 0.765 |
HbA1c (%) | 8.8 ± 0.9 | 7.3 ± 0.6 | −1.5 (−1.8 to −1.2) | <0.001 |
HbA1c (mmol/mol) | 73.4 ± 9.9 | 56.9 ± 6.9 | −16.5 (−19.8 to −13.1) | <0.001 |
BMI (kg/m2) | 34.5 ± 4.6 | 34.4 ± 4.6 | −0.1 (−0.4 to 0.2) | 0.504 |
Waist circumference (cm) | 115.7 ± 12.8 | 115.7 ± 12.8 | 0.0 (−1.1 to 1.1) | 0.994 |
Neck circumference (cm) | 41.4 ± 4.0 | 41.2 ± 4.1 | −0.1 (−0.5 to 0.2) | 0.366 |
CUN-BAE (%) | 40.9 ± 6.6 | 40.8 ± 6.7 | −0.1 (−0.4 to 0.2) | 0.568 |
Bonora equation (cm2) | 270.7 ± 80.5 | 273.9 ± 80.4 | 1.5 (−5.2 to 8.2) | 0.652 |
Non-responders | ||||
n | 11 | 11 | - | - |
AHI (events/hour) | 31.4 (6.5 to 63.2) | 41.4 (5.2 to 58.5) | - | 0.722 |
CT90 (%) | 11.8 (0.0 to 87.8) | 10.9 (0.0 to 51.5) | - | 0.138 |
ODI 3% (events per hour) | 43.6 ± 24.0 | 44.6 ± 24.2 | −0.0 (−9.0 to 11.0) | 0.839 |
Epworth | 6.1 ± 4.1 | 5.2 ± 3.4 | −0.9 (−2.1 to 0.3) | 0.127 |
Baseline SaO2 (%) | 98.0 ± 1.5 | 98.4 ± 0.7 | 0.4 (−0.9 to 1.8) | 0.482 |
Average SaO2 (%) | 92.0 ± 2.7 | 92.2 ± 2.3 | 0.2 (−0.7 to 1.2) | 0.563 |
Minimum SaO2 (%) | 73.3 ± 7.8 | 70.5 ± 13.5 | −2.8 (−9.7 to 4.0) | 0.357 |
HbA1c (%) | 8.6 ± 0.9 | 8.9 ± 0.8 | 0.3 (−0.0 to 0.7) | 0.061 |
HbA1c (mmol/mol) | 71.0 ± 10.7 | 74.7 ± 9.1 | 3.6 (−0.4 to 7.7) | 0.078 |
BMI (kg/m2) | 36.3 ± 4.3 | 36.4± 4.3 | 0.0 (−0.3 to 0.4) | 0.725 |
Waist circumference (cm) | 117.4 ± 12.2 | 117.1 ± 11.7 | −0.2 (−3.7 to 3.1) | 0.864 |
Neck circumference (cm) | 43.1 ± 3.3 | 42.7 ± 3.4 | −0.3 (−1.2 to 0.4) | 0.363 |
CUN-BAE (%) | 42.5 ± 7.0 | 42.5 ± 6.8 | 0.0 (−0.3 to 0.4) | 0.726 |
Bonora equation (cm2) | 275.9 ± 80.7 | 277.2 ± 79.9 | 1.3 (−17.0 to 19.7) | 0.875 |
β | Beta 95% CI | p | |
---|---|---|---|
∆ AHI | |||
Baseline AHI (events/hour) | −0.614 | −0.443 (−0.630 to −0.256) | <0.001 |
∆ HbA1c (%) | 0.453 | 6.565 (2.814 to 10.315) | 0.001 |
Baseline HbA1c (%) | −0.189 | - | 0.193 |
Baseline BMI | 0.058 | - | 0.448 |
Age (yrs) | 0.057 | - | 0.677 |
Smoking status * | 0.033 | - | 0.811 |
∆ BMI (kg/m2) | −0.023 | - | 0.865 |
Known type 2 diabetes duration (yrs) | −0.015 | - | 0.915 |
Gender | 0.009 | - | 0.949 |
Constant | - | 15.197 (6.403 to 23.991) | 0.001 |
R2 = 0.496 | |||
∆ mínimum SaO2 | |||
Baseline HbA1c (%) | 0.360 | 2.378 (0.116 to 4.639) | 0.040 |
Baseline AHI (events/hour) | −0.355 | −0.118 (−0.232 to −0.004) | 0.043 |
Gender | −0.224 | - | 0.241 |
Age (yrs) | −0.166 | - | 0.367 |
∆ AHI | −0.166 | - | 0.406 |
Known type 2 diabetes duration (yrs) | −0.150 | - | 0.427 |
Smoking status * | −0.124 | - | 0.504 |
∆ HbA1c (%) | −0.134 | - | 0.535 |
∆ BMI (kg/m2) | −0.059 | - | 0.735 |
Baseline BMI | 0.031 | - | 0.860 |
Constant | - | −17.386 (−38.175 to 3.403) | 0.097 |
R2 = 0.288 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Carrasquilla, L.; López-Cano, C.; Sánchez, E.; Barbé, F.; Dalmases, M.; Hernández, M.; Campos, A.; Gaeta, A.M.; Carmona, P.; Hernández, C.; et al. Effect of Glucose Improvement on Nocturnal Sleep Breathing Parameters in Patients with Type 2 Diabetes: The Candy Dreams Study. J. Clin. Med. 2020, 9, 1022. https://doi.org/10.3390/jcm9041022
Gutiérrez-Carrasquilla L, López-Cano C, Sánchez E, Barbé F, Dalmases M, Hernández M, Campos A, Gaeta AM, Carmona P, Hernández C, et al. Effect of Glucose Improvement on Nocturnal Sleep Breathing Parameters in Patients with Type 2 Diabetes: The Candy Dreams Study. Journal of Clinical Medicine. 2020; 9(4):1022. https://doi.org/10.3390/jcm9041022
Chicago/Turabian StyleGutiérrez-Carrasquilla, Liliana, Carolina López-Cano, Enric Sánchez, Ferran Barbé, Mireia Dalmases, Marta Hernández, Angela Campos, Anna Michaela Gaeta, Paola Carmona, Cristina Hernández, and et al. 2020. "Effect of Glucose Improvement on Nocturnal Sleep Breathing Parameters in Patients with Type 2 Diabetes: The Candy Dreams Study" Journal of Clinical Medicine 9, no. 4: 1022. https://doi.org/10.3390/jcm9041022
APA StyleGutiérrez-Carrasquilla, L., López-Cano, C., Sánchez, E., Barbé, F., Dalmases, M., Hernández, M., Campos, A., Gaeta, A. M., Carmona, P., Hernández, C., Simó, R., & Lecube, A. (2020). Effect of Glucose Improvement on Nocturnal Sleep Breathing Parameters in Patients with Type 2 Diabetes: The Candy Dreams Study. Journal of Clinical Medicine, 9(4), 1022. https://doi.org/10.3390/jcm9041022