Usefulness of P Wave Duration in Embolic Stroke of Undetermined Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Protocol
2.2. P Wave Signal-Averaged Electrocardiography (SAECG)
2.3. Follow-Up
2.4. Statistical Analysis
3. Results
3.1. Performance of PWD in Clinical Detection of SCAF
3.2. Recurrent Stroke during Follow-Up
4. Discussion
4.1. PWD as an Alternative Screening Target for SCAF
4.2. Clinical Significance of ESUS Patients without Clinical AF
4.3. ESUS, Recurrent Stroke, and PWD
4.4. Secondary Prevention
4.5. PWD as an Extended and Convenient Screening Target for AC
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variables | OR | 95% CI | p Value |
---|---|---|---|
Age | 1.014 | 0.968–1.061 | 0.560 |
Male | 0.407 | 0.147–1.123 | 0.083 |
Heart failure | 3.984 | 0.351–45.272 | 0.265 |
HTN | 1.145 | 0.358–3.66 | 0.820 |
DM | 0.539 | 0.134–2.168 | 0.384 |
Vascular disease | 0.814 | 0.169–3.924 | 0.797 |
BMI | 1.122 | 0.971–1.296 | 0.118 |
PWD (≥135 ms) | 3.883 | 1.331–11.327 | 0.013 |
References
- Ntaios, G.; Papavasileiou, V.; Milionis, H.; Makaritsis, K.; Manios, E.D.; Spengos, K.; Michel, P.; Vemmos, K. Embolic Strokes of Undetermined Source in the Athens Stroke Registry. Stroke 2015, 46, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Healey, J.; Connolly, S.; Gold, M.R.; Israel, C.W.; Van Gelder, I.C.; Capucci, A.; Lau, C.; Fain, E.; Yang, S.; Bailleul, C.; et al. Subclinical Atrial Fibrillation and the Risk of Stroke. New Engl. J. Med. 2012, 366, 120–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntaios, G.; Papavasileiou, V.; Lip, G.Y.; Milionis, H.; Makaritsis, K.; Vemmou, A.; Koroboki, E.; Manios, E.; Spengos, K.; Michel, P.; et al. Embolic Stroke of Undetermined Source and Detection of Atrial Fibrillation on Follow-Up: How Much Causality Is There? J. Stroke Cerebrovasc. Dis. 2016, 25, 2975–2980. [Google Scholar] [CrossRef] [PubMed]
- Gladstone, D.; Spring, M.; Dorian, P.; Panzov, V.; Thorpe, K.; Hall, J.; Vaid, H.; O’Donnell, M.; Laupacis, A.; Côté, R.; et al. Atrial Fibrillation in Patients with Cryptogenic Stroke. New Engl. J. Med. 2014, 370, 2467–2477. [Google Scholar] [CrossRef] [Green Version]
- Israel, C.; Kitsiou, A.; Kalyani, M.; Deelawar, S.; Ejangue, L.E.; Rogalewski, A.; Hagemeister, C.; Minnerup, J.; Schäbitz, W.R. Detection of atrial fibrillation in patients with embolic stroke of undetermined source by prolonged monitoring with implantable loop recorders. Thromb. Haemost. 2017, 117, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Brambatti, M.; Connolly, S.; Gold, M.R.; Morillo, C.A.; Capucci, A.; Muto, C.; Lau, C.P.; Van Gelder, I.C.; Hohnloser, S.H.; Carlson, M.; et al. Temporal Relationship Between Subclinical Atrial Fibrillation and Embolic Events. Circulation. 2014, 129, 2094–2099. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.T.; Bersohn, M.M.; Waldo, A.L.; Wathen, M.S.; Choucair, W.K.; Lip, G.Y.; Ip, J.; Holcomb, R.; Akar, J.G.; Halperin, J.L. Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients with implanted defibrillator and cardiac resynchronization devices. Eur. Hear. J. 2015, 36, 1660–1668. [Google Scholar] [CrossRef] [Green Version]
- Glotzer, T.V.; Daoud, E.G.; Wyse, D.G.; Singer, D.E.; Ezekowitz, M.D.; Hilker, C.; Miller, C.; Qi, D.; Ziegler, P.D. The Relationship Between Daily Atrial Tachyarrhythmia Burden From Implantable Device Diagnostics and Stroke Risk. Circ. Arrhythmia Electrophysiol. 2009, 2, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, J.S.; Zelenkofske, S.; Wong, S.C.; Gelernt, M.; Sciacca, R.; Menchavez, E. Value of the P-wave signal-averaged ECG for predicting atrial fibrillation after cardiac surgery. Circulation. 1993, 88, 2618–2622. [Google Scholar] [CrossRef] [Green Version]
- Rosiak, M.; Ruta, J.; Bolińska, H. Usefulness of prolonged P-wave duration on signal averaged ECG in predicting atrial fibrillation in acute myocardial infarction patients. Med Sci. Monit. 2003, 9, 85–88. [Google Scholar]
- Guidera, S.A.; Steinberg, J.S. The signal-averaged P wave duration: A rapid and noninvasive marker of risk of atrial fibrillation. J. Am. Coll. Cardiol. 1993, 21, 1645–1651. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, M.; Goedel-Meinen, L.; Beckhoff, A.; Rehbach, K.; Schömig, A. Analysis of the P Wave in the Signal-Averaged Electrocardiogram: Normal Values and Reproducibility. Pacing Clin. Electrophysiol. 1996, 19, 1928–1932. [Google Scholar] [CrossRef] [PubMed]
- Sanna, T.; Ziegler, P.D.; Crea, F. Detection and management of atrial fibrillation after cryptogenic stroke or embolic stroke of undetermined source. Clin. Cardiol. 2018, 41, 426–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanna, T.; Diener, H.-C.; Passman, R.S.; Di Lazzaro, V.; Bernstein, R.A.; Morillo, C.A.; Rymer, M.M.; Thijs, V.; Rogers, T.; Beckers, F.; et al. Cryptogenic Stroke and Underlying Atrial Fibrillation. New Engl. J. Med. 2014, 370, 2478–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tayal, A.; Tian, M.; Kelly, K.M.; Jones, S.C.; Wright, D.G.; Singh, D.; Jarouse, J.; Brillman, J.; Murali, S.; Gupta, R. Atrial fibrillation detected by mobile cardiac outpatient telemetry in cryptogenic TIA or stroke. Neurology 2008, 71, 1696–1701. [Google Scholar] [CrossRef]
- Elijovich, L.; Josephson, S.A.; Fung, G.L.; Smith, W.S. Intermittent Atrial Fibrillation May Account for a Large Proportion of Otherwise Cryptogenic Stroke: A Study of 30-Day Cardiac Event Monitors. J. Stroke Cerebrovasc. Dis. 2009, 18, 185–189. [Google Scholar] [CrossRef]
- Gaillard, N.; Deltour, S.; Vilotijevic, B.; Hornych, A.; Crozier, S.; Leger, A.; Frank, R.; Samson, Y. Detection of paroxysmal atrial fibrillation with transtelephonic EKG in TIA or stroke patients. Neurology 2010, 74, 1666–1670. [Google Scholar] [CrossRef]
- Kamel, H.; Navi, B.; Elijovich, L.; Josephson, S.A.; Yee, A.H.; Fung, G.; Johnston, S.C.; Smith, W.S. Pilot Randomized Trial of Outpatient Cardiac Monitoring After Cryptogenic Stroke. Stroke 2013, 44, 528–530. [Google Scholar] [CrossRef]
- Miller, D.J.; Khan, M.; Schultz, L.R.; Simpson, J.R.; Katramados, A.M.; Russman, A.N.; Mitsias, P.D. Outpatient cardiac telemetry detects a high rate of atrial fibrillation in cryptogenic stroke. J. Neurol. Sci. 2013, 324, 57–61. [Google Scholar] [CrossRef]
- Rizzo, M.R.; Sasso, F.C.; Marfella, R.; Siniscalchi, M.; Paolisso, P.; Carbonara, O.; Capoluongo, M.C.; Lascar, N.; Pace, M.C.; Sardu, C.; et al. Autonomic dysfunction is associated with brief episodes of atrial fibrillation in type 2 diabetes. J. Diabetes its Complicat. 2015, 29, 88–92. [Google Scholar] [CrossRef]
- Marfella, R.; Sasso, F.C.; Siniscalchi, M.; Cirillo, M.; Paolisso, P.; Sardu, C.; Barbieri, M.; Rizzo, M.R.; Mauro, C.; Paolisso, G. Brief Episodes of Silent Atrial Fibrillation Predict Clinical Vascular Brain Disease in Type 2 Diabetic Patients. J. Am. Coll. Cardiol. 2013, 62, 525–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, C.; Moon, Y.P.; Paik, M.C.; Rundek, T.; Mora-McLaughlin, C.; Vieira, J.R.; Sacco, R.L.; Elkind, M.S. Duration of diabetes and risk of ischemic stroke: The Northern Manhattan Study. Stroke 2012, 43, 1212–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardu, C.; Santamaria, M.; Paolisso, G.; Marfella, R. microRNA expression changes after atrial fibrillation catheter ablation. Pharmacogenomics 2015, 16, 1863–1877. [Google Scholar] [CrossRef] [PubMed]
- Sardu, C.; Santulli, G.; Santamaria, M.; Barbieri, M.; Sacra, C.; Paolisso, P.; D’Amico, F.; Testa, N.; Caporaso, I.; Paolisso, G.; et al. Effects of Alpha Lipoic Acid on Multiple Cytokines and Biomarkers and Recurrence of Atrial Fibrillation Within 1 Year of Catheter Ablation. Am. J. Cardiol. 2017, 119, 1382–1386. [Google Scholar] [CrossRef] [Green Version]
- Sardu, C.; Santulli, G.; Guerra, G.; Trotta, M.C.; Santamaria, M.; Sacra, C.; Testa, N.; Ducceschi, V.; Gatta, G.; Amico, M.D.; et al. Modulation of SERCA in Patients with Persistent Atrial Fibrillation Treated by Epicardial Thoracoscopic Ablation: The CAMAF Study. J. Clin. Med. 2020, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Kamel, H.; Okin, P.M.; Longstreth, W.T.; Elkind, M.S.; Soliman, E.Z. Atrial cardiopathy: A broadened concept of left atrial thromboembolism beyond atrial fibrillation. Futur. Cardiol. 2015, 11, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Hart, R.G.; Sharma, M.; Mundl, H.; Kasner, S.E.; Tiwari, G.; Berkowitz, S.D.; Swaminathan, B.; Lavados, P.; Wang, Y.; Wang, Y.; et al. Rivaroxaban for Stroke Prevention after Embolic Stroke of Undetermined Source. New Engl. J. Med. 2018, 378, 2191–2201. [Google Scholar] [CrossRef]
- Diener, H.-C.; Easton, J.D.; Granger, C.B.; Cronin, L.; Duffy, C.; Cotton, D.; Brueckmann, M.; Sacco, R.L. Design of Randomized, Double-Blind, Evaluation in Secondary Stroke Prevention Comparing the Efficacy and Safety of the Oral Thrombin Inhibitor Dabigatran Etexilate vs. Acetylsalicylic Acid in Patients with Embolic Stroke of Undetermined Source (Re-Spect Esus). Int. J. Stroke 2015, 10, 1309–1312. [Google Scholar] [CrossRef]
- Geisler, T.; Poli, S.; Meisner, C.; Schreieck, J.; Zuern, C.S.; Nägele, T.; Brachmann, J.; Jung, W.; Gahn, G.; Schmid, E.; et al. Apixaban for treatment of embolic stroke of undetermined source (ATTICUS randomized trial): Rationale and study design. Int. J. Stroke 2016, 12, 985–990. [Google Scholar] [CrossRef]
- Longstreth, W.; Kronmal, R.A.; Thompson, J.L.; Christenson, R.H.; Levine, S.R.; Gross, R.; Brey, R.L.; Buchsbaum, R.; Elkind, M.S.; Tirschwell, D.L.; et al. Amino terminal pro-B-type natriuretic peptide, secondary stroke prevention, and choice of antithrombotic therapy. Stroke 2013, 44, 714–719. [Google Scholar] [CrossRef] [Green Version]
- Mohr, J.; Thompson, J.; Lazar, R.; Levin, B.; Sacco, R.L.; Furie, K.; Kistler, J.; Albers, G.W.; Pettigrew, L.; Adams, H.; et al. A Comparison of Warfarin and Aspirin for the Prevention of Recurrent Ischemic Stroke. New Engl. J. Med. 2001, 345, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.G.; Catanese, L.; Perera, K.S.; Ntaios, G.; Connolly, S.J. Embolic Stroke of Undetermined Source. Stroke 2017, 48, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Santamarina, E.; Penalba, A.; García-Berrocoso, T.; Delgado, P.; Quintana, M.; Gonzalez-Alujas, T.; Ribo, M.; Maisterra, O.; Molina, C.A.; Evangelista, A.; et al. Biomarker level improves the diagnosis of embolic source in ischemic stroke of unknown origin. J. Neurol. 2012, 259, 2538–2545. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, S.; Moon, Y.P.; Mora-McLaughlin, C.; Willey, J.Z.; Cheung, K.; Di Tullio, M.R.; Homma, S.; Kamel, H.; Sacco, R.L.; Elkind, M.S.V. Left atrial enlargement and stroke recurrence: The Northern Manhattan Stroke Study. Stroke 2015, 46, 1488–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatine, M.S.; Leiter, L.A.; Wiviott, S.D.; Giugliano, R.P.; Deedwania, P.; De Ferrari, G.M.; Murphy, S.A.; Kuder, J.F.; Gouni-Berthold, I.; Lewis, B.S.; et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: A prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017, 5, 941–950. [Google Scholar] [CrossRef]
- Sardu, C.; Santamaria, M.; Rizzo, M.R.; Barbieri, M.; Di Marino, M.; Paolisso, G.; Santulli, G.; Marfella, R. Telemonitoring in heart failure patients treated by cardiac resynchronisation therapy with defibrillator (CRT-D): The TELECART Study. Int. J. Clin. Pr. 2016, 70, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, R.; Perera, T.; Elliott, A.; Twomey, D.J.; Kumar, S.; Munwar, D.A.; Khokhar, K.; Thiyagarajah, A.; Middeldorp, M.; Nalliah, C.J.; et al. Subclinical device-detected atrial fibrillation and stroke risk: A systematic review and meta-analysis. Eur. Hear. J. 2018, 39, 1407–1415. [Google Scholar] [CrossRef]
Variables | PAF (n = 125) | ESUS (n = 125) | p Value * | ESUS with SCAF (n = 32) | ESUS wo SCAF (n = 93) | p Value † |
---|---|---|---|---|---|---|
Age (years) | 65.3 ± 12.2 | 68.4 ± 12.1 | 0.045 | 70.9 ± 7.8 | 67.6 ± 13.2 | 0.089 |
Male (%) | 68 (54.4) | 69 (55.2) | 1 | 15 (46.9) | 54 (58.1) | 0.272 |
BMI (kg/m2) | 24.0 ± 3.7 | 24.7 ± 4.0 | 0.090 | 25.2 ± 3.4 | 23.5 ± 3.7 | 0.290 |
CHA2DS2-VASc score | 2.4 ± 1.5 | 2.7 ± 1.5 | 0.282 | 2.9 ± 1.5 | 2.6 ± 1.5 | 0.330 |
HTN (%) | 80 (64.0) | 87 (69.6) | 0.420 | 25 (78.1) | 62 (66.7) | 0.224 |
DM (%) | 24 (19.2) | 22 (17.6) | 0.871 | 3 (9.4) | 19 (20.4) | 0.188 |
Previous stroke or TIA (%) | 10 (8.0) | 7 (5.6) | 0.451 | 4 (12.5) | 3 (3.2) | 0.070 |
Recurrent stroke (%) | 2 (1.6) | 22 (17.6) | <0.001 | 8 (25.0) | 14 (15.1) | 0.280 |
New onset AF (%) | 0 (0) | 32 (25.6) | <0.001 | 32 (100) | 0 (0) | <0.001 |
Signal-averaged ECG | ||||||
Standard PWD (ms) | 134.5 ± 15.4 | 132.4 ± 17.5 | 0.321 | 139.4 ± 44.2 | 131.1 ± 27.3 | 0.212 |
Total PWD (ms) | 138.1 ± 26.2 | 137.3 ± 31.0 | 0.839 | 143.1 ± 42.6 | 135.3 ± 25.8 | 0.221 |
Terminal 40 ms (μV) | 4.6 ± 2.9 | 4.3 ± 2.5 | 0.506 | 4.5 ± 3.1 | 4.2 ± 2.4 | 0.603 |
Terminal 30 ms (μV) | 3.9 ± 2.6 | 3.5 ± 2.2 | 0.151 | 3.7 ± 2.5 | 3.4 ± 2.1 | 0.549 |
Terminal 20 ms (μV) | 3.2 ± 2.5 | 2.7 ± 1.9 | 0.116 | 2.7 ± 2.2 | 2.7 ± 1.8 | 0.997 |
RMS voltage of P wave (μV) | 6.3 ± 2.3 | 6.1 ± 2.2 | 0.580 | 6.2 ± 2.9 | 6.1 ± 2.0 | 0.855 |
Integral of P wave (μV·ms) | 628.0 ± 240.1 | 609.5 ± 225.3 | 0.531 | 615.2 ± 277.4 | 607.6 ± 206.1 | 0.888 |
Noise (μV) | 0.38 ± 0.22 | 0.37 ± 0.21 | 0.603 | 0.34 ± 0.15 | 0.38 ± 0.22 | 0.309 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age | 1.018 | 0.977–1.061 | 0.385 | 1.091 | 0.870–1.368 | 0.453 |
Sex | 0.693 | 0.271–1.775 | 0.445 | 0.485 | 0.110–2.486 | 0.708 |
BMI | 1.069 | 0.923–1.237 | 0.374 | 1.709 | 0.903–1.289 | 0.405 |
CHF | 1.683 | 0.167–17.02 | 0.659 | 1.007 | 0.907–1.119 | 0.893 |
HTN | 1.487 | 0.502–4.405 | 0.474 | 1.145 | 0.989–1.315 | 0.386 |
DM | 1.599 | 0.516–4.954 | 0.416 | 1.211 | 0.706–1.826 | 0.674 |
Vascular disease | 1.278 | 0.327–4.990 | 0.724 | 0.653 | 0.086–1.180 | 0.447 |
CHA2DS2-VASc | 1.285 | 0.892–1.850 | 0.178 | 1.239 | 0.804–1.819 | 0.274 |
SCAF detection | 2.727 | 1.040–7.149 | 0.041 | 1.881 | 0.705–5.019 | 0.207 |
PWD (≥135 ms) | 3.029 | 1.244–7.377 | 0.015 | 2.756 | 1.061–7.161 | 0.037 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, M.; Kim, J.-S.; Song, J.H.; Kim, J.-M.; Park, K.-Y.; Lee, W.-S.; Kim, S.W.; Lip, G.Y.; Shin, S.Y. Usefulness of P Wave Duration in Embolic Stroke of Undetermined Source. J. Clin. Med. 2020, 9, 1134. https://doi.org/10.3390/jcm9041134
Jung M, Kim J-S, Song JH, Kim J-M, Park K-Y, Lee W-S, Kim SW, Lip GY, Shin SY. Usefulness of P Wave Duration in Embolic Stroke of Undetermined Source. Journal of Clinical Medicine. 2020; 9(4):1134. https://doi.org/10.3390/jcm9041134
Chicago/Turabian StyleJung, Moonki, Jin-Seok Kim, Ju Hyeon Song, Jeong-Min Kim, Kwang-Yeol Park, Wang-Soo Lee, Sang Wook Kim, Gregory YH Lip, and Seung Yong Shin. 2020. "Usefulness of P Wave Duration in Embolic Stroke of Undetermined Source" Journal of Clinical Medicine 9, no. 4: 1134. https://doi.org/10.3390/jcm9041134
APA StyleJung, M., Kim, J. -S., Song, J. H., Kim, J. -M., Park, K. -Y., Lee, W. -S., Kim, S. W., Lip, G. Y., & Shin, S. Y. (2020). Usefulness of P Wave Duration in Embolic Stroke of Undetermined Source. Journal of Clinical Medicine, 9(4), 1134. https://doi.org/10.3390/jcm9041134