Prevalence of Undiagnosed Obstructive Sleep Apnea Among Patients Hospitalized for Cardiovascular Disease and Associated In-Hospital Outcomes: A Scoping Review
Abstract
:1. Background
- 1.
- Among adult inpatients (≥18 years old) hospitalized for cardiovascular disease, what is the overall prevalence of OSA?
- 2.
- What are the in-hospital outcomes associated with OSA in adult inpatients hospitalized for cardiovascular disease?
- 3.
- What is the proportion of patients with OSA who receive treatment while hospitalized for cardiovascular disease?
2. Methods
2.1. Eligibility Criteria
2.2. Study Selection
2.3. Search Strategy
2.4. Data Extraction
2.5. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Prevalence of OSA Among Hospitalized Cardiac Inpatients
4. In-Hospital Outcomes of Cardiac Patients with OSA
4.1. In-Hospital Mortality
4.2. Length of Stay
4.3. Composite Cardiac Complications
4.4. Left Ventricular Ejection Fraction (LVEF)
4.5. Cardiac Biomarkers: Troponin, B-Type Natriuretic Peptide
4.6. Resource Utilization
4.7. CPAP Usage
5. Discussion
5.1. Prevalence of OSA Among Hospitalized CVD Patients
5.2. Reported In-Hospital Outcomes of OSA Patients Hospitalized for Cardiovascular Disease
5.3. OSA Treatment During Hospitalization
5.4. Future Directions
5.5. Limitations
6. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACS | acute coronary syndromes |
AHI | apnea hypopnea index |
BNP | b-type natriuretic peptide |
CHF | congestive heart failure |
CPAP | continuous positive airway pressure |
CSA | central sleep apnea |
CVD | cardiovascular disease |
HF | heart failure |
ICD-CM-9 | international classification of diseases, clinical modification 9th edition |
LOS | length of stay; |
LVEF | left ventricular ejection fraction |
MACE | major adverse cardiovascular events |
NSTEMI | non-ST elevation myocardial infarction |
OSA | obstructive sleep apnea |
PAP | positive airway pressure |
SDB | sleep-disordered breathing |
STEMI | ST-elevation myocardial infarction |
References
- Peppard, P.E.; Young, T.; Barnet, J.H.; Palta, M.; Hagen, E.W.; Hla, K.M. Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 2013, 177, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Arzt, M.; Woehrle, H.; Oldenburg, O.; Graml, A.; Suling, A.; Erdmann, E.; Teschler, H.; Wegscheider, K. Prevalence and Predictors of Sleep-Disordered Breathing in Patients with Stable Chronic Heart Failure: The SchlaHF Registry. JACC Heart Fail. 2016, 4, 116–125. [Google Scholar] [CrossRef]
- Lee, C.H.; Khoo, S.M.; Tai, B.C.; Chong, E.Y.; Lau, C.; Than, Y.; Shi, D.X.; Lee, L.C.; Kailasam, A.; Low, A.F.; et al. Obstructive sleep apnea in patients admitted for acute myocardial infarction. Prevalence, predictors, and effect on microvascular perfusion. Chest 2009, 135, 1488–1495. [Google Scholar] [CrossRef]
- Punjabi, N.M.; Caffo, B.S.; Goodwin, J.L.; Gottlieb, D.J.; Newman, A.B.; O’Connor, G.T.; Rapoport, D.M.; Redline, S.; Resnick, H.E.; Robbins, J.A.; et al. Sleep-disordered breathing and mortality: A prospective cohort study. PLoS Med. 2009, 6, e1000132. [Google Scholar] [CrossRef] [Green Version]
- Konecny, T.; Kuniyoshi, F.H.; Orban, M.; Pressman, G.S.; Kara, T.; Gami, A.; Caples, S.M.; Lopez-Jimenez, F.; Somers, V.K. Under-diagnosis of sleep apnea in patients after acute myocardial infarction. J. Am. Coll. Cardiol. 2010, 56, 742–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Peppard, P.E.; Young, T.; Palta, M.; Skatrud, J. Prospective study of the association between sleep-disordered breathing and hypertension. N. Engl. J. Med. 2000, 342, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Gami, A.S.; Pressman, G.; Caples, S.M.; Kanagala, R.; Gard, J.J.; Davison, D.E.; Malouf, J.F.; Ammash, N.M.; Friedman, P.A.; Somers, V.K. Association of atrial fibrillation and obstructive sleep apnea. Circulation 2004, 110, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Sajkov, D.; Cowie, R.J.; Thornton, A.T.; Espinoza, H.A.; McEvoy, R.D. Pulmonary hypertension and hypoxemia in obstructive sleep apnea syndrome. Am. J. Respir. Crit. Care Med. 1994, 149, 416–422. [Google Scholar] [CrossRef]
