The Use of a Virtual Reality Platform for the Assessment of the Memory Decline and the Hippocampal Neural Injury in Subjects with Mild Cognitive Impairment: The Validity of Smart Aging Serious Game (SASG)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruited Sample
2.2. Neuropsychological Evaluation
2.3. Serious Game Task: The Smart Aging Serious Game (SASG)
2.4. MRI Acquisition and Analysis
2.5. Statistical Analyses
3. Results
3.1. Demographics and SASG Usability
3.2. Neuropsychological Assessment Results
3.3. SASG Results
3.4. SASG, MoCA and Hippocampal Volume
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pratt, D.R.; Zyda, M.; Kelleher, K. Virtual reality: In the mind of the beholder. IEEE Computer 1995, 7, 17–19. [Google Scholar]
- Realdon, O.; Rossetto, F.; Nalin, M.; Baroni, I.; Cabinio, M.; Fioravanti, R.; Saibene, F.L.; Alberoni, M.; Mantovani, F.; Romano, M.; et al. Technology-enhanced multi-domain at home continuum of care program with respect to usual care for people with cognitive impairment: The Ability-TelerehABILITation study protocol for a randomized controlled trial. BMC Psychiatry 2016, 16, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiederhold, B.K.; Riva, G. Virtual reality therapy: emerging topics and future challenges. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Colombo, D.; Fernandez-Alvarez, J.; Patane, A.; Semonella, M.; Kwiatkowska, M.; Garcia-Palacios, A.; Cipresso, P.; Riva, G.; Botella, C. Current state and future directions of technology-based ecological momentary assessment and intervention for major depressive disorder: A systematic review. J. Clin. Med. 2019, 8, 465. [Google Scholar] [CrossRef] [Green Version]
- Realdon, O.; Serino, S.; Savazzi, F.; Rossetto, F.; Cipresso, P.; Parsons, T.D.; Cappellini, G.; Mantovani, F.; Mendozzi, L.; Nemni, R.; et al. An ecological measure to screen executive functioning in MS: The Picture interpretation test (PIT) 360 degrees. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zucchella, C.; Capone, A.; Codella, V.; Vecchione, C.; Buccino, G.; Sandrini, G.; Pierelli, F.; Bartolo, M. Assessing and restoring cognitive functions early after stroke. Funct. Neurol. 2014, 29, 255–262. [Google Scholar] [CrossRef]
- Zucchella, C.; Sinforiani, E.; Tassorelli, C.; Cavallini, E.; Tost-Pardell, D.; Grau, S.; Pazzi, S.; Puricelli, S.; Bernini, S.; Bottiroli, S.; et al. Serious games for screening pre-dementia conditions: From virtuality to reality? A pilot project. Funct. Neurol. 2014, 29, 153–158. [Google Scholar]
- Fabbri, L.; Mosca, I.E.; Gerli, F.; Martini, L.; Pancani, S.; Lucidi, G.; Savazzi, F.; Baglio, F.; Vannetti, F.; Macchi, C. GOAL working group the games for older adults active life (GOAL) project for people with mild cognitive impairment and vascular cognitive impairment: A study protocol for a randomized controlled trial. Front. Neurol. 2019, 9, 1040. [Google Scholar] [CrossRef] [Green Version]
- Serino, S.; Baglio, F.; Rossetto, F.; Realdon, O.; Cipresso, P.; Parsons, T.D.; Cappellini, G.; Mantovani, F.; De Leo, G.; Nemni, R.; et al. Picture interpretation test (PIT) 360 degrees: An innovative measure of executive functions. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Bottiroli, S.; Tassorelli, C.; Lamonica, M.; Zucchella, C.; Cavallini, E.; Bernini, S.; Sinforiani, E.; Pazzi, S.; Cristiani, P.; Vecchi, T.; et al. Smart aging platform for evaluating cognitive functions in aging: A comparison with the MoCA in a normal population. Front. Aging Neurosci. 2017, 9, 1–14. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Hampel, H.; Molinuevo, J.L.; Blennow, K.; DeKosky, S.T.; Gauthier, S.; Selkoe, D.; Bateman, R.; et al. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol. 2014, 13, 614–629. [Google Scholar] [CrossRef]
