Prediction of Resting Energy Expenditure in Children: May Artificial Neural Networks Improve Our Accuracy?
Abstract
:1. Introduction
2. Methods
2.1. Study Patients
2.2. Nutritional Assessment
2.3. Indirect Calorimetry
2.4. Prediction Formulae
2.5. Statistical Analysis
2.5.1. Modelling of REE with Artificial Neural Networks (ANNs)
2.5.2. Auto Contractive Map System
2.5.3. TWIST (Training with Input Selection and Testing) System
3. Results
3.1. Characteristics of the Study Population
3.2. Fitting of REE with Artificial Neural Networks
3.3. Comparative Statistics between Tests in the Study
3.4. Obese Subjects
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fewtrell, M.; Michaelsen, K.; van der Beek, E.; Elburg, R. Growth in Early Life: Growth Trajectory and Assessment, Influencing Factors and Impact of Early Nutrition; John Wiley & Sons Australia: Brisbane, Australia, 2016. [Google Scholar]
- Haugen, H.A.; Chan, L.N.; Li, F. Indirect calorimetry: A practical guide for clinicians. Nutr. Clin. Pract. 2007, 22, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Edefonti, A.; Calderini, E.; Fossali, E.; Colombo, C.; Battezzati, A.; Bertoli, S.; Milani, G.; Bisogno, A.; Perrone, M. Accuracy of prediction formulae for the assessment of resting energy expenditure in hospitalized children. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 708–712. [Google Scholar] [CrossRef] [Green Version]
- Disse, E.; Ledoux, S.; Bétry, C.; Caussy, C.; Maitrepierre, C.; Coupaye, M.; Laville, M.; Simon, C. An artificial neural network to predict resting energy expenditure in obesity. Clin. Nutr. 2018, 37, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Grossi, E.; Buscema, M. Introduction to artificial neural networks. Eur. J. Gastroenterol. Hepatol. 2007, 19, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, A.; Pencharz, P.; Mouzaki, M. Accurate estimation of energy requirements of young patients. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Drenos, F.; Grossi, E.; Buscema, M.; Humphries, S.E. Networks in coronary heart disease genetics as a step towards systems epidemiology. PLoS ONE 2015, 10, e0125876. [Google Scholar] [CrossRef] [Green Version]
- Grossi, E.; Podda, G.M.; Pugliano, M.; Gabba, S.; Verri, A.; Carpani, G.; Buscema, M.; Casazza, G.; Cattaneo, M. Prediction of optimal warfarin maintenance dose using advanced artificial neural networks. Pharmacogenomics 2014, 15, 29–37. [Google Scholar] [CrossRef]
- Blossner, M.; Siyam, A.; Borghi, E.; Onyango, A.; De Onis, M. WHO AnthroPlus for Personal Computers Manual: Software for Assessing Growth of the World’s Children and Adolescents; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Rolland-Cachera, M.F.; Brambilla, P.; Manzoni, P.; Akrout, M.; Sironi, S.; Del Maschio, A.; Chiumello, G. Body composition assessed on the basis of arm circumference and triceps skinfold thickness: A new index validated in children by magnetic resonance imaging. Am. J. Clin. Nutr. 1997, 65, 1709–1713. [Google Scholar] [CrossRef]
- Weir, J.D.V. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Koletzko, B.; Goulet, O.; Hunt, J.; Krohn, K.; Shamir, R.; Group, P.N.G.W. 1. Guidelines on paediatric parenteral nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). J. Pediatr. Gastroenterol. Nutr. 2005, 41, S1–S4. [Google Scholar]
- Harris, J.A.; Benedict, F.G. A biometric study of human basal metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schofield, W. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar] [PubMed]
- Henry, C. Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutr. 2005, 8, 1133–1152. [Google Scholar] [CrossRef] [PubMed]
- Joint, F. Energy and protein requirements: Report of a Joint FAO/WHO/UNU Expert Consultation [held in Rome from 5 to 17 October 1981]; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 1985; pp. 1–67. [Google Scholar]
- Penco, S.; Buscema, M.; Patrosso, M.C.; Marocchi, A.; Grossi, E. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background. BMC Bioinform. 2008, 9, 254. [Google Scholar] [CrossRef] [Green Version]
- Buscema, M.; Grossi, E.; Snowdon, D.; Antuono, P. Auto-contractive maps: An artificial adaptive system for data mining. An application to Alzheimer disease. Curr. Alzheimer Res. 2008, 5, 481–498. [Google Scholar] [CrossRef]