- Redline, S.; Yenokyan, G.; Gottlieb, D.J.; Shahar, E.; O’Connor, G.T.; Resnick, H.E.; Diener-West, M.; Sanders, M.H.; Wolf, P.A.; Geraghty, E.M.; et al. Obstructive sleep apnea-hypopnea and incident stroke: The sleep heart health study. Am. J. Respir. Crit. Care Med. 2010, 182, 269–277. [Google Scholar] [CrossRef]
- Gami, A.S.; Howard, D.E.; Olson, E.J.; Somers, V.K. Day-night pattern of sudden death in obstructive sleep apnea. N. Engl. J. Med. 2005, 352, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Chowdhury, A.; Tang, L.; Willes, L.; Glynn, B.; Quan, S.F. Hospitalized Patients at High Risk for Obstructive Sleep Apnea Have More Rapid Response System Events and Intervention Is Associated with Reduced Events. PLoS ONE 2016, 11, e0153790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, P.G.; Zadravecz, F.J.; Edelson, D.P.; Mokhlesi, B.; Churpek, M.M. Obstructive sleep apnea and adverse outcomes in surgical and nonsurgical patients on the wards. J. Hosp. Med. 2015, 10, 592–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Nagappa, M.; Ho, G.; Patra, J.; Wong, J.; Singh, M.; Kaw, R.; Cheng, D.; Chung, F. Postoperative Outcomes in Obstructive Sleep Apnea Patients Undergoing Cardiac Surgery: A Systematic Review and Meta-analysis of Comparative Studies. Anesth. Analg. 2017, 125, 2030–2037. [Google Scholar] [CrossRef]
- Opperer, M.; Cozowicz, C.; Bugada, D.; Mokhlesi, B.; Kaw, R.; Auckley, D.; Chung, F.; Memtsoudis, S.G. Does Obstructive Sleep Apnea Influence Perioperative Outcome? A Qualitative Systematic Review for the Society of Anesthesia and Sleep Medicine Task Force on Preoperative Preparation of Patients with Sleep-Disordered Breathing. Anesth. Analg. 2016, 122, 1321–1334. [Google Scholar] [CrossRef]
- Collop, N.A.; Anderson, W.M.; Boehlecke, B.; Claman, D.; Goldberg, R.; Gottlieb, D.J.; Hudgel, D.; Sateia, M.; Schwab, R. Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. Portable Monitoring Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2007, 3, 737–747. [Google Scholar]
- Gessner, V.; Bitter, T.; Horstkotte, D.; Oldenburg, O.; Fox, H. Impact of sleep-disordered breathing in patients with acute myocardial infarction: A retrospective analysis. J. Sleep Res. 2017, 26, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Leao, S.; Conde, B.; Fontes, P.; Calvo, T.; Afonso, A.; Moreira, I. Effect of Obstructive Sleep Apnea in Acute Coronary Syndrome. Am. J. Cardiol. 2016, 117, 1084–1087. [Google Scholar] [CrossRef]
- Barbé, F.; Durán-Cantolla, J.; Sánchez-de-la-Torre, M.; Martínez-Alonso, M.; Carmona, C.; Barceló, A.; Chiner, E.; Masa, J.F.; Gonzalez, M.; Marín, J.M.; et al. Effect of Continuous Positive Airway Pressure on the Incidence of Hypertension and Cardiovascular Events in Nonsleepy Patients with Obstructive Sleep Apnea: A Randomized Controlled TrialCPAP and Hypertension and Cardiovascular Events. Jama 2012, 307, 2161–2168. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, H.; Kurobe, M.; Minami, K.; Furudono, S.; Uchida, Y.; Amenomori, K.; Nunohiro, T.; Takeshita, S.; Maemura, K. Effects of moderate-to-severe obstructive sleep apnea on the clinical manifestations of plaque vulnerability and the progression of coronary atherosclerosis in patients with acute coronary syndrome. Eur. Heart J. Acute Cardiovasc. Care 2015, 4, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, H.; Katayama, T.; Takagi, C.; Amenomori, K.; Ishizaki, M.; Honda, Y.; Suzuki, S. Obstructive sleep apnoea inhibits the recovery of left ventricular function in patients with acute myocardial infarction. Eur. Heart J. 2006, 27, 2317–2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Broecke, S.; Jobard, O.; Montalescot, G.; Bruyneel, M.; Ninane, V.; Arnulf, I.; Similowski, T.; Attali, V. Very early screening for sleep-disordered breathing in acute coronary syndrome in patients without acute heart failure. Sleep Med. 2014, 15, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Loo, G.; Tan, A.Y.; Koo, C.Y.; Tai, B.C.; Richards, M.; Lee, C.H. Prognostic implication of obstructive sleep apnea diagnosed by post-discharge sleep study in patients presenting with acute coronary syndrome. Sleep Med. 2014, 15, 631–636. [Google Scholar] [CrossRef]
- Szymanski, F.M.; Filipiak, K.J.; Hrynkiewicz-Szymanska, A.; Karpinski, G.; Opolski, G. Clinical characteristics of patients with acute coronary syndrome at high clinical suspicion for obstructive sleep apnea syndrome. Hell. J. Cardiol. 2013, 54, 348–354. [Google Scholar]
- Jia, S.; Zhou, Y.J.; Yu, Y.; Wu, S.J.; Sun, Y.; Wang, Z.J.; Liu, X.L.; King, B.E.; Zhao, Y.X.; Shi, D.M.; et al. Obstructive sleep apnea is associated with severity and long-term prognosis of acute coronary syndrome. J. Geriatr. Cardiol. 2018, 15, 146–152. [Google Scholar] [CrossRef]
- Flores, M.; Martinez-Alonso, M.; Sanchezde-la-Torre, A.; Aldoma, A.; Galera, E.; Barbe, F.; Sanchezde-la-Torre, M.; Dalmases, M. Predictors of long-term adherence to continuous positive airway pressure in patients with obstructive sleep apnoea and acute coronary syndrome. J. Thorac. Dis. 2018, 10, S124–S134. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-de-la-Torre, A.; Soler, X.; Barbe, F.; Flores, M.; Maisel, A.; Malhotra, A.; Rue, M.; Bertran, S.; Aldoma, A.; Worner, F.; et al. Cardiac Troponin Values in Patients with Acute Coronary Syndrome and Sleep Apnea: A Pilot Study. Chest 2018, 153, 329–338. [Google Scholar] [CrossRef]
- Morra, S.; Bughin, F.; Solecki, K.; Aboubadra, M.; Lattuca, B.; Gouzi, F.; Macia, J.C.; Cung, T.T.; Cade, S.; Cransac, F.; et al. Prevalence of obstructive sleep apnoea in acute coronary syndrome: Routine screening in intensive coronary care units. Ann. Cardiol. Angeiol. 2017, 66, 223–229. [Google Scholar] [CrossRef]
- Xie, J.; Sert Kuniyoshi, F.H.; Covassin, N.; Singh, P.; Gami, A.S.; Wang, S.; Chahal, C.A.; Wei, Y.; Somers, V.K. Nocturnal Hypoxemia due to Obstructive Sleep Apnea Is an Independent Predictor of Poor Prognosis after Myocardial Infarction. J. Am. Heart Assoc. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Yumino, D.; Tsurumi, Y.; Takagi, A.; Suzuki, K.; Kasanuki, H. Impact of obstructive sleep apnea on clinical and angiographic outcomes following percutaneous coronary intervention in patients with acute coronary syndrome. Am. J. Cardiol. 2007, 99, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Ludka, O.; Stepanova, R.; Vyskocilova, M.; Galkova, L.; Mikolaskova, M.; Belehrad, M.; Kostalova, J.; Mihalova, Z.; Drozdova, A.; Hlasensky, J.; et al. Sleep apnea prevalence in acute myocardial infarction—The Sleep Apnea in Post-acute Myocardial Infarction Patients (SAPAMI) Study. Int. J. Cardiol. 2014, 176, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauta, S.R.; Keenan, B.T.; Goldberg, L.; Schwab, R.J. Diagnosis and treatment of sleep disordered breathing in hospitalized cardiac patients: A reduction in 30-day hospital readmission rates. J. Clin. Sleep Med. 2014, 10, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Khayat, R.; Jarjoura, D.; Porter, K.; Sow, A.; Wannemacher, J.; Dohar, R.; Pleister, A.; Abraham, W.T. Sleep disordered breathing and post-discharge mortality in patients with acute heart failure. Eur. Heart J. 2015, 36, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Oldenburg, O.; Wellmann, B.; Buchholz, A.; Bitter, T.; Fox, H.; Thiem, U.; Horstkotte, D.; Wegscheider, K. Nocturnal hypoxaemia is associated with increased mortality in stable heart failure patients. Eur. Heart J. 2016, 37, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Suda, S.; Kasai, T.; Matsumoto, H.; Shiroshita, N.; Kato, M.; Kawana, F.; Yatsu, S.; Murata, A.; Kato, T.; Hiki, M.; et al. Prevalence and Clinical Correlates of Sleep-Disordered Breathing in Patients Hospitalized with Acute Decompensated Heart Failure. Can. J. Cardiol. 