Association of Taurine with In-Hospital Mortality in Patients after Out-of-Hospital Cardiac Arrest: Results from the Prospective, Observational COMMUNICATE Study
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Baseline Characteristics
3.2. Spearman Rank Correlation
3.3. Univariable and Multivariable Analysis
3.3.1. Association between Taurine and In-Hospital Mortality
3.3.2. Association between Taurine and CPC-Score
3.4. Association of Taurine in Quartiles and Outcome
3.5. Subgroups
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Cerebral Performance Category | ||||
---|---|---|---|---|
All | Good (CPC 1&2) | Poor (CPC 3–5) | p-Value | |
N, % | 240 | 110 (45.8) | 130 (54.2) | |
Sociodemographics | ||||
Age years, median (IQR) | 64.9 (56.6, 74.8) | 61.7 (54, 72.9) | 69 (58.7, 77.9) | 0.004 |
Gender (Female), n (%) | 65 (27.1) | 17 (15.5) | 48 (36.9) | <0.001 |
Comorbidities & risk factors | ||||
Coronary heart disease, n (%) | 165 (69.0) | 96 (74.4) | 69 (62.7) | 0.05 |
Hypertension, n (%) | 125 (52.3) | 66 (51.2) | 59 (53.6) | 0.70 |
Congestive heart failure, n (%) | 33 (13.8) | 17 (13.2) | 16 (14.5) | 0.76 |
Smoking, n (%) | 122 (50.8) | 77 (59.2) | 45 (40.9) | 0.01 |
Diabetes, n (%) | 64 (26.8) | 27 (20.9) | 37 (33.6) | 0.03 |
Chronic kidney failure, n (%) | 34 (14.2) | 16 (12.4) | 18 (16.4) | 0.38 |
Malignant disease, n (%) | 23 (9.6) | 6 (4.7) | 17 (15.5) | 0.01 |
Neurological disease, n (%) | 24 (10.0) | 15 (11.6) | 9 (8.2) | 0.38 |
COPD, n (%) | 19 (7.9) | 7 (5.4) | 12 (10.9) | 0.12 |
Liver disease, n (%) | 5 (2.1) | 1 (0.8) | 4 (3.6) | 0.12 |
Resuscitation measures | ||||
No-flow time, min, median (IQR) | 0 (0, 6) | 0 (0, 1) | 3.5 (0, 10) | <0.001 |
Low-flow time, min, median (IQR) | 15 (10, 27) | 12 (8, 20) | 20 (13, 30) | <0.001 |
Bystander CPR, n (%) | 153 (64.0) | 84 (76.4) | 69 (53.5) | <0.001 |
Shockable initial rhythm, n (%) | 142 (59.4) | 88 (80.0) | 54 (41.9) | <0.001 |
Cause of cardiac arrest | ||||
Coronary heart disease, n (%) | 120 (50.2) | 67 (61.5) | 53 (40.8) | 0.001 |
Initial arrhythmia, n (%) | 46 (19.2) | 20 (18.3) | 26 (20.0) | 0.75 |
Respiratory, n (%) | 73 (30.5) | 22 (20.2) | 51 (39.2) | 0.001 |
Initial status ICU | ||||
Systolic BP, median (IQR) | 118 (101, 130) | 122 (104, 133) | 114.5 (100, 128) | 0.13 |
Diastolic BP, median (IQR) | 67 (55, 78) | 70 (59, 79) | 64.5 (54, 77) | 0.03 |
Heart rate bpm, median (IQR) | 85 (75, 99) | 81 (70, 91) | 88.5 (76, 103) | 0.003 |
Respiratory rate, median (IQR) | 17 (14, 20) | 17 (14, 19) | 16 (14, 20) | 0.66 |
Temperature °C, median (IQR) | 35.7 (34.9, 36.3) | 36 (35.4, 36.4) | 35.5 (34.6, 36.2) | <0.001 |
Blood markers | ||||
Initial pH, median (IQR) | 7.27 (7.18, 7.33) | 7.29 (7.25, 7.34) | 7.23 (7.11, 7.31) | <0.001 |
Initial lactate, median (IQR) | 6.3 (3.6, 9.3) | 4.55 (3, 6.5) | 7.9 (5.5, 10.1) | <0.001 |
Creatinine, median (IQR) | 99 (78, 121) | 95 (77, 113) | 102 (81.5, 137) | 0.02 |
Troponin, median (IQR) | 0.33 (0.11, 1.53) | 0.32 (0.09, 0.99) | 0.36 (0.13, 2.06) | 0.11 |
References
- Hendriks, J.M.; Brits, T.; Van der Zijden, T.; Monsieurs, K.; de Bock, D.; De Paep, R. U-Shape Kissing Chimney Thoracic Endovascular Aneurysm Repair for a Traumatic Arch Rupture in a Polytraumatized Patient. Aorta 2015, 3, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, G.B. Clinical practice. Neurologic prognosis after cardiac arrest. N. Engl. J. Med. 2009, 361, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Grasner, J.T.; Lefering, R.; Koster, R.W.; Masterson, S.; Bottiger, B.W.; Herlitz, J.; Wnent, J.; Tjelmeland, I.B.; Ortiz, F.R.; Maurer, H.; et al. EuReCa ONE-27 Nations, ONE Europe, ONE Registry: A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation 2016, 105, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garza, E.G.; Rumbak, M.J. Prediction of mortality from out-of-hospital cardiac arrest is key to decrease morbidity and mortality from cardiac, neurologic, and other major organ damage*. Crit Care Med. 2015, 43, 503. [Google Scholar] [CrossRef] [PubMed]
- Isenschmid, C.; Kalt, J.; Gamp, M.; Tondorf, T.; Becker, C.; Tisljar, K.; Locher, S.; Schuetz, P.; Marsch, S.; Hunziker, S. Routine blood markers from different biological pathways improve early risk stratification in cardiac arrest patients: Results from the prospective, observational COMMUNICATE study. Resuscitation 2018, 130, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Jia, J.; Lin, Y. Taurine content in Chinese food and daily intake of Chinese men. Adv. Exp. Med. Biol. 1998, 442, 501–505. [Google Scholar] [CrossRef]
- Huxtable, R.J. Physiological actions of taurine. Physiol. Rev. 1992, 72, 101–163. [Google Scholar] [CrossRef] [Green Version]
- Takatani, T.; Takahashi, K.; Uozumi, Y.; Shikata, E.; Yamamoto, Y.; Ito, T.; Matsuda, T.; Schaffer, S.W.; Fujio, Y.; Azuma, J. Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am. J. Physiol. Cell Physiol. 2004, 287, C949–C953. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zhu, Z.; Shi, J.; An, Y.; Zhang, K.; Wang, Y.; Li, S.; Jin, L.; Ye, W.; Cui, M.; et al. Metabolomics in the Development and Progression of Dementia: A Systematic Review. Front. Neurosci. 2019, 13, 343. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.; Prentice, H.; Price, A.L.; Wu, J.Y. Beneficial effect of taurine on hypoxia- and glutamate-induced endoplasmic reticulum stress pathways in primary neuronal culture. Amino Acids 2012, 43, 845–855. [Google Scholar] [CrossRef]
- Niu, X.; Zheng, S.; Liu, H.; Li, S. Protective effects of taurine against inflammation, apoptosis, and oxidative stress in brain injury. Mol. Med. Rep. 2018, 18, 4516–4522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiarla, C.; Giovannini, I.; Siegel, J.H.; Boldrini, G.; Castagneto, M. The relationship between plasma taurine and other amino acid levels in human sepsis. J. Nutr. 2000, 130, 2222–2227. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Li, H.; Xie, A.; Liu, D.; Rao, W.; Lan, L.; Li, X.; Li, F.; Xiao, K.; Wang, H.; et al. Dynamic changes in amino acid concentration profiles in patients with sepsis. PLoS ONE 2015, 10, e0121933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Neri, I.; Dieguez-Campa, C.E. Taurine and aneurysmal subarachnoid hemorrhage prognosis. Postgrad. Med. 2018, 130, 669–672. [Google Scholar] [CrossRef]
- Barges-Coll, J.; Perez-Neri, I.; Avendano, J.; Mendez-Rosito, D.; Gomez-Amador, J.L.; Rios, C. Plasma taurine as a predictor of poor outcome in patients with mild neurological deficits after aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2013, 119, 1021–1027. [Google Scholar] [CrossRef]
- Bhatnagar, S.K.; Welty, J.D.; al Yusuf, A.R. Significance of blood taurine levels in patients with first time acute ischaemic cardiac pain. Int. J. Cardiol. 1990, 27, 361–366. [Google Scholar] [CrossRef]
- Singh, R.B.; Kartikey, K.; Charu, A.S.; Niaz, M.A.; Schaffer, S. Effect of taurine and coenzyme Q10 in patients with acute myocardial infarction. Adv. Exp. Med. Biol. 2003, 526, 41–48. [Google Scholar] [CrossRef]
- Lombardini, J.B.; Cooper, M.W. Elevated blood taurine levels in acute and evolving myocardial infarction. J. Lab. Clin. Med. 1981, 98, 849–859. [Google Scholar]
- Ayromlou, H.; Khoshsoroor, S.; Ghavimi, H.; Mashayekhi, S.; Sattari, M. Difference between Plasma Concentrations of Three Amino Acids in Patients with Ischemic and Hemorrhagic Stroke. J. Exp. Clin. Neurosci. 2018, 5. [Google Scholar] [CrossRef]
- Metzger, K.; Gamp, M.; Tondorf, T.; Hochstrasser, S.; Becker, C.; Luescher, T.; Rasiah, R.; Boerlin, A.; Tisljar, K.; Emsden, C.; et al. Depression and anxiety in relatives of out-of-hospital cardiac arrest patients: Results of a prospective observational study. J. Crit. Care 2019, 51, 57–63. [Google Scholar] [CrossRef]
- Luescher, T.; Mueller, J.; Isenschmid, C.; Kalt, J.; Rasiah, R.; Tondorf, T.; Gamp, M.; Becker, C.; Sutter, R.; Tisljar, K.; et al. Neuron-specific enolase (NSE) improves clinical risk scores for prediction of neurological outcome and death in cardiac arrest patients: Results from a prospective trial. Resuscitation 2019, 142, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Isenschmid, C.; Luescher, T.; Rasiah, R.; Kalt, J.; Tondorf, T.; Gamp, M.; Becker, C.; Tisljar, K.; Sutter, R.; Schuetz, P.; et al. Performance of clinical risk scores to predict mortality and neurological outcome in cardiac arrest patients. Resuscitation 2019, 136, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.; Wetterslev, J.; Cronberg, T.; Erlinge, D.; Gasche, Y.; Hassager, C.; Horn, J.; Hovdenes, J.; Kjaergaard, J.; Kuiper, M.; et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N. Engl. J. Med. 2013, 369, 2197–2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickler, M.; Ottiger, M.; Steuer, C.; Huber, A.; Anderson, J.B.; Muller, B.; Schuetz, P. Systematic review regarding metabolic profiling for improved pathophysiological understanding of disease and outcome prediction in respiratory infections. Respir. Res. 2015, 16, 125. [Google Scholar] [CrossRef] [Green Version]
- Nickler, M.; Schaffner, D.; Christ-Crain, M.; Ottiger, M.; Thomann, R.; Hoess, C.; Henzen, C.; Mueller, B.; Schuetz, P. Prospective evaluation of biomarkers for prediction of quality of life in community-acquired pneumonia. Clin. Chem. Lab. Med. 2016, 54, 1831–1846. [Google Scholar] [CrossRef] [Green Version]
- Nickler, M.; Ottiger, M.; Steuer, C.; Kutz, A.; Christ-Crain, M.; Zimmerli, W.; Thomann, R.; Hoess, C.; Henzen, C.; Bernasconi, L.; et al. Time-dependent association of glucocorticoids with adverse outcome in community-acquired pneumonia: A 6-year prospective cohort study. Crit. Care 2017, 21, 72. [Google Scholar] [CrossRef] [Green Version]