- Robert, P.H.; Konig, A.; Amieva, H.; Andrieu, S.; Bremond, F.; Bullock, R.; Ceccaldi, M.; Dubois, B.; Gauthier, S.; Kenigsberg, P.A.; et al. Recommendations for the use of serious games in people with alzheimer’s disease, related disorders and frailty. Front. Aging Neurosci. 2014, 6, 54. [Google Scholar] [CrossRef] [PubMed]
- Valladares-Rodriguez, S.; Perez-Rodriguez, R.; Anido-Rifon, L.; Fernandez-Iglesias, M. Trends on the application of serious games to neuropsychological evaluation: A scoping review. J. Biomed. Inform. 2016, 64, 296–319. [Google Scholar] [CrossRef] [PubMed]
- Savazzi, F.; Isernia, S.; Jonsdottir, J.; Di Tella, S.; Pazzi, S.; Baglio, F. Design and implementation of a serious game on neurorehabilitation: Data on modifications of functionalities along implementation releases. Data Brief. 2018, 20, 864–869. [Google Scholar] [CrossRef]
- Savazzi, F.; Isernia, S.; Jonsdottir, J.; Di Tella, S.; Pazzi, S.; Baglio, F. Engaged in learning neurorehabilitation: Development and validation of a serious game with user-centered design. Comput. Educ. 2018, 125, 53–61. [Google Scholar] [CrossRef]
- Cipresso, P.; Albani, G.; Serino, S.; Pedroli, E.; Pallavicini, F.; Mauro, A.; Riva, G. Virtual multiple errands test (VMET): A virtual reality-based tool to detect early executive functions deficit in Parkinson’s disease. Front. Behav. Neurosci. 2014, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Plancher, G.; Tirard, A.; Gyselinck, V.; Nicolas, S.; Piolino, P. Using virtual reality to characterize episodic memory profiles in amnestic mild cognitive impairment and Alzheimer’s disease: Influence of active and passive encoding. Neuropsychologia 2012, 50, 592–602. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kho, S.; Yoo, H.B.; Park, S.; Choi, J.S.; Kwon, J.S.; Cha, K.R.; Jung, H.Y. Spatial memory impairments in amnestic mild cognitive impairment in a virtual radial arm maze. Neuropsychiatr. Dis. Treat. 2014, 10, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Manera, V.; Petit, P.D.; Derreumaux, A.; Orvieto, I.; Romagnoli, M.; Lyttle, G.; David, R.; Robert, P.H. ‘Kitchen and cooking,’ a serious game for mild cognitive impairment and Alzheimer’s disease: A pilot study. Front. Aging Neurosci. 2015, 7, 24. [Google Scholar] [CrossRef]
- Fukui, Y.; Yamashita, T.; Hishikawa, N.; Kurata, T.; Sato, K.; Omote, Y.; Kono, S.; Yunoki, T.; Kawahara, Y.; Hatanaka, N.; et al. Computerized touch-panel screening tests for detecting mild cognitive impairment and Alzheimer’s disease. Intern. Med. 2015, 54, 895–902. [Google Scholar] [CrossRef] [Green Version]
- Zygouris, S.; Giakoumis, D.; Votis, K.; Doumpoulakis, S.; Ntovas, K.; Segkouli, S.; Karagiannidis, C.; Tzovaras, D.; Tsolaki, M. Can a virtual reality cognitive training application fulfill a dual role? Using the virtual supermarket cognitive training application as a screening tool for mild cognitive impairment. J. Alzheimers Dis. 2015, 44, 1333–1347. [Google Scholar] [CrossRef] [PubMed]