2018, 34, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Arikawa, T.; Toyoda, S.; Haruyama, A.; Amano, H.; Inami, S.; Otani, N.; Sakuma, M.; Taguchi, I.; Abe, S.; Node, K.; et al. Impact of Obstructive Sleep Apnoea on Heart Failure with Preserved Ejection Fraction. Heart Lung Circ. 2016, 25, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Ohmura, T.; Iwama, Y.; Kasai, T.; Kato, T.; Suda, S.; Takagi, A.; Daida, H. Impact of predischarge nocturnal pulse oximetry (sleep-disordered breathing) on postdischarge clinical outcomes in hospitalized patients with left ventricular systolic dysfunction after acute decompensated heart failure. Am. J. Cardiol. 2014, 113, 697–700. [Google Scholar] [CrossRef]
- Mohananey, D.; Villablanca, P.A.; Gupta, T.; Agrawal, S.; Faulx, M.; Menon, V.; Kapadia, S.R.; Griffin, B.P.; Ellis, S.G.; Desai, M.Y. Recognized Obstructive Sleep Apnea is Associated with Improved In-Hospital Outcomes after ST Elevation Myocardial Infarction. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef]
- Andrechuk, C.R.; Ceolim, M.F. Sleep quality and adverse outcomes for patients with acute myocardial infarction. J. Clin. Nurs. 2016, 25, 223–230. [Google Scholar] [CrossRef]
- Marin, J.M.; Carrizo, S.J.; Kogan, I. Obstructive sleep apnea and acute myocardial infarction: Clinical implications of the association. Sleep 1998, 21, 809–815. [Google Scholar] [PubMed] [Green Version]
- Sommerfeld, A.; Althouse, A.D.; Prince, J.; Atwood, C.W.; Mulukutla, S.R.; Hickey, G.W. Obstructive sleep apnea is associated with increased readmission in heart failure patients. Clin. Cardiol. 2017, 40, 873–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferber, R.; Millman, R.; Coppola, M.; Fleetham, J.; Murray, C.F.; Iber, C.; McCall, W.V.; Nino-Murcia, G.; Pressman, M.; Sanders, M. Portable recording in the assessment of obstructive sleep apnea. ASDA standards of practice. Sleep 1994, 17, 378–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meliana, V.; Chung, F.; Li, C.K.; Singh, M. Interpretation of sleep studies for patients with sleep-disordered breathing: What the anesthesiologist needs to know. Can. J. Anesth. J. Can. D’anesthésie 2018, 65, 60–75. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.B.B.R.; Gamaldo, C.E. For the American Academy of Sleep Medicine. In The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Version 2.4; American Academy of Sleep Medicine: Darien, IL, USA, 2017; Available online: https://aasm.org/clinical-resources/scoring-manual (accessed on 20 December 2019).
- Chung, F.; Liao, P.; Elsaid, H.; Islam, S.; Shapiro, C.M.; Sun, Y. Oxygen desaturation index from nocturnal oximetry: A sensitive and specific tool to detect sleep-disordered breathing in surgical patients. Anesth. Analg. 2012, 114, 993–1000. [Google Scholar] [CrossRef]
- Barbe, F.; Sanchez-De-la-torre, A.; Abad, J.; Duran-Cantolla, J.; Mediano, O.; Amilibia, J.; Masdeu, M.J.; Flores, M.; Barcelo, A.; De La Pena, M.; et al. Effect of obstructive sleep apnoea on severity and short-term prognosis of acute coronary syndrome. Eur. Respir. J. 2015, 45, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Nishihata, Y.; Takata, Y.; Usui, Y.; Kato, K.; Yamaguchi, T.; Shiina, K.; Yamashina, A. Continuous positive airway pressure treatment improves cardiovascular outcomes in elderly patients with cardiovascular disease and obstructive sleep apnea. Heart Vessel. 2015, 30, 61–69. [Google Scholar] [CrossRef]
- Huang, Z.; Zheng, Z.; Luo, Y.; Li, S.; Zhu, J.; Liu, J. Prevalence of sleep-disordered breathing in acute coronary syndrome: A systemic review and meta-analysis. Sleep Breath. 2017, 21, 217–226. [Google Scholar] [CrossRef]
- Chiu, H.-Y.; Chen, P.-Y.; Chuang, L.-P.; Chen, N.-H.; Tu, Y.-K.; Hsieh, Y.-J.; Wang, Y.-C.; Guilleminault, C. Diagnostic accuracy of the Berlin questionnaire, STOP-BANG, STOP, and Epworth sleepiness scale in detecting obstructive sleep apnea: A bivariate meta-analysis. Sleep Med. Rev. 2017, 36, 57–70. [Google Scholar] [CrossRef]
- McIsaac, D.I.; Gershon, A.; Wijeysundera, D.; Bryson, G.L.; Badner, N.; van Walraven, C. Identifying Obstructive Sleep Apnea in Administrative DataA Study of Diagnostic Accuracy. Anesthesiology 2015, 123, 253–263. [Google Scholar] [CrossRef]
- Poeran, J.; Cozowicz, C.; Chung, F.; Mokhlesi, B.; Ramachandran, S.-K.; Memtsoudis, S.G. Suboptimal Diagnostic Accuracy of Obstructive Sleep Apnea in One Database Does not Invalidate Previous Observational Studies. Anesthesiology 2016, 124, 1192–1193. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.D.; Floras, J.S. Obstructive sleep apnoea and its cardiovascular consequences. Lancet 2009, 373, 82–93. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.-Y.; Zhang, Y.; Nie, S.-P.; Wei, Y.-X. Association of obstructive sleep apnea with cardiovascular outcomes after percutaneous coronary intervention: A systematic review and meta-analysis. Medicine 2018, 97, e0621. [Google Scholar] [CrossRef] [PubMed]
- Bolona, E.; Hahn, P.Y.; Afessa, B. Intensive care unit and hospital mortality in patients with obstructive sleep apnea. J. Crit. Care 2015, 30, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, Z.-H.; Yang, H.-T. Calcium/calmodulin-dependent protein kinase II mediates cardioprotection of intermittent hypoxia against ischemic-reperfusion-induced cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H735–H742. [Google Scholar] [CrossRef] [PubMed]
- Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74, 1124–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozeke, O.; Ozer, C.; Gungor, M.; Celenk, M.K.; Dincer, H.; Ilicin, G. Chronic intermittent hypoxia caused by obstructive sleep apnea may play an important role in explaining the morbidity-mortality paradox of obesity. Med. Hypotheses 2011, 76, 61–63. [Google Scholar] [CrossRef]
- Shah, N.; Redline, S.; Yaggi, H.K.; Wu, R.; Zhao, C.G.; Ostfeld, R.; Menegus, M.; Tracy, D.; Brush, E.; Appel, W.D.; et al. Obstructive sleep apnea and acute myocardial infarction severity: Ischemic preconditioning? Sleep Breath. 2013, 17, 819–826. [Google Scholar] [CrossRef]
- Steiner, S.; Schueller, P.O.; Schulze, V.; Strauer, B.E. Occurrence of Coronary Collateral Vessels in Patients with Sleep Apnea and Total Coronary Occlusion. Chest 2010, 137, 516–520. [Google Scholar] [CrossRef]
- Romero-Corral, A.; Montori, V.M.; Somers, V.K.; Korinek, J.; Thomas, R.J.; Allison, T.G.; Mookadam, F.; Lopez-Jimenez, F. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: A systematic review of cohort studies. Lancet 2006, 368, 666–678. [Google Scholar] [CrossRef]
- Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and Cardiovascular Disease: Risk Factor, Paradox, and Impact of Weight Loss. J. Am. Coll. Cardiol. 2009, 53, 1925–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spurr, K.F.; Graven, M.A.; Gilbert, R.W. Prevalence of unspecified sleep apnea and the use of continuous positive airway pressure in hospitalized patients, 2004 National Hospital Discharge Survey. Sleep Breath. 2008, 12, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Spurr, K.; Morrison, D.L.; Graven, M.A.; Webber, A.; Gilbert, R.W. Analysis of hospital discharge data to characterize obstructive sleep apnea and its management in adult patients hospitalized in Canada: 2006 to 2007. Can. Respir. J. 2010, 17, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Peker, Y.; Glantz, H.; Eulenburg, C.; Wegscheider, K.; Herlitz, J.; Thunström, E. Effect of Positive Airway Pressure on Cardiovascular Outcomes in Coronary Artery Disease Patients with Nonsleepy Obstructive Sleep Apnea. The RICCADSA Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.K.; Bakker, J.P.; McSharry, D.G.; Desai, A.S.; Javaheri, S.; Malhotra, A. Adaptive servoventilation for treatment of sleep-disordered breathing in heart failure: A systematic review and meta-analysis. Chest 2012, 142, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
- Egea, C.J.; Aizpuru, F.; Pinto, J.A.; Ayuela, J.M.; Ballester, E.; Zamarron, C.; Sojo, A.; Montserrat, J.M.; Barbe, F.; Alonso-Gomez, A.M.; et al. Cardiac function after CPAP therapy in patients with chronic heart failure and sleep apnea: A multicenter study. Sleep Med. 2008, 9, 660–666. [Google Scholar] [CrossRef]
- Mansfield, D.R.; Gollogly, N.C.; Kaye, D.M.; Richardson, M.; Bergin, P.; Naughton, M.T. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am. J. Respir. Crit. Care Med. 2004, 169, 361–366. [Google Scholar] [CrossRef]
- Kaneko, Y.; Floras, J.S.; Usui, K.; Plante, J.; Tkacova, R.; Kubo, T.; Ando, S.; Bradley, T.D. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N. Engl. J. Med. 2003, 348, 1233–1241. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Mather, P.; Efird, J.T.; Kahn, D.; Cheema, M.; Rubin, S.; Reeves, G.; Bonita, R.; Malloy, R.; Whellan, D.J. Photoplethysmographic Signal to Screen Sleep-Disordered Breathing in Hospitalized Heart Failure Patients: Feasibility of a Prospective Clinical Pathway. JACC Heart Fail. 2015, 3, 725–731. [Google Scholar] [CrossRef]
- Liao, P.; Luo, Q.; Elsaid, H.; Kang, W.; Shapiro, C.M.; Chung, F. Perioperative auto-titrated continuous positive airway pressure treatment in surgical patients with obstructive sleep apnea: A randomized controlled trial. Anesthesiology 2013, 119, 837–847. [Google Scholar] [CrossRef] [Green Version]
- Schiza, S.E.; Simantirakis, E.; Bouloukaki, I.; Mermigkis, C.; Kallergis, E.M.; Chrysostomakis, S.; Arfanakis, D.; Tzanakis, N.; Vardas, P.; Siafakas, N.M. Sleep disordered breathing in patients with acute coronary syndromes. J. Clin. Sleep Med. 2012, 8, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Yumino, D.; Redolfi, S.; Ruttanaumpawan, P.; Su, M.-C.; Smith, S.; Newton, G.E.; Mak, S.; Bradley, T.D. Nocturnal rostral fluid shift: A unifying concept for the pathogenesis of obstructive and central sleep apnea in men with heart failure. Circulation 2010, 121, 1598–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, T.; Nagappa, M.; Wong, J.; Singh, M.; Wong, D.; Chung, F. Continuous Pulse Oximetry and Capnography Monitoring for Postoperative Respiratory Depression and Adverse Events: A Systematic Review and Meta-analysis. Anesth. Analg. 2017, 125, 2019–2029. [Google Scholar] [CrossRef] [PubMed]
Reference/Country | Study Design/CVD Dx | OSA Dx Method/ Threshold | Timing of OSA Testing | Subgroup, n (%) | AHI |
---|---|---|---|---|---|
Gessner 2017 [18] | Retrospective Cohort | Type 2 | ≤3 d post admission | OSA, 91 (41) | 23 |
Germany | ACS | AHI ≥ 5 | non-OSA, 132 (59) | NR | |
Leao 2016 [19] | Prospective Cohort | Type 1 | 55 (31–77) d post admission | OSA, 46 (63) | 30.6 ± 23.0 |
Portugal | ACS | AHI ≥ 5 | non-OSA, 27 (37) | 2.3 ± 3.2 | |
Barbé 2015 [20] | RCT (ancillary) | Type 3 | ≤48 h post admission | OSA, 213 (49) | 30.6 ± 14.4 |
Spain | ACS | AHI > 15 | non-OSA, 218 (51) | 6.4 ± 4.2 | |
Nakashima 2015 [21] | Prospective cohort | Type 1 | prior to discharge | OSA, 124 (46) | NR |
Japan | ACS | AHI ≥ 15 | non-OSA, 148 (54) | NR | |
Nakashima 2006 | Prospective cohort | Type 1 | 14–21 d post admission | OSA, 37 (43) | 31.7 ± 13.6 |
Japan [22] | ACS | AHI ≥ 15 | non-OSA, 49 (57) | 5.8 ± 4.2 | |
Van den Broecke 2014 [23] | Prospective cohort | Type 2 | ≤48 h post admission | OSA, 4 (15) | 24.7 ± 19.5 |
France | ACS | AHI ≥ 15 | non-OSA, 23 (85) | 2.5 ± 1.9 | |
Loo 2014 [24] | Prospective cohort | Type 3 | 30 d post discharge | OSA, 24 (35) | 24.0 (16.9–52.0) |
France | ACS | AHI ≥ 15 | non-OSA, 44 (65) | 4.9 (0.3–14.9) | |
Szymanski 2013 [25] | Prospective cohort | Type 3 | during hospitalization | OSA, 48 (30) | NR |
Poland | ACS | AHI ≥ 5 | non-OSA, 109 (70) | NR | |
Lee 2009 [3] | Prospective cohort | Type 2 | between day 2–5 post PCI | OSA, 69 (66) | 38.1 |
Singapore | ACS | AHI ≥ 15 | non-OSA, 36 (34) | 8.5 | |
Jia 2018 [26] | Prospective Cohort | Type 2 | 48–72 h post admission | OSA, 373 (70) | 37.2 ± 16.9 |
China | ACS | AHI > 15 | non-OSA, 159 (30) | 9.4 ± 3.4 | |
Flores 2018 [27] | RCT (ancillary) | Type 3 | 24–72 h post admission | OSA, 731 (43) | 34 (4.4–51.3) |
Spain | ACS | AHI ≥ 5 | non-OSA, 983 (57) | NR | |
Sanchez-de-la-Torre 2018 [28] | Prospective cohort (ancillary) | Type 3 | 24–72 h post admission | OSA, 89 (43) | 32.0 (20.8–46.6) |
Spain | ACS | AHI ≥ 15 | non-OSA, 119 (57) | 4.8 (1.6–9.6) | |
Morra 2017 [29] | Prospective cohort study | Type 3 | 24–72 h post admission | OSA, 62 (61) | NR |
France | ACS | AHI ≥ 5 | non-OSA, 39 (39) | NR | |
Xie 2016 [30] | Prospective cohort | Type 2 | median 7 day post MI | OSA, 40 (41) | 42.5 (33.1–52.6) |
USA | ACS | AHI ≥ 15 | non-OSA, 58 (59) | 30.0 (20.5–41.6) | |
Yumino 2007 [31] | Prospective cohort | Type 3 | 7–14 d post PCI | OSA, 51 (57) | 20.2 ± 10.9 |
Japan | ACS | AHI ≥ 10 | non-OSA, 38 (43) | 5.0 ± 3.2 | |
Ludka 2014 [32] | Prospective cohort | Type 3 | ≥48 h post admission | OSA, 399 (66) | NR |
Czech Republic | ACS | AHI≥5 | non-OSA, 208 (34) | NR | |
Kauta 2014 [33] | Prospective cohort | Type 3 | during hospitalization | OSA, 65 (63) | 24.7 ± 19.5 |
USA | CVD | AHI ≥ 5 | non-OSA, 39 (37) | 2.5 ± 1.9 | |
Khayat 2015 [34] | Prospective cohort | Type 2 | during hospitalization | OSA, 525 (47) | 36 ± 16 |
USA | HF | AHI ≥ 15 | non-OSA, 592 (53) | 9.5 ± 4.3 | |
Omran 2018 [35] | Retrospective cohort | Type 3 | during hospitalization | OSA, 62 (37) | 31.6 ± 15.9 |
Germany | HF | AHI ≥ 15 | non-OSA, 105 (63) | 8.8 ± 3.4 | |
Suda 2018 [36] | Prospective cohort | Type 3 | 3 d (median) after initial clinical improvement | OSA, 28 (27) | NR |
Japan | HF | AHI ≥ 5 | non-OSA, 77 (73) | NR | |
Arikawa 2009 [37] | Prospective cohort | Type 4 | during hospitalization | OSA, 21 (43) | NA |
Japan | HF | ODI ≥ 5 | non-OSA, 28 (57) | NA | |
Ohmura 2014 [38] | Prospective cohort | Type 4 | after clinical improvement | OSA, 41 (41) | NA |
Japan | HF | ODI ≥ 5 | non-OSA, 59 (59) | NA | |
Mohananey 2017 [39] | Retrospective cohort | Chart review | NA | OSA, 24623 (1.3) | NA |
United States | ACS | ICD-9CM 327.23 | non-OSA, 1826002 (98.7) | NA | |
Andrechuk 2016 [40] | Prospective cohort | BQ | ≤72 h post admission | OSA, 68 (60) | NA |
Brazil | ACS | BQ+ ≥ 2 categories | non-OSA, 45 (40) | NA | |
Marin 1998 [41] | Prospective cohort | Clinical+oximetry | within 24 h post admission | OSA, 55 (22) | NA |
Spain | ACS | heavy snorers, reported EDS, ODI > 10 | non-OSA, 196 (78) | NA | |
Sommerfeld 2017 [42] | Prospective cohort | Chart review | NA | OSA, 99 (29) | NA |
USA | HF | non-OSA, 245 (61) | NA |
Reference | Cardiac Dx | Outcome OSA | Outcome Non-OSA/Control | Comments |
---|---|---|---|---|
In-Hospital Mortality | ||||
Mohananey 2017 [39] | ACS | 3.7% | 7.4% | aOR, 0.83 (95% CI, 0.81–0.84); p < 0.001 |
Barbe 2015 [20] | ACS | 0.70% | 0% | p = 0.29, ns |
Szymanski 2013 [25] | ACS | 7.40% | 1% | p = 0.03. High vs. low suspicion of OSA |
Marin 1998 [41] | ACS | 12.7% | 10.2% | ns |
Length of Stay (days) | ||||
Mohananey 2017 [39] | ACS | 5 ± 4.68 | 4.85 ± 5.96 | p < 0.001 |
Leao 2016 [19] | ACS | 5.5 (IQR 5–9) | 7 (IQR 3.8–7.5) | p = 0.292, ns |
Khayat 2015 [34] | HF | 9 ± 11.4 | 7.2 ± 8 | p < 0.05 |
Barbe 2015 [20] | ACS | 6.8 ± 3.8 CCU: 2.6 ± 1.3 | 6.5 ± 3.7 CCU: 2.3 ± 1.0 | ns p < 0.05 |
Szymanski 2013 [25] | ACS | 10.4 ± 5.2 | 8.7 ± 4 | p = 0.016. High vs. low suspicion of OSA |
Jia 2018 [26] | ACS | 8 ± 5.6 | 6.7 ± 4.2 | p = 0.007 |
Sommerfeld 2017 [42] | HF | 6.2 ± 5.9 | 5.5 ± 4.8 | p = 0.235 |
Ohmura 2014 [38] | HF | 15 ± 10 | 16 ± 10 | p = 0.804 |
Left Ventricular Ejection Fraction (LVEF) | ||||
Gessner 2017 [18] | ACS | 50 ± 12% | 57 ± 7% | p = n/a |
Khayat 2015 [34] | HF | 26.3 ± 10.5% | 29.5 ± 10.4% | p < 0.05 |
Barbe 2015 [47] | ACS | 54.8 ± 11.6% | 57 ± 9.5% | ns. OSA associated with LVEF < 51.5% (OR 2.05, p = 0.04) |
Leao 2016 [19] | ACS | 49.4 ± 9.2% | 51.2 ± 8.7 | p = 0.462, ns |
Loo 2014 [24] | ACS | 52 ± 13.9 | 52 ± 11.4 | p = 0.989 |
Morra 2017 [29] | ACS | 51.5 ± 6.2 | 52.7 ± 6.4 | ns |
Nakashima 2006 [22] | ACS | Baseline: 54 ± 12 Day 21: 52 ± 12 | 53 ± 12 59 ± 13 | ns p = 0.022 |