- Ottiger, M.; Nickler, M.; Steuer, C.; Odermatt, J.; Huber, A.; Christ-Crain, M.; Henzen, C.; Hoess, C.; Thomann, R.; Zimmerli, W.; et al. Trimethylamine-N-oxide (TMAO) predicts fatal outcomes in community-acquired pneumonia patients without evident coronary artery disease. Eur. J. Intern. Med. 2016, 36, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Weinberger, K.M. Metabolomics in diagnosing metabolic diseases. Ther. Umschau. Revue Ther. 2008, 65, 487–491. [Google Scholar] [CrossRef]
- Yet, I.; Menni, C.; Shin, S.Y.; Mangino, M.; Soranzo, N.; Adamski, J.; Suhre, K.; Spector, T.D.; Kastenmuller, G.; Bell, J.T. Genetic Influences on Metabolite Levels: A Comparison across Metabolomic Platforms. PLoS ONE 2016, 11, e0153672. [Google Scholar] [CrossRef] [Green Version]
- Illig, T.; Gieger, C.; Zhai, G.; Romisch-Margl, W.; Wang-Sattler, R.; Prehn, C.; Altmaier, E.; Kastenmuller, G.; Kato, B.S.; Mewes, H.W.; et al. A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 2010, 42, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Muller, A.; Heseler, K.; Schmidt, S.K.; Spekker, K.; Mackenzie, C.R.; Daubener, W. The missing link between indoleamine 2,3-dioxygenase mediated antibacterial and immunoregulatory effects. J. Cell. Mol. Med. 2009, 13, 1125–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009, 60, 355–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majno, G.; Palade, G.E.; Schoefl, G.I. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: A topographic study. J. Biophys. Biochem. Cytol. 1961, 11, 607–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennett, B.; Bond, M. Assessment of outcome after severe brain damage. Lancet 1975, 1, 480–484. [Google Scholar] [CrossRef]
- Schuetz, P.; Wolbers, M.; Christ-Crain, M.; Thomann, R.; Falconier, C.; Widmer, I.; Neidert, S.; Fricker, T.; Blum, C.; Schild, U.; et al. Prohormones for prediction of adverse medical outcome in community-acquired pneumonia and lower respiratory tract infections. Crit Care 2010, 14, R106. [Google Scholar] [CrossRef] [Green Version]
- Kimelberg, H.K.; Nestor, N.B.; Feustel, P.J. Inhibition of release of taurine and excitatory amino acids in ischemia and neuroprotection. Neurochem. Res. 2004, 29, 267–274. [Google Scholar] [CrossRef]
- Saransaari, P.; Oja, S.S. Taurine and neural cell damage. Amino Acids 2000, 19, 509–526. [Google Scholar] [CrossRef]
- Xu, Y.J.; Arneja, A.S.; Tappia, P.S.; Dhalla, N.S. The potential health benefits of taurine in cardiovascular disease. Exp. Clin. Cardiol. 2008, 13, 57–65. [Google Scholar]
- Backstrom, T.; Goiny, M.; Lockowandt, U.; Liska, J.; Franco-Cereceda, A. Cardiac outflow of amino acids and purines during myocardial ischemia and reperfusion. J. Appl. Physiol. 2003, 94, 1122–1128. [Google Scholar] [CrossRef] [Green Version]
In-Hospital Mortality | ||||
---|---|---|---|---|
All | Survivors | Nonsurvivors | p-Value | |
N, % | 240 | 130 (54.2) | 110 (45.8) | |
Sociodemographics | ||||
Age years, median (IQR) | 64.9 (56.6, 74.8) | 61.5 (53.1, 73.1) | 69.8 (60.5, 77.8) | <0.001 |
Gender (female), n (%) | 65 (27.1) | 24 (18.5) | 41 (37.3) | 0.001 |
Comorbidities and risk factors | ||||
Coronary heart disease, n (%) | 165 (69.0) | 96 (74.4) | 69 (62.7) | 0.05 |
Hypertension, n (%) | 125 (52.3) | 66 (51.2) | 59 (53.6) | 0.70 |
Congestive heart failure, n (%) | 33 (13.8) | 17 (13.2) | 16 (14.5) | 0.76 |
Smoking, n (%) | 122 (50.8) | 77 (59.2) | 45 (40.9) | 0.01 |
Diabetes, n (%) | 64 (26.8) | 27 (20.9) | 37 (33.6) | 0.03 |
Chronic kidney disease, n (%) | 34 (14.2) | 16 (12.4) | 18 (16.4) | 0.38 |
Malignant disease, n (%) | 23 (9.6) | 6 (4.7) | 17 (15.5) | 0.01 |
Neurological disease, n (%) | 24 (10.0) | 15 (11.6) | 9 (8.2) | 0.38 |
COPD, n (%) | 19 (7.9) | 7 (5.4) | 12 (10.9) | 0.12 |
Liver disease, n (%) | 5 (2.1) | 1 (0.8) | 4 (3.6) | 0.12 |
Resuscitation measures | ||||
No-flow time, min, median (IQR) | 0 (0, 6) | 0 (0, 2) | 3 (0, 10) | <0.001 |
Low-flow time, min, median (IQR) | 15 (10, 27) | 14 (10, 20) | 20 (13, 30) | <0.001 |
Bystander CPR, n (%) | 153 (64.0) | 95 (73.1) | 58 (53.2) | <0.001 |
Shockable initial rhythm, n (%) | 142 (59.4) | 98 (75.4) | 44 (40.4) | <0.001 |
Cause of cardiac arrest | ||||
Coronary heart disease, n (%) | 120 (50.2) | 75 (58.1) | 45 (40.9) | 0.01 |
Initial arrhythmia, n (%) | 46 (19.2) | 25 (19.4) | 21 (19.1) | 0.95 |
Respiratory, n (%) | 73 (30.5) | 29 (22.5) | 44 (40.0) | 0.003 |
Initial status ICU | ||||
Systolic BP, median (IQR) | 118 (101, 130) | 119 (103, 130) | 115 (100, 129) | 0.38 |
Diastolic BP, median (IQR) | 67 (55, 78) | 70 (58, 79) | 63.5 (51, 77) | 0.02 |
Heart rate bpm, median (IQR) | 85 (75, 99) | 81 (70, 91) | 91 (79, 103) | <0.001 |
Respiratory rate, median (IQR) | 17 (14, 20) | 17 (14, 19) | 16 (14, 20) | 0.53 |
Temperature °C, median (IQR) | 35.7 (34.9, 36.3) | 35.9 (35.2, 36.4) | 35.5 (34.6, 36.2) | 0.01 |
Blood markers | ||||
Initial pH, median (IQR) | 7.27 (7.18, 7.33) | 7.3 (7.24, 7.34) | 7.21 (7.1, 7.3) | <0.001 |
Initial lactate (mmol/l), median (IQR) | 6.3 (3.6, 9.3) | 4.6 (3, 6.9) | 8.2 (5.6, 10.3) | <0.001 |
Creatinine (μmol/l), median (IQR) | 99 (78, 121) | 92.5 (77, 111) | 108 (83, 143) | 0.00 |
Troponin(μg/l), median (IQR) | 0.33 (0.11, 1.53) | 0.31 (0.09, 1.01) | 0.36 (0.13, 2.21) | 0.12 |
Taurine | ||
---|---|---|
Rho | p-Value | |
No-flow time | 0.04 | 0.53 |
Low-flow time | 0.17 | 0.01 |
BP systolic | −0.09 | 0.16 |
BP diastolic | 0.02 | 0.74 |
Heart rate | −0.02 | 0.70 |
Respiratory rate | −0.05 | 0.46 |
Urea | −0.03 | 0.62 |
Creatinine | 0.04 | 0.57 |
Lactate | 0.08 | 0.20 |
pH | −0.13 | 0.05 |
Troponin | 0.06 | 0.34 |
Survivors, Tau Levels | Nonsurvivors, Tau Levels | OR (95%CI) | p | AUC | OR (95%CI) Age + Gender | p | OR (95%CI) Comorbidities + Age + Gender | p | OR (95%CI) Initial Status + Age + Gender | p | OR (95%CI) Blood Markers + Age + Gender | p | OR (95%CI) Resuscitation Measures + Age + Gender | p | |
Tau levels, median (IQR) | 94.1 (71.5, 133) | 108.5 (74.3, 175) | 2.90 (0.99 to 8.53) | 0.05 | 0.57 | 3.93 (1.25 to 12.40) | 0.02 | 4.12 (1.22 to 13.91) | 0.02 | 5.61 (1.62 to 19.41) | 0.01 | 3.74 (0.96 to 14.49) | 0.06 | 4.03 (1.03 to 15.83) | 0.05 |
Q1, n (%) | 35 (58.3) | 25 (41.7) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | |||||||
Q2, n (%) | 37 (60.7) | 24 (39.3) | 0.91 (0.44 to 1.88) | 0.80 | 0.85 (0.40 to 1.84) | 0.68 | 0.80 (0.36 to 1.79) | 0.58 | 0.98 (0.43 to 2.21) | 0.96 | 1.00 (0.42 to 2.40) | 1.00 | 0.90 (0.36 to 2.25) | 0.82 | |
Q3, n (%) | 34 (55.7) | 27 (44.3) | 1.18 (0.57 to 2.44) | 0.65 | 1.25 (0.58 to 2.67) | 0.57 | 1.11 (0.49 to 2.51) | 0.81 | 1.57 (0.69 to 3.56) | 0.28 | 1.25 (0.53 to 2.95) | 0.61 | 1.07 (0.43 to 2.69) | 0.89 | |
Q4, n (%) | 26 (43.3) | 34 (56.7) | 1.83 (0.89 to 3.78) | 0.10 | 2.03 (0.94 to 4.37) | 0.07 | 2.01 (0.89 to 4.53) | 0.09 | 2.53 (1.11 to 5.75) | 0.03 | 1.97 (0.82 to 4.73) | 0.13 | 2.30 (0.89 to 5.94) | 0.09 | |
Good CPC, Tau Levels | Poor CPC, Tau Levels | OR (95%CI) | p | AUC | OR (95%CI) Age + Gender | p | OR (95%CI) Comorbidities + Age + Gender | p | OR (95%CI) Initial Status + Age + Gender | p | OR (95%CI) Blood Markers + Age + Gender | p | OR (95%CI) Resuscitation Measures + Age + Gender | p | |
Tau levels, median (IQR) | 90.3 (71.5, 130) | 106.5 (74.3, 171) | 2.69 (0.91 to 7.89) | 0.07 | 0.57 | 3.49 (1.11 to 10.92) | 0.03 | 3.71 (1.13 to 12.25) | 0.03 | 4.43 (1.28 to 15.25) | 0.02 | 3.49 (0.89 to 13.65) | 0.07 | 4.17 (0.97 to 17.90) | 0.06 |
Q1, n (%) | 30 (50) | 30 (50) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | |||||||
Q2, n (%) | 32 (52.5) | 29 (47.5) | 0.91 (0.44 to 1.85) | 0.79 | 0.87 (0.41 to 1.85) | 0.72 | 0.80 (0.36 to 1.76) | 0.58 | 1.02 (0.46 to 2.27) | 0.97 | 1.06 (0.45 to 2.49) | 0.89 | 0.88 (0.34 to 2.25) | 0.79 | |
Q3, n (%) | 29 (47.5) | 32 (52.5) | 1.19 (0.58 to 2.43) | 0.64 | 1.24 (0.58 to 2.63) | 0.58 | 1.15 (0.51 to 2.59) | 0.74 | 1.48 (0.65 to 3.35) | 0.35 | 1.26 (0.54 to 2.94) | 0.59 | 1.04 (0.40 to 2.68) | 0.94 | |
Q4, n (%) | 21 (35) | 39 (65) | 1.86 (0.89 to 3.87) | 0.10 | 2.01 (0.93 to 4.35) | 0.08 | 2.00 (0.88 to 4.53) | 0.10 | 2.36 (1.03 to 5.38) | 0.04 | 1.99 (0.83 to 4.80) | 0.13 | 2.64 (0.98 to 7.08) | 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herzog, N.; Laager, R.; Thommen, E.; Widmer, M.; Vincent, A.M.; Keller, A.; Becker, C.; Beck, K.; Perrig, S.; Bernasconi, L.; et al. Association of Taurine with In-Hospital Mortality in Patients after Out-of-Hospital Cardiac Arrest: Results from the Prospective, Observational COMMUNICATE Study. J. Clin. Med. 2020, 9, 1405. https://doi.org/10.3390/jcm9051405
Herzog N, Laager R, Thommen E, Widmer M, Vincent AM, Keller A, Becker C, Beck K, Perrig S, Bernasconi L, et al. Association of Taurine with In-Hospital Mortality in Patients after Out-of-Hospital Cardiac Arrest: Results from the Prospective, Observational COMMUNICATE Study. Journal of Clinical Medicine. 2020; 9(5):1405. https://doi.org/10.3390/jcm9051405
Chicago/Turabian StyleHerzog, Naemi, Rahel Laager, Emanuel Thommen, Madlaina Widmer, Alessia M. Vincent, Annalena Keller, Christoph Becker, Katharina Beck, Sebastian Perrig, Luca Bernasconi, and et al. 2020. "Association of Taurine with In-Hospital Mortality in Patients after Out-of-Hospital Cardiac Arrest: Results from the Prospective, Observational COMMUNICATE Study" Journal of Clinical Medicine 9, no. 5: 1405. https://doi.org/10.3390/jcm9051405
APA StyleHerzog, N., Laager, R., Thommen, E., Widmer, M., Vincent, A. M., Keller, A., Becker, C., Beck, K., Perrig, S., Bernasconi, L., Neyer, P., Marsch, S., Schuetz, P., Sutter, R., Tisljar, K., & Hunziker, S. (2020). Association of Taurine with In-Hospital Mortality in Patients after Out-of-Hospital Cardiac Arrest: Results from the Prospective, Observational COMMUNICATE Study. Journal of Clinical Medicine, 9(5), 1405. https://doi.org/10.3390/jcm9051405