Combined Coronary CT-Angiography and TAVI-Planning: A Contrast-Neutral Routine Approach for Ruling-Out Significant Coronary Artery Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patient Population
2.2. CT Acquisition and Image Reconstruction
2.3. Analysis of cCTA Data
- 0 = no calcifications/artifacts
- 1 = mild calcifications/artifacts
- 2 = moderate calcifications/artifacts
- 3 = extensive calcifications covering ≥ 50% of lumen/artifacts rendering the lumen not evaluable
- 0 = non-diagnostic contrast opacification/image quality
- 1 = diagnostic contrast opacification/image quality
- 2 = good contrast opacification/image quality
- 3 = excellent contrast opacification/image quality
2.4. Invasive Coronary Angiography
2.5. Clinical Events
2.6. Diagnostic Performance of cCTA in the Literature
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Scan Demographics
3.3. Prevalence of CAD
3.4. Coronary Arteries on cCTA
3.5. Diagnostic Performance of cCTA
3.6. Baseline Characteristics, Scan Demographics and Accuracy of cCTA
3.7. Group Differences in MACCE and AKI
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Baumgartner, H.; Falk, V.; Bax, J.J.; de Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Rodriguez Muñoz, D.; et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Fleisher, L.A.; Jneid, H.; Mack, M.J.; McLeod, C.J.; O’Gara, P.T.; et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2017, 70, 252–289. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Blanke, P.; Weir-McCall, J.R.; Achenbach, S.; Delgado, V.; Hausleiter, J.; Jilaihawi, H.; Marwan, M.; Nørgaard, B.L.; Piazza, N.; Schoenhagen, P.; et al. Computed Tomography Imaging in the Context of Transcatheter Aortic Valve Implantation (TAVI)/Transcatheter Aortic Valve Replacement (TAVR): An Expert Consensus Document of the Society of Cardiovascular Computed Tomography. JACC Cardiovasc. Imaging 2019, 12, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Francone, M.; Budde, R.P.J.; Bremerich, J.; Dacher, J.N.; Loewe, C.; Wolf, F.; Natale, L.; Pontone, G.; Redheuil, A.; Vliegenthart, R.; et al. CT and MR imaging prior to transcatheter aortic valve implantation: Standardisation of scanning protocols, measurements and reporting—A consensus document by the European Society of Cardiovascular Radiology (ESCR). Eur. Radiol. 2020, 30, 2627–2650. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Guyton, R.A.; O’Gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2438–2488. [Google Scholar] [CrossRef] [Green Version]
- Jochheim, D.; Schneider, V.-S.; Schwarz, F.; Kupatt, C.; Lange, P.; Reiser, M.; Massberg, S.; Gutiérrez-Chico, J.-L.; Mehilli, J.; Becker, H.-C. Contrast-induced acute kidney injury after computed tomography prior to transcatheter aortic valve implantation. Clin. Radiol. 2014, 69, 1034–1038. [Google Scholar] [CrossRef]
- Vavilis, G.; Evans, M.; Jernberg, T.; Rück, A.; Szummer, K. Risk factors for worsening renal function and their association with long-term mortality following transcatheter aortic valve implantation: Data from the SWEDEHEART registry. Open Heart 2017, 4, e000554. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.; Hayashida, K.; Mouillet, G.; Chevalier, B.; Meguro, K.; Watanabe, Y.; Dubois-Rande, J.-L.; Morice, M.-C.; Lefèvre, T.; Teiger, E. Renal function-based contrast dosing predicts acute kidney injury following transcatheter aortic valve implantation. JACC Cardiovasc. Interv. 2013, 6, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Bleakley, C.; Monaghan, M.J. The Pivotal Role of Imaging in TAVR Procedures. Curr. Cardiol. Rep. 2018, 20, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hell, M.M.; Biburger, L.; Marwan, M.; Schuhbaeck, A.; Achenbach, S.; Lell, M.; Uder, M.; Arnold, M. Prediction of fluoroscopic angulations for transcatheter aortic valve implantation by CT angiography: Influence on procedural parameters. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Andreini, D.; Pontone, G.; Mushtaq, S.; Bartorelli, A.L.; Ballerini, G.; Bertella, E.; Segurini, C.; Conte, E.; Annoni, A.; Baggiano, A.; et al. Diagnostic accuracy of multidetector computed tomography coronary angiography in 325 consecutive patients referred for transcatheter aortic valve replacement. Am. Heart J. 2014, 168, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Annoni, A.D.; Andreini, D.; Pontone, G.; Mancini, M.E.; Formenti, A.; Mushtaq, S.; Baggiano, A.; Conte, E.; Guglielmo, M.; Muscogiuri, G.; et al. CT angiography prior to TAVI procedure using third-generation scanner with wide volume coverage: Feasibility, renal safety and diagnostic accuracy for coronary tree. Br. J. Radiol. 2018, 91, 20180196. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, A.; Wellnhofer, E.; Konen, E.; Kelle, S.; Goitein, O.; Andrada, B.; Raanani, E.; Segev, A.; Barbash, I.; Klempfner, R.; et al. Coronary CT angiography for the detection of coronary artery stenosis in patients referred for transcatheter aortic valve replacement. J. Cardiovasc. Comput. Tomogr. 2015, 9, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Harris, B.S.; de Cecco, C.N.; Schoepf, U.J.; Steinberg, D.H.; Bayer, R.R.; Krazinski, A.W.; Dyer, K.T.; Sandhu, M.K.; Zile, M.R.; Meinel, F.G. Dual-source CT imaging to plan transcatheter aortic valve replacement: Accuracy for diagnosis of obstructive coronary artery disease. Radiology 2015, 275, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Yamada, Y.; Hashimoto, M.; Okamura, T.; Yamada, M.; Yashima, F.; Hayashida, K.; Fukuda, K.; Jinzaki, M. CT imaging before transcatheter aortic valve implantation (TAVI) using variable helical pitch scanning and its diagnostic performance for coronary artery disease. Eur. Radiol. 2017, 27, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Opolski, M.P.; Kim, W.-K.; Liebetrau, C.; Walther, C.; Blumenstein, J.; Gaede, L.; Kempfert, J.; van Linden, A.; Walