Body Composition in Individuals with Obesity According to Age and Sex: A Cross-Sectional Study
Abstract
:1. Introduction
2. Participants and Methods
2.1. Definition of Comorbidities
2.2. Participant Consent
2.3. Body Composition Determination
- Percentage LTM of the upper limbs: the sum of LTM of each upper limb/LTM of whole body × 100.
- Percentage LTM of the lower limbs: the sum of LTM of each lower limb/LTM of whole body × 100.
- Percentage LTM of the trunk: LTM of trunk/LTM of whole body × 100.
- Percentage FM of the upper limbs: the sum of FM of each upper limb/FM of whole body × 100.
- Percentage FM of the lower limbs: the sum of FM of each lower limb/FM of whole body × 100.
- Percentage FM of the trunk: FM of trunk/FM of whole body × 100.
2.4. Definition of Sarcopenia
2.5. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. Body Composition and Appendicular Skeletal Mass
3.3. Repartition of Lean Tissue Mass and Fat Mass
3.4. Appendicular Lean Tissue Mass Index and Prevalence of Sarcopenia
3.5. Relationship Between Type 2 Diabetes and Sarcopenia
4. Discussion
4.1. Lean Tissue Mass
4.2. Fat Mass
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Janssen, I.; Heymsfield, S.B.; Wang, Z.M.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. (1985) 2000, 89, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, F.; Cruz-Jentoft, A.J.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.; Bernabei, R.; Onder, G. Sarcopenia and mortality risk in frail older persons aged 80 years and older: Results from ilSIRENTE study. Age Ageing 2013, 42, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff-Ferrari, H.A.; Orav, J.E.; Kanis, J.A.; Rizzoli, R.; Schlogl, M.; Staehelin, H.B.; Willett, W.C.; Dawson-Hughes, B. Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporos. Int. 2015, 26, 2793–2802. [Google Scholar] [CrossRef] [PubMed]
- Heber, D.; Ingles, S.; Ashley, J.M.; Maxwell, M.H.; Lyons, R.F.; Elashoff, R.M. Clinical detection of sarcopenic obesity by bioelectrical impedance analysis. Am. J. Clin. Nutr. 1996, 64, 472S–477S. [Google Scholar] [CrossRef] [PubMed]
- Gregg, E.W.; Cheng, Y.J.; Cadwell, B.L.; Imperatore, G.; Williams, D.E.; Flegal, K.M.; Narayan, K.M.; Williamson, D.F. Secular trends in cardiovascular disease risk factors according to body mass index in US adults. JAMA 2005, 293, 1868–1874. [Google Scholar] [CrossRef] [Green Version]
- Alley, D.E.; Chang, V.W. The changing relationship of obesity and disability, 1988–2004. JAMA 2007, 298, 2020–2027. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, R.N.; Wayne, S.J.; Waters, D.L.; Janssen, I.; Gallagher, D.; Morley, J.E. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes. Res. 2004, 12, 1995–2004. [Google Scholar] [CrossRef]
- Theodorakopoulos, C.; Jones, J.; Bannerman, E.; Greig, C.A. Effectiveness of nutritional and exercise interventions to improve body composition and muscle strength or function in sarcopenic obese older adults: A systematic review. Nutr. Res. 2017, 43, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Batsis, J.A.; Mackenzie, T.A.; Barre, L.K.; Lopez-Jimenez, F.; Bartels, S.J. Sarcopenia, sarcopenic obesity and mortality in older adults: Results from the National Health and Nutrition Examination Survey III. Eur. J. Clin. Nutr. 2014, 68, 1001–1007. [Google Scholar] [CrossRef] [Green Version]
- Batsis, J.A.; Barre, L.K.; Mackenzie, T.A.; Pratt, S.I.; Lopez-Jimenez, F.; Bartels, S.J. Variation in the prevalence of sarcopenia and sarcopenic obesity in older adults associated with differente research definitions: Dual-energy X-ray absorptiometry data from the National Health and Nutrition Examination Survery: 1999–2004. J. Am. Geriatr. Soc. 2013, 61, 974–980. [Google Scholar] [CrossRef]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic obesity: A new category of obesity in the elderly. Nutrition, metabolism, and cardiovascular diseases NMCD 2008, 18, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Colhoun, H.M.; Szarek, M.; Baccara-Dinet, M.; Bhatt, D.L.; Bittner, V.A.; Budaj, A.J.; Diaz, R.; Goodman, S.G.; Hanotin, C.; et al. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: A prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 618–628. [Google Scholar] [CrossRef] [Green Version]
- Geldsetzer, P.; Manne-Goehler, J.; Marcus, M.E.; Ebert, C.; Zhumadilov, Z.; Wesseh, C.S.; Tsabedze, L.; Supiyev, A.; Sturua, L.; Bahendeka, S.K.; et al. The state of hypertension care in 44 low-income and middle-income countries: A cross-sectional study of nationally representative individual-level data from 1.1 million adults. Lancet 2019, 394, 652–662. [Google Scholar] [CrossRef] [Green Version]
- Maimoun, L.; Lefebvre, P.; Jaussent, A.; Fouillade, C.; Mariano-Goulart, D.; Nocca, D. Body composition changes in the first month after sleeve gastrectomy based on gender and anatomic site. Surg. Obes. Relat. Dis. 2017, 13, 780–787. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Smith, R.; Aulet, M.; Bensen, B.; Lichtman, S.; Wang, J.; Pierson, R.N., Jr. Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. Am. J. Clin. Nutr. 1990, 52, 214–218. [Google Scholar] [CrossRef]
- Kwon, H.J.; Ha, Y.C.; Park, H.M. The Reference Value of Skeletal Muscle Mass Index for Defining the Sarcopenia of Women in Korea. J. Bone Metab. 2015, 22, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Wang, M.; Jiang, C.M.; Zhang, Y.M. Are current definitions of sarcopenia applicable for older Chinese adults? J. Nutr. Health Aging 2011, 15, 847–851. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [Green Version]
- Kyle, U.G.; Genton, L.; Hans, D.; Karsegard, L.; Slosman, D.O.; Pichard, C. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Eur. J. Clin. Nutr. 2001, 55, 663–672. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Stauber, P.M.; McHugh, D.; Koehler, K.M.; Garry, P.J. Cross-sectional age differences in body composition in persons 60+ years of age. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, M307–M316. [Google Scholar] [CrossRef] [PubMed]
- Coin, A.; Sergi, G.; Minicuci, N.; Giannini, S.; Barbiero, E.; Manzato, E.; Pedrazzoni, M.; Minisola, S.; Rossini, M.; Del Puente, A.; et al. Fat-free mass and fat mass reference values by dual-energy X-ray absorptiometry (DEXA) in a 20-80 year-old Italian population. Clin. Nutr. 2008, 27, 87–94. [Google Scholar] [CrossRef]
- Tian, S.; Morio, B.; Denis, J.B.; Mioche, L. Age-Related Changes in Segmental Body Composition by Ethnicity and History of Weight Change across the Adult Lifespan. Int. J. Environ. Res. Public Health 2016, 13, 821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coin, A.; Perissinotto, E.; Enzi, G.; Zamboni, M.; Inelmen, E.M.; Frigo, A.C.; Manzato, E.; Busetto, L.; Buja, A.; Sergi, G. Predictors of low bone mineral density in the elderly: The role of dietary intake, nutritional status and sarcopenia. Eur. J. Clin. Nutr. 2008, 62, 802–809. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, D.; Visser, M.; De Meersman, R.E.; Sepulveda, D.; Baumgartner, R.N.; Pierson, R.N.; Harris, T.; Heymsfield, S.B. Appendicular skeletal muscle mass: Effects of age, gender, and ethnicity. J. Appl. Physiol. (1985) 1997, 83, 229–239. [Google Scholar] [CrossRef]
- Roubenoff, R. Sarcopenia and its implications for the elderly. Eur. J. Clin. Nutr. 2000, 54 (Suppl. S3), S40–S47. [Google Scholar] [CrossRef]
- Rolland, Y.; Lauwers-Cances, V.; Cristini, C.; Abellan van Kan, G.; Janssen, I.; Morley, J.E.; Vellas, B. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: The EPIDOS (EPIDemiologie de l’OSteoporose) Study. Am. J. Clin. Nutr. 2009, 89, 1895–1900. [Google Scholar] [CrossRef]
- Kera, T.; Kawai, H.; Hirano, H.; Kojima, M.; Fujiwara, Y.; Ihara, K.; Obuchi, S. Differences in body composition and physical function related to pure sarcopenia and sarcopenic obesity: A study of community-dwelling older adults in Japan. Geriatr. Gerontol. Int. 2017, 17, 2602–2609. [Google Scholar] [CrossRef]
- Iannuzzi-Sucich, M.; Prestwood, K.M.; Kenny, A.M. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M772–M777. [Google Scholar] [CrossRef] [Green Version]
- Cawthon, P.M.; Marshall, L.M.; Michael, Y.; Dam, T.T.; Ensrud, K.E.; Barrett-Connor, E.; Orwoll, E.S. Frailty in older men: Prevalence, progression, and relationship with mortality. J. Am. Geriatr. Soc. 2007, 55, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat. Rev. 2018, 14, 513–537. [Google Scholar] [CrossRef] [PubMed]
- Rissanen, A.; Heliovaara, M.; Aromaa, A. Overweight and anthropometric changes in adulthood: A prospective study of 17,000 Finns. Int. J. Obes. 1988, 12, 391–401. [Google Scholar] [PubMed]
- Barlett, H.L.; Puhl, S.M.; Hodgson, J.L.; Buskirk, E.R. Fat-free mass in relation to stature: Ratios of fat-free mass to height in children, adults, and elderly subjects. Am. J. Clin. Nutr. 1991, 53, 1112–1116. [Google Scholar] [CrossRef]
- Tremollieres, F.A.; Pouilles, J.M.; Ribot, C.A. Relative influence of age and menopause on total and regional body composition changes in postmenopausal women. Am. J. Obstet. Gynecol. 1996, 175, 1594–1600. [Google Scholar] [CrossRef]
- Gambacciani, M.; Ciaponi, M.; Cappagli, B.; De Simone, L.; Orlandi, R.; Genazzani, A.R. Prospective evaluation of body weight and body fat distribution in early postmenopausal women with and without hormonal replacement therapy. Maturitas 2001, 39, 125–132. [Google Scholar] [CrossRef]
- Chung, J.Y.; Kang, H.T.; Lee, D.C.; Lee, H.R.; Lee, Y.J. Body composition and its association with cardiometabolic risk factors in the elderly: A focus on sarcopenic obesity. Arch Gerontol. Geriatr. 2013, 56, 270–278. [Google Scholar] [CrossRef]
- Scott, D.; Sanders, K.M.; Aitken, D.; Hayes, A.; Ebeling, P.R.; Jones, G. Sarcopenic obesity and dynapenic obesity: A 5 year associations woth fall risk in middle-aged and older adults. Obesity 2014, 22, 1568–1574. [Google Scholar] [CrossRef]
- Masanes, F.; Rojano, I.L.X.; Salva, A.; Serra-Rexach, J.A.; Artaza, I.; Formiga, F.; Cuesta, F.; Lopez Soto, A.; Ruiz, D.; Cruz-Jentoft, A.J. Cut-off Points for Muscle Mass—Not Grip Strength or Gait Speed—Determine Variations in Sarcopenia Prevalence. J. Nutr. Health Aging 2017, 21, 825–829. [Google Scholar] [CrossRef]
- Schaap, L.A.; Koster, A.; Visser, M. Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol. Rev. 2013, 35, 51–65. [Google Scholar] [CrossRef] [Green Version]
All Participants | 18–34 Years | 35–49 Years | 50–64 Years | >65 Years | |
---|---|---|---|---|---|
Men | |||||
Number of participants | 206 | 26 | 53 | 88 | 39 |
Age (years) | 52.6 ± 13.4 | 28.6 ± 4.6 | 43.8 ± 3.9 | 57.3 ± 4.2 | 70.1 ± 4.9 |
Weight (kg) | 114.7 ± 15.9 | 123.1 ± 16.4 | 119.4 ± 16.9 | 112.2 ± 14.3 * | 108.5 ± 14.2 * |
Height (cm) | 175.0 ± 6.9 | 173.3 ± 7.5 | 177.7 ± 6.1 * | 175.2 ± 6.8 | 172.0 ± 6.2 |
BMI (kg/m2) | 37.5 ± 4.6 | 41.0 ± 5.0 | 37.7 ± 4.6 * | 36.6 ± 4.1 * | 36.7 ± 4.6 * |
Waist circumference (cm) | 121.9 ± 11.8 | 123.4 ± 9.8 | 122.0 ± 11.5 * | 121.4 ± 13.1 * | 121.9 ± 10.3 * |
Hip circumference (cm) | 117.4 ± 11.7 | 124.3 ± 9.8 | 116.8 ± 12.2 | 115.9 ± 11.8 | 116.3 ± 11.0 |
WB FM (%) | 35.3 ± 5.9 | 40.1 ± 5.0 | 34.3 ± 6.0 * | 34.7 ± 5.8 * | 35.1 ± 5.3 * |
WB FM (kg) | 41.4 ± 10.9 | 49.3 ± 10.0 | 42.2 ± 11.8 * | 39.7 ± 10.1 * | 38.9 ± 9.7 * |
WB LTM (kg) | 71.6 ± 8.1 | 70.2 ± 7.0 | 76.3 ± 8.0 * | 70.9 ± 7.8 § | 68.0 ± 7.2 |
HTA (number; %) | 129 (62,6%) | 4 (15.4%) | 28 (52.8%) * | 65 (73.9%) *,§ | 32 (82.1%) * |
Diabetes (number; %) | 94 (45.6%) | 6 (23.1%) | 23 (43.4%) | 56 (63.6%) *,§ | 28 (71.8%) * |
Smoking (n, %) (current, former, never) | 70 (36.3), 38 (19.7), 85 (44.0) | 14 (58.3), 7 (29.2), 3 (12.5) | 21 (42.0), 9 (18.0), 20 (40) | 26 (31.7), 16 (19.5), 40 (48.8) * | 9 (24.3), 6 (16.2), 22 (59.5) * |
Women | |||||
Number of participants | 549 | 109 | 170 | 185 | 85 |
Age | 49.2 ± 14.6 | 27.0 ± 4.6 | 44.1 ± 4.2 | 57.5 ± 4.2 | 69.7 ± 4.2 |
Weight (kg) | 101.5 ± 15.1 | 103.2 ± 15.5 | 102.3 ± 15.2 | 102.1 ± 14.1 | 96.2 ± 15.2 *,§ |
Height (cm) | 162.01 ± 6.4 | 164.4 ± 6.2 | 163.2 ± 5.9 | 161.5 ± 6.5 * | 158.1 ± 5.7 *,§ |
BMI (kg/m2) | 38.6 ± 5.4 | 38.2 ± 5.3 | 38.4 ± 5.2 | 39.2 ± 5.3 | 38.4 ± 5.6 |
Waist circumference (cm) | 110.5 ± 12.4 | 107.4 ± 14.1 | 109.6 ± 11.6 | 112.0 ± 11.7 * | 112.9 ± 12.0 * |
Hip circumference (cm) | 124.2 ± 12.1 | 124.82 ± 11.2 | 123.9 ± 12.3 | 125.1 ± 11.9 | 122.0 ± 13.4 |
WB FM (%) | 45.2 ± 4.5 | 45.6 ± 4.1 | 44.7 ± 4.5 | 46.0 ± 4.3 | 44.3 ± 5.2 *,§ |
WB FM (kg) | 46.7 ± 10.1 | 47.6 ± 9.4 | 46.7 ± 10.5 | 47.6 ± 9.6 | 43.3 ± 10.5 *,§ |
WB LTM (kg) | 53.5 ±6.4 | 53.8 ± 6.6 | 54.5 ± 6.5 | 53.2 ± 6.0 | 51.8 ± 6.4 |
HTA (number; %) | 221(40.2%) | 7 (6.4%) | 43 (25.3%) *,§ | 105 (56.8%) *,§ | 66 (77.7%) *,§ |
Diabetes (number; %) | 144 (26.2%) | 9 (8.3%) | 35 (20.6) *,§ | 73 (39.5%) *,§ | 50 (58.9%) *,§ |
Smoking (n, %) (current, former, never) | 284 (60.4), 84 (17.9), 102 (21.7) | 65 (58.6), 32 (28.8), 14 (12.6) | 105 (53.0), 40 (20.2), 53 (26.8) | 123 (51.5), 36 (15.1), 80 (33.4) * | 61 (53.0), 14 (12.2), 40 (34.8) * |
Age | 18–34 Years | 35–49 Years | 50–64 Years | >65 Years |
---|---|---|---|---|
Number of participants | 26 | 53 | 88 | 39 |
Lean tissue mass | ||||
Whole body (kg) | 69.8 ± 0.9 | 73.4 ± 0.6 * | 71.2 ± 0.5 § | 71.3 ± 0.7 |
Trunk (kg) | 34.6 ± 0.5 | 36.7 ± 0.4 * | 36.5 ± 0.3 * | 36.8 ± 0.4 * |
Upper limbs (kg) | 6.0 ± 0.2 | 6.7 ± 0.1 * | 6.1 ± 0.9 § | 6.0 ± 0.1 |
Lower limbs (kg) | 17.3 ± 0.3 | 17.8 ± 0.2 | 16.7 ± 0.2 § | 16.7 ± 0.2 |
ALM (kg) | 31.2 ± 0.6 | 32.9 ± 0.4 * | 30.7 ± 0.3 § | 30.5 ± 0.47 |
Fat mass | ||||
Whole body (kg) | 43.5 ± 1.0 | 40.1 ± 0.7 * | 41.4 ± 0.6 | 41.6 ± 0.8 |
Whole body (%) | 37.1 ± 0.8 | 34.0 ± 0.6 * | 35.5 ± 0.4 | 35.6 ± 0.6 |
Trunk (kg) | 23.0 ± 0.8 | 23.6 ± 0.6 | 24.2 ± 0.4 | 25.5 ± 0.6 * |
Upper limbs (kg) | 3.5 ± 0.2 | 3.5 ± 0.1 | 3.5 ± 0.1 | 3.6 ± 0.1 |
Lower limbs (kg) | 11.0 ± 0.4 | 8.2 ± 0.3 * | 8.5 ± 0.2 * | 8.5 ± 0.3 * |
Age | 18–34 Years | 35–49 Years | 50–64 Years | >65 Years |
---|---|---|---|---|
Number of participants | 109 | 170 | 185 | 85 |
Lean tissue mass | ||||
Whole body (kg) | 52.7 ± 0.3 | 53.8 ± 0.3 * | 53.2 ± 0.3 | 54.5 ± 0.4 *,§ |
Trunk (kg) | 25.6 ± 0.3 | 27.6 ± 0.3 * | 27.6 ± 0.2 * | 28.7 ± 0.4 *,§ |
Upper limbs (kg) | 3.8 ± 0.1 | 3.9 ± 0.1 | 3.8 ± 0.1 | 3.8 ± 0.6 |
Lower limbs (kg) | 13.8 ± 0.1 | 13.3 ± 0.1 * | 12.9 ± 0.1 *,§ | 12.9 ± 0.1 * |
ALM (kg) | 23.6 ± 0.2 | 23.1 ± 0.1 * | 22.4 ± 0.1 *,§ | 22.6 ± 0.2 * |
Fat mass | ||||
Whole body (kg) | 47.3 ± 0.3 | 46.3 ± 0.3 | 47.1 ± 0.3 | 45.6 ± 0.4 *,§ |
Whole body (%) | 45.9 ± 0.3 | 44.8 ± 0.3 * | 45.7 ± 0.3 | 44.2 ± 0.4 * |
Trunk (kg) | 22.7 ± 0.2 | 23.0 ± 0.2 | 23.9 ± 0.2 *,§ | 23.7 ± 0.3 * |
Upper limbs (kg) | 4.2 ± 0.1 | 4.3 ± 0.1 | 4.5 ± 0.1 | 4.2 ± 0.1 |
Lower limbs (kg) | 13.5 ± 0.3 | 12.5 ± 0.2 * | 12.4 ± 0.2 * | 11.4 ± 0.3 *,§ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maïmoun, L.; Mura, T.; Avignon, A.; Mariano-Goulart, D.; Sultan, A. Body Composition in Individuals with Obesity According to Age and Sex: A Cross-Sectional Study. J. Clin. Med. 2020, 9, 1188. https://doi.org/10.3390/jcm9041188
Maïmoun L, Mura T, Avignon A, Mariano-Goulart D, Sultan A. Body Composition in Individuals with Obesity According to Age and Sex: A Cross-Sectional Study. Journal of Clinical Medicine. 2020; 9(4):1188. https://doi.org/10.3390/jcm9041188
Chicago/Turabian StyleMaïmoun, Laurent, Thibault Mura, Antoine Avignon, Denis Mariano-Goulart, and Ariane Sultan. 2020. "Body Composition in Individuals with Obesity According to Age and Sex: A Cross-Sectional Study" Journal of Clinical Medicine 9, no. 4: 1188. https://doi.org/10.3390/jcm9041188
APA StyleMaïmoun, L., Mura, T., Avignon, A., Mariano-Goulart, D., & Sultan, A. (2020). Body Composition in Individuals with Obesity According to Age and Sex: A Cross-Sectional Study. Journal of Clinical Medicine, 9(4), 1188. https://doi.org/10.3390/jcm9041188