- Allain, P.; Foloppe, D.A.; Besnard, J.; Yamaguchi, T.; Etcharry-Bouyx, F.; Le Gall, D.; Nolin, P.; Richard, P. Detecting everyday action deficits in Alzheimer’s disease using a nonimmersive virtual reality kitchen. J. Int. Neuropsychol. Soc. 2014, 20, 468–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manera, V.; Ben-Sadoun, G.; Aalbers, T.; Agopyan, H.; Askenazy, F.; Benoit, M.; Bensamoun, D.; Bourgeois, J.; Bredin, J.; Bremond, F.; et al. Recommendations for the use of serious games in neurodegenerative disorders: 2016 Delphi panel. Front. Psychol. 2017, 8, 1243. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders (DSM V); American Psychiatric: Washington, DC, USA, 2013. [Google Scholar]
- Stokin, G.B.; Krell-Roesch, J.; Petersen, R.C.; Geda, Y.E. Mild neurocognitive disorder: An old wine in a new bottle. Harv. Rev. Psychiatry 2015, 23, 368–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langa, K.M.; Levine, D.A. The diagnosis and management of mild cognitive impairment: A clinical review. JAMA 2014, 312, 2551–2561. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Author response: Practice guideline update summary: Mild cognitive impairment: Report of the guideline development, dissemination, and implementation subcommittee of the American academy of neurology. Neurology 2018, 91, 373–374. [Google Scholar] [CrossRef]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice guideline update summary: Mild cognitive impairment: Report of the guideline development, dissemination, and implementation subcommittee of the American academy of neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef]
- Martin, S.B.; Smith, C.D.; Collins, H.R.; Schmitt, F.A.; Gold, B.T. Evidence that volume of anterior medial temporal lobe is reduced in seniors destined for mild cognitive impairment. Neurobiol. Aging. 2010, 31, 1099–1106. [Google Scholar] [CrossRef] [Green Version]
- Apostolova, L.G.; Mosconi, L.; Thompson, P.M.; Green, A.E.; Hwang, K.S.; Ramirez, A.; Mistur, R.; Tsui, W.H.; de Leon, M.J. Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiol. Aging. 2010, 31, 1077–1088. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.; Nichols, T.E. Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 2009, 44, 83–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.D.; Chebrolu, H.; Wekstein, D.R.; Schmitt, F.A.; Jicha, G.A.; Cooper, G.; Markesbery, W.R. Brain structural alterations before mild cognitive impairment. Neurology 2007, 68, 1268–1273. [Google Scholar] [CrossRef] [PubMed]
- Whitwell, J.L.; Petersen, R.C.; Negash, S.; Weigand, S.D.; Kantarci, K.; Ivnik, R.J.; Knopman, D.S.; Boeve, B.F.; Smith, G.E.; Jack, C.R., Jr. Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Arch. Neurol. 2007, 64, 1130–1138. [Google Scholar] [CrossRef] [Green Version]
- Devanand, D.P.; Pradhaban, G.; Liu, X.; Khandji, A.; De Santi, S.; Segal, S.; Rusinek, H.; Pelton, G.H.; Honig, L.S.; Mayeux, R.; et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: Prediction of Alzheimer disease. Neurology 2007, 68, 828–836. [Google Scholar] [CrossRef]
- Jack, C.R. Jr.; Petersen, R.C.; Xu, Y.C.; O’Brien, P.C.; Smith, G.E.; Ivnik, R.J.; Boeve, B.F.; Waring, S.C.; Tangalos, E.G.; Kokmen, E. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999, 52, 1397–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaud, T.L.; Su, D.; Siahpush, M.; Murman, D.L. The risk of incident mild cognitive impairment and progression to dementia considering mild cognitive impairment subtypes. Dement. Geriatr. Cogn. Dis. Extra 2017, 7, 15–29. [Google Scholar] [CrossRef]