- Kruskal, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 1956, 7, 48–50. [Google Scholar] [CrossRef]
- Fredman, M.L.; Willard, D.E. Trans-Dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths. In Proceedings of the 31st Annual Symposium on Foundations of Computer Science, St. Louis, MO, USA, 22–24 October 1990; IEEE: Piscataway, NJ, USA, 1990; pp. 719–725. [Google Scholar]
- Buscema, M. Genetic doping algorithm (GenD): Theory and applications. Expert Syst. 2004, 21, 63–79. [Google Scholar] [CrossRef]
- Buscema, M.; Breda, M.; Lodwick, W. Training with Input Selection and Testing (TWIST) algorithm: A significant advance in pattern recognition performance of machine learning. J. Intell. Learn. Syst. Appl. 2013, 5, 27937. [Google Scholar] [CrossRef] [Green Version]
- Buscema, M.; Ricerche, S.C.; Grossi, E. The semantic connectivity map: An adapting self-organising knowledge discovery method in data bases. Experience in gastro-oesophageal reflux disease. Int. J. Data Min. Bioin. 2008, 2. [Google Scholar] [CrossRef]
- Rodriguez, G.; Moreno, L.; Sarria, A.; Fleta, J.; Bueno, M. Resting energy expenditure in children and adolescents: Agreement between calorimetry and prediction equations. Clin. Nutr. 2002, 21, 255–260. [Google Scholar] [CrossRef]
- da Rocha, E.E.M.; Alves, V.G.F.; da Fonseca, R.B.V. Indirect calorimetry: Methodology, instruments and clinical application. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.A.; Elliott, S.A.; Baracos, V.E.; Chu, Q.S.; Sawyer, M.B.; Mourtzakis, M.; Easaw, J.C.; Spratlin, J.L.; Siervo, M.; Prado, C.M. Accuracy of resting energy expenditure predictive equations in patients with cancer. Nutr. Clin. Pract. 2019, 34, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Acar-Tek, N.; Ağagündüz, D.; Çelik, B.; Bozbulut, R. Estimation of resting energy expenditure: Validation of previous and new predictive equations in obese children and adolescents. J. Am. Coll. Nutr. 2017, 36, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Maffeis, C.; Schutz, Y.; Micciolo, R.; Zoccante, L.; Pinelli, L. Resting metabolic rate in six-to ten-year-old obese and nonobese children. J. Pediatr. 1993, 122, 556–562. [Google Scholar] [CrossRef]
- Molnár, D.; Jeges, S.; Erhardt, E.; Schutz, Y. Measured and predicted resting metabolic rate in obese and nonobese adolescents. J. Pediatr. 1995, 127, 571–577. [Google Scholar] [CrossRef]
- Prentice, A.; Lucas, A.; Vasquez-Velasquez, L.; Davies, P.W.; Whitehead, R. Are current dietary guidelines for young children a prescription for overfeeding? Lancet 1988, 332, 1066–1069. [Google Scholar] [CrossRef]
- Melanson, E.L.; Coelho, L.B.; Tran, Z.V.; Haugen, H.A.; Kearney, J.T.; Hill, J.O. Validation of the BodyGem™ hand-held calorimeter. Int. J. Obes. 2004, 28, 1479–1484. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.C.; Trone, G.A.; Austin, M.D. A new handheld device for measuring resting metabolic rate and oxygen consumption. J. Acad. Nutr. Diet. 2003, 103, 588–593. [Google Scholar] [CrossRef]
- Fields, D.A.; Kearney, J.T.; Copeland, K.C. MedGem hand-held indirect calorimeter is valid for resting energy expenditure measurement in healthy children. Obesity 2006, 14, 1755–1761. [Google Scholar] [CrossRef] [Green Version]
- Compher, C.; Hise, M.; Sternberg, A.; Kinosian, B. Comparison between Medgem and Deltatrac resting metabolic rate measurements. Eur. J. Clin. Nutr. 2005, 59, 1136–1141. [Google Scholar] [CrossRef] [Green Version]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M. Personalized nutrition by prediction of glycemic responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total Population | ||
---|---|---|
Mean | SD | |
Age, years | 13.0 | 3.5 |
Weight, kg | 62.8 | 23.0 |
Height, cm | 156.5 | 18.6 |
BMI | 24.6 | 5.9 |
Body mass index z-score | 1.1 | 1.1 |
Arm circumference, cm | 28.7 | 5.7 |
Biceps skinfold, mm | 13.3 | 6.6 |
Triceps skinfold, mm | 22.5 | 9.0 |
Subscapular skinfold, mm | 21.9 | 11.5 |
Suprailiac skinfold, mm | 29.0 | 13.7 |
z-score weight for height | 0.8 | 1.4 |
z-score weight for age | 0.4 | 1.2 |
z-score height for age | 0.4 | 1.2 |
Fat mass, kg | 18.8 | 9.1 |
Free fat mass, kg | 43.7 | 16.0 |
Total upper arm area, cm2 | 68.1 | 25.8 |
Upper arm muscle area estimate, cm2 | 33.8 | 12.1 |
Upper arm fat area estimate, cm2 | 34.4 | 18.4 |
Fat upper arm, % | 47.8 | 13.5 |
VO2, L/min | 0.20 | 0.05 |
VCO2, L/min | 0.17 | 0.04 |
RQ | 0.83 | 0.07 |
Resting energy expenditure, kcal/die | 1417.6 | 368.5 |
Harris–Benedict energy expenditure, kcal/die | 1554.2 | 337.2 |
WHO energy expenditure, kcal/die | 1673.6 | 354.1 |
Schofield for weight and length energy expenditure, kcal/die | 1649.4 | 348.1 |
Schofield for weight energy expenditure, kcal/die | 1689.5 | 371.1 |
Oxford energy expenditure, kcal/die | 1649.9 | 351.0 |
Overall Group (N = 561), Mean REE = 1147 | |||||||
---|---|---|---|---|---|---|---|
Fitting Method | Absolute Energy Expenditure | Absolute Error | Imprecision % | Pearson R2 | T Statistics | P-Value (Two Tails) | |
Mean | Mean | SD | |||||
Neural networks | 1423.14 | 95.88 | 80.86 | 6.80 | 0.88 | −1.04 | 0.295 |
Equations | |||||||
Harris–Benedict | 1554.20 | 224.16 | 137.13 | 15.80 | 0.03 | −7.13 | <0.0001 |
WHO | 1673.55 | 300.81 | 180.80 | 21.2 | 0.59 | 25.23 | <0.0001 |
Schofield weight and length | 1649.44 | 300.69 | 178.61 | 21.2 | 0.53 | 20.96 | <0.0001 |
Schofield weight | 1689.51 | 306.93 | 191.30 | 21.7 | 0.62 | 26.99 | <0.0001 |
Oxford | 1649.93 | 305.56 | 176.29 | 21.6 | 0.52 | 20.81 | <0.0001 |
Underweight (N = 16), Mean REE = 1006.4 | |||||||
Neural networks | 109.8 | 63.6 | 10.9 | ||||
Equations | |||||||
Harris–Benedict | 231.2 | 131.4 | 23.1 | ||||
WHO | 262.1 | 131.1 | 26.0 | ||||
Schofield weight and length | 263.5 | 153.7 | 26.2 | ||||
Schofield weight | 262.9 | 136.7 | 26.1 | ||||
Oxford | 252.0 | 117.0 | 25.0 | ||||
Obese (N = 113), Mean REE = 1708.6 | |||||||
Neural networks | 101.0 | 91.8 | 5.4 | ||||
Equations | |||||||
Harris–Benedict | 220.7 | 150.0 | 8.8 | ||||
WHO | 296.6 | 217.6 | 12.7 | ||||
Schofield weight and length | 287.6 | 205.3 | 12.0 | ||||
Schofield weight | 288.0 | 233.0 | 13.6 | ||||
Oxford | 311.1 | 215.9 | 12.6 |
Harris–Benedict Energy Expenditure | WHO Energy Expenditure | Schofield for Weight and Length Energy Expenditure | Schofield for Weight Energy Expenditure | Oxford Energy Expenditure | Best Neural Network | Resting Energy Expenditure | |
---|---|---|---|---|---|---|---|
Harris–Benedict energy expenditure | 1 | ||||||
WHO energy expenditure | 0.815 | 1 | |||||
Schofield for weight and length energy expenditure | 0.864 | 0.953 | 1 | ||||
Schofield for weight energy expenditure | 0.786 | 0.980 | 0.949 | 1 | |||
Oxford energy expenditure | 0.835 | 0.968 | 0.975 | 0.954 | 1 | ||
Best neural network | 0.034 | −0.052 | 0.009 | −0.046 | 0.016 | 1 | |
Resting energy expenditure | −0.076 | −0.176 | −0.099 | −0.173 | −0.094 | 0.940 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Cosmi, V.; Mazzocchi, A.; Milani, G.P.; Calderini, E.; Scaglioni, S.; Bettocchi, S.; D’Oria, V.; Langer, T.; Spolidoro, G.C.I.; Leone, L.; et al. Prediction of Resting Energy Expenditure in Children: May Artificial Neural Networks Improve Our Accuracy? J. Clin. Med. 2020, 9, 1026. https://doi.org/10.3390/jcm9041026
De Cosmi V, Mazzocchi A, Milani GP, Calderini E, Scaglioni S, Bettocchi S, D’Oria V, Langer T, Spolidoro GCI, Leone L, et al. Prediction of Resting Energy Expenditure in Children: May Artificial Neural Networks Improve Our Accuracy? Journal of Clinical Medicine. 2020; 9(4):1026. https://doi.org/10.3390/jcm9041026
Chicago/Turabian StyleDe Cosmi, Valentina, Alessandra Mazzocchi, Gregorio Paolo Milani, Edoardo Calderini, Silvia Scaglioni, Silvia Bettocchi, Veronica D’Oria, Thomas Langer, Giulia C. I. Spolidoro, Ludovica Leone, and et al. 2020. "Prediction of Resting Energy Expenditure in Children: May Artificial Neural Networks Improve Our Accuracy?" Journal of Clinical Medicine 9, no. 4: 1026. https://doi.org/10.3390/jcm9041026
APA StyleDe Cosmi, V., Mazzocchi, A., Milani, G. P., Calderini, E., Scaglioni, S., Bettocchi, S., D’Oria, V., Langer, T., Spolidoro, G. C. I., Leone, L., Battezzati, A., Bertoli, S., Leone, A., De Amicis, R. S., Foppiani, A., Agostoni, C., & Grossi, E. (2020). Prediction of Resting Energy Expenditure in Children: May Artificial Neural Networks Improve Our Accuracy? Journal of Clinical Medicine, 9(4), 1026. https://doi.org/10.3390/jcm9041026