Ohmura 2014 [38] | HF | 28±10 | 30 ± 10 | p = 0.444 |
Cardiovascular Complications | ||||
Barbe 2015 [47] | ACS | 8.1% | 9.8% | Ns |
Marin 1998 [41] | ACS | 38.2% | 34.2% | Ns. Rate of ventricular arrhythmias higher in OSA vs. non-OSA |
Peak Troponin | ||||
Gessner 2017 [18] | ACS | 37791 ± 52652 ng/L | 5368 ± 4357 ng/L | p = n/a |
Leao 2016 [19] | ACS | 27.7 ± 36.3 ng/mL | 28 ± 34.8 ng/mL | p = 0.974, ns |
Loo 2014 [24] | ACS: | 54 (IQR 7.8–80.0) ug/L | 80.0 (IQR 0.3–80.0) ug/L | 0.345, ns |
Jia 2018 [26] | ACS | 9.7 ± 9.7 ng/mL | 8.3 ± 8.3 ng/mL | p = 0.534 |
Sanchez-de-la-Torre 2018 [28] | ACS | 3.79 (IQR 0.37–243) ng/mL | 10.70 (1.78–40.1) ng/mL | p = 0.04. Higher # stents placed in OSA vs. non-OSA |
Morra 2017 [29] | ACS | 3685 ± 3576 ng/L | 2830 ± 3333 ng/L | p = 0.08 |
Barbe 2015 [47] | ACS | 987.2 ± 884.9 ng/L | 831.7 ± 908. 4 ng/L | p = 0.002, Regression modelling shows increased peak Troponin with increasing AHI |
Peak BNP | ||||
Gessner 2017 [18] | ACS | 241 ± 308 pg/ml | 177 ± 261 pg/ml | p = n/a |
Szymanski 2013 [25] | ACS | 153.2 ± 153.2 pg/mL | 22.2 ± 22.2 pg/mL | p = 0.0001. High vs. low suspicion of OSA |
Jia 2018 [26] | ACS | 90.8 ± 240.1 pg/mL | 60.3 ± 139 pg/mL | p = 0.068 |
Ohmura 2014 [38] | HF | 206 ± 206 | 147 ± 138 | p = 0.101 |
Resource utilization | ||||
Mohananey 2017 [39] | ACS | $79 460.12 ± 70 621.91 | $62 889.91 ± 69 124.15 | p < 0.001 |
Reference | % CPAP Use | Compliance (%) * | Findings |
---|---|---|---|
Leao 2016 [19] | 100 (study design) | 41 | PSG and CPAP prescribed after clinical stabilization. CPAP compliant group associated with fewer CV events and less severe ones at 75 months follow-up (RR 0.87, 95% CI 0.31 to 2.46, p = 0.798). |
Nakashima 2015 [21] | 59 | NR | After admission – PSG and CPAP prescribed. Mean follow-up duration 4.4 yrs. Although CPAP treatment decreased the incidence of ACS recurrence and MACEs, these differences were not significant (9% vs. 23%, p = 0.056; 14% vs. 31%, p = 0.053, respectively). Similarly, ACS- and MACE-free survival estimates were not different between patients with and without CPAP treatment (log rank p = 0.129; p = 0.129, respectively). |
Nishihata 2015 [48] | 49 | NR | Retrospective study of patients with PSG after hospitalization for CVD. CPAP vs. no-CPAP compared. Nightly CPAP use 5.0 ± 1.7 h |
Kauta 2014 [33] | 62 | 45 | In-hospital PSG, followed by 50 patients prescribed CPAP after admission. Decreased proportion of 30-day hospital readmission for HF in compliant CPAP users vs. non-compliant. |
Xie 2016 [30] | 8.2 | NR | CPAP users excluded from analysis |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suen, C.; Wong, J.; Ryan, C.M.; Goh, S.; Got, T.; Chaudhry, R.; Lee, D.S.; Chung, F. Prevalence of Undiagnosed Obstructive Sleep Apnea Among Patients Hospitalized for Cardiovascular Disease and Associated In-Hospital Outcomes: A Scoping Review. J. Clin. Med. 2020, 9, 989. https://doi.org/10.3390/jcm9040989
Suen C, Wong J, Ryan CM, Goh S, Got T, Chaudhry R, Lee DS, Chung F. Prevalence of Undiagnosed Obstructive Sleep Apnea Among Patients Hospitalized for Cardiovascular Disease and Associated In-Hospital Outcomes: A Scoping Review. Journal of Clinical Medicine. 2020; 9(4):989. https://doi.org/10.3390/jcm9040989
Chicago/Turabian StyleSuen, Colin, Jean Wong, Clodagh M. Ryan, Samuel Goh, Tiffany Got, Rabail Chaudhry, Douglas S. Lee, and Frances Chung. 2020. "Prevalence of Undiagnosed Obstructive Sleep Apnea Among Patients Hospitalized for Cardiovascular Disease and Associated In-Hospital Outcomes: A Scoping Review" Journal of Clinical Medicine 9, no. 4: 989. https://doi.org/10.3390/jcm9040989
APA StyleSuen, C., Wong, J., Ryan, C. M., Goh, S., Got, T., Chaudhry, R., Lee, D. S., & Chung, F. (2020). Prevalence of Undiagnosed Obstructive Sleep Apnea Among Patients Hospitalized for Cardiovascular Disease and Associated In-Hospital Outcomes: A Scoping Review. Journal of Clinical Medicine, 9(4), 989. https://doi.org/10.3390/jcm9040989