- Nagamatsu, L.S.; Handy, T.C.; Hsu, C.L.; Voss, M.; Liu-Ambrose, T. Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Arch. Intern. Med. 2012, 172, 666–668. [Google Scholar] [CrossRef]
- Suzuki, T.; Shimada, H.; Makizako, H.; Doi, T.; Yoshida, D.; Ito, K.; Shimokata, H.; Washimi, Y.; Endo, H.; Kato, T. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS ONE 2013, 8, e61483. [Google Scholar] [CrossRef] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Measso, G.; Cavarzeran, F.; Zappalà, G.; Lebowitz, B.D.; Crook, T.H.; Pirozzolo, F.J.; Amaducci, F.A.; Massari, D.; Grigoletto, F. The mini mental state examination: Normative study of an Italian random sample. Dev. Neuropsychol. 1993, 9, 77–85. [Google Scholar] [CrossRef]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, W.G.; Terry, R.D.; Fuld, P.A.; Katzman, R.; Peck, A. Pathological verification of ischemic score in differentiation of dementias. Ann. Neurol. 1980, 7, 486–488. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Conti, S.; Bonazzi, S.; Laiacona, M.; Masina, M.; Coralli, M.V. Montreal cognitive assessment (MoCA)-Italian version: Regression based norms and equivalent scores. Neurol. Sci. 2015, 36, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, G.; Siciliano, M.; Pedone, R.; Vitale, C.; Falco, F.; Bisogno, R.; Siano, P.; Barone, P.; Grossi, D.; Santangelo, F.; et al. Normative data for the montreal cognitive assessment in an Italian population sample. Neurol. Sci. 2015, 36, 585–591. [Google Scholar] [CrossRef] [Green Version]
- Grober, E.; Buschke, H. Genuine memory deficits in dementia. Dev. Neuropsychol. 1987, 3, 13–16. [Google Scholar] [CrossRef]
- Frasson, P.; Ghiretti, R.; Catricala, E.; Pomati, S.; Marcone, A.; Parisi, L.; Rossini, P.M.; Cappa, S.F.; Mariani, C.; Vanacore, N.; et al. Free and cued selective reminding test: An Italian normative study. Neurol. Sci. 2011, 32, 1057–1062. [Google Scholar] [CrossRef]
- Reitan, R.M. Validity of the trail making test as an indicator of organic brain damage. Percept. Mot. Skills 1958, 8, 271–276. [Google Scholar] [CrossRef]
- Giovagnoli, A.R.; Del Pesce, M.; Mascheroni, S.; Simoncelli, M.; Laiacona, M.; Capitani, E. Trail making test: Normative values from 287 normal adult controls. Ital. J. Neurol. Sci. 1996, 17, 305–309. [Google Scholar] [CrossRef]
- Bottiroli, S.; Cavallini, E. Can computer familiarity regulate the benefits of computer-based memory training in normal aging? A study with an Italian sample of older adults. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2009, 16, 401–418. [Google Scholar] [CrossRef]
- Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999, 9, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, J.E.; Augustinack, J.C.; Nguyen, K.; Player, C.M.; Player, A.; Wright, M.; Roy, N.; Frosch, M.P.; McKee, A.C.; Wald, L.L.; et al. Alzheimer’s disease neuroimaging initiative. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage 2015, 115, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; van der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S; et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Voevodskaya, O.; Simmons, A.; Nordenskjold, R.; Kullberg, J.; Ahlstrom, H.; Lind, L.; Wahlund, L.O.; Larsson, E.M.; Westman, E. Alzheimer’s disease neuroimaging initiative. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Front. Aging Neurosci. 2014, 6, 264. [Google Scholar] [CrossRef]
- Topol, E. Preparing the Healthcare Workforce to Deliver the Digital Future the Topol Review: An Independent Report on Behalf of the Secretary of State for Health and Social Care; NHS Health Education: London, UK, 2019. [Google Scholar]
- Tarnanas, I.; Schlee, W.; Tsolaki, M.; Muri, R.; Mosimann, U.; Nef, T. Ecological validity of virtual reality daily living activities screening for early dementia: Longitudinal study. JMIR Serious Games 2013, 1, e1. [Google Scholar] [CrossRef] [Green Version]
- Grober, E.; Sanders, A.E.; Hall, C.; Lipton, R.B. Free and cued selective reminding identifies very mild dementia in primary care. Alzheimer Dis. Assoc. Disord. 2010, 24, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Bowie, C.R.; Harvey, P.D. Administration and interpretation of the trail making test. Nat. Protoc. 2006, 1, 2277–2281. [Google Scholar] [CrossRef]
- Sarazin, M.; Chauvire, V.; Gerardin, E.; Colliot, O.; Kinkingnehun, S.; de Souza, L.C.; Hugonot-Diener, L.; Garnero, L.; Lehericy, S.; Chupin, M.; et al. The amnestic syndrome of hippocampal type in Alzheimer’s disease: An MRI study. J. Alzheimers Dis. 2010, 22, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Burgess, N.; Maguire, E.A.; O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 2002, 35, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Matamala-Gomez, M.; Maisto, M.; Montana, J.; Mavrodiev, P.; Baglio, F.; Rossetto, F.; Mantovani, F.; Riva, G.; Realdon, O. The role of engagement in teleneurorehabilitation: A systematic review. Front. Neurol. 2020. [Google Scholar] [CrossRef]
aMCI | HC | p-Value [η2; Observed Power] | |
---|---|---|---|
n | 32 | 107 | |
Age, yrs (mean ± SD) | 76.75 ± 5.31 | 76.47 ± 3.03 | n.s. |
Gender (M:F) | 17:15 | 54:53 | n.s. # |
Education, yrs (mean ± SD) | 10.75 ± 3.84 | 10.95 ± 4.09 | n.s. |
MMSE | 27.65 ± 1.79 | 28.74 ± 1.27 | 0.0027 |
N-Hipp volume | n = 30 | n = 27 | |
Left n-Hipp (mean ± SD) | 0.001710 ± 0.0000 | 0.002055 ± 0.0000 | <0.001 ** [0.22; 0.96] |
Right n-Hipp (mean ± SD) | 0.001783 ± 0.0000 | 0.002099 ± 0.0000 | <0.001 ** [0.26; 0.99] |
aMCI | HC | p-Value | |
---|---|---|---|
n | 32 | 106 | |
Frequency of computer use | |||
Infrequent % (n) | 53.12% (17) | 60.38% (64) | n.s. # |
Frequent (at least once a week) % (n) | 46.88% (15) | 39.62% (42) | |
Frequency of use of a touch screen (last year) | |||
Never % (n) | 62.5% (20) | 72.64% (77) | n.s. # |
Infrequent % (n) | 18.75% (6) | 20.76% (22) | |
Frequent (at least once a week) % (n) | 18.75% (6) | 6.60% (7) |
Test | aMCI | HC | Cut-off (ES = 0) | ES = 1 | p-Value |
---|---|---|---|---|---|
n | 32 | 107 | |||
MoCA (mean ± SD) | 22.26 ± 2.84 | 26.97 ± 2.35 | ≤15.50 | 15.51–18.28 | <0.001 * |
FCSRT (median, IQ range) | |||||
IFR adjusted | 19.59 (15.79 to 23.80) | 27.38 (25.38 to 29.42) | ≤19.59 | 19.60–22.53 | <0.0001§ |
ITR | 36 (33.5 to 36.00) | 36 (36.0 to 36) | <35 | -- | 0.0005§ |
DFR adjusted | 6.12 (2.67 to 10.16) | 9.67 (8.67 to 10.89) | ≤6.31 | 6.32–7.66 | <0.0001§ |
DTR | 12 (9.5 to 12.0) | 12 (12 to 12) | <11 | -- | <0.0001§ |
TMT (median, IQ range) | |||||
TMT-A | 39 (21.5 to 64.0) | 40 (28.0 to 59.0) | >93 | 93–69 | n.s § |
TMT-B | 91 (55.0 to 182.75) | 77.5 (49 to 115) | >282 | 282–178 | n.s. § |
Test | aMCI (Mean, IQ) | HC (Mean, IQ) | p-Value | Effect Size (d) | Power (1-β err prob) |
---|---|---|---|---|---|
SASG Accuracy Index (AI) | |||||
Task 1 | −0.96 (−1.60 to −0.31) | 0.12 (−0.31 to 0.55) | <0.0001 | 1.04 | 0.99 |
Task 2 | 0.48 (0.10 to 0.74) | 0.23 (−0.28 to 0.68) | 0.040 | 0.33 | 0.36 |
Task 3 | −0.78 (−0.78 to 0.83) | 0.83 (−0.78 to 0.83) | 0.026 | 0.45 | 0.59 |
Task 4 | −0.99 (−2.39 to 0.15) | 0.41 (−0.15 to 0.98) | <0.0001 | 0.94 | 0.99 |
Task 5 | −1.75 (−2.51 to −0.63) | 0.50 (−0.06 to 0.50) | <0.0001 | 1.28 | 0.99 |
SASG Time index (TI) | |||||
Task 1 | 1.02 (0.72 to 1.53) | −0.06 (−0.70 to 0.65) | <0.0001 | 1.26 | 0.99 |
Task 2 | 0.63 (0.28 to 1.40) | −0.01 (−0.57 to 0.50) | <0.0001 | 0.90 | 0.99 |
Task 3 | 1.03 (0.69 to 1.46) | −0.19 (−0.78 to 0.77) | <0.0001 | 1.19 | 0.99 |
Task 4 | 0.45 (−0.20 to 0.69) | 0.15 (−0.78 to 0.74) | n.s. | 0.34 | 0.37 |
Task 5 | 1.33 (1.28 to 1.38) | −0.30 (−0.90 to 1.19) | <0.0001 | 1.81 | 0.99 |
SASG−Total | −8.29 (−12.04 to −4.90) | 0.84 (−3.07 to 3.71) | <0.0001 | 1.61 | 0.99 |
Test | Sensitivity | Specificity | AUC | SE | 95% CI | p-Value | Criterion Value (J Index) |
---|---|---|---|---|---|---|---|
SASG-Total | 84.4 | 75.5 | 0.88 | 0.03 | 0.81 to 0.92 | -- | ≤−3.28 (0.60) |
MoCA (adj) | 71.9 | 90.6 | 0.89 | 0.03 | 0.81 to 0.94 | n.s. | ≤23.44 (0.62) |
FCSRT – DFR (adj) | 65.6 | 97.2 | 0.76 | 0.06 | 0.67 to 0.83 | n.s. | ≤6.78 (0.63) |
FCSRT – IFR (adj) | 71.9 | 91.5 | 0.85 | 0.05 | 0.79 to 0.91 | n.s. | ≤22.35 (0.63) |
TMT-A (adj) | 15.6 | 95.3 | 0.52 | 0.06 | 0.43 to 0.60 | <0.0001 | ≤14 (0.11) |
TMT-B (adj) | 40.63 | 84.91 | 0.61 | 0.06 | 0.53 to 0.70 | 0.0001 | >130 (0.25) |
Left n-Hipp | Right n-Hipp | ||
---|---|---|---|
n | 30 | 30 | |
SASG-Total | |||
Corr | 0.28 | 0.50 | |
p-value | n.s. | 0.0076 | |
MoCA | |||
Corr | −0.08 | 0.06 | |
p-value | n.s. | n.s. | |
FCSRT-IFR/DFR | |||
Corr p-value | 0.30/0.4673 n.s./0.0140 | 0.39/0.48 0.046/0.011 | |
TMT-A/B | |||
Corr p-value | 0.29/0.24 n.s./n.s. | 0.15/0.08 n.s./n.s. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabinio, M.; Rossetto, F.; Isernia, S.; Saibene, F.L.; Di Cesare, M.; Borgnis, F.; Pazzi, S.; Migliazza, T.; Alberoni, M.; Blasi, V.; et al. The Use of a Virtual Reality Platform for the Assessment of the Memory Decline and the Hippocampal Neural Injury in Subjects with Mild Cognitive Impairment: The Validity of Smart Aging Serious Game (SASG). J. Clin. Med. 2020, 9, 1355. https://doi.org/10.3390/jcm9051355
Cabinio M, Rossetto F, Isernia S, Saibene FL, Di Cesare M, Borgnis F, Pazzi S, Migliazza T, Alberoni M, Blasi V, et al. The Use of a Virtual Reality Platform for the Assessment of the Memory Decline and the Hippocampal Neural Injury in Subjects with Mild Cognitive Impairment: The Validity of Smart Aging Serious Game (SASG). Journal of Clinical Medicine. 2020; 9(5):1355. https://doi.org/10.3390/jcm9051355
Chicago/Turabian StyleCabinio, Monia, Federica Rossetto, Sara Isernia, Francesca Lea Saibene, Monica Di Cesare, Francesca Borgnis, Stefania Pazzi, Tommaso Migliazza, Margherita Alberoni, Valeria Blasi, and et al. 2020. "The Use of a Virtual Reality Platform for the Assessment of the Memory Decline and the Hippocampal Neural Injury in Subjects with Mild Cognitive Impairment: The Validity of Smart Aging Serious Game (SASG)" Journal of Clinical Medicine 9, no. 5: 1355. https://doi.org/10.3390/jcm9051355
APA StyleCabinio, M., Rossetto, F., Isernia, S., Saibene, F. L., Di Cesare, M., Borgnis, F., Pazzi, S., Migliazza, T., Alberoni, M., Blasi, V., & Baglio, F. (2020). The Use of a Virtual Reality Platform for the Assessment of the Memory Decline and the Hippocampal Neural Injury in Subjects with Mild Cognitive Impairment: The Validity of Smart Aging Serious Game (SASG). Journal of Clinical Medicine, 9(5), 1355. https://doi.org/10.3390/jcm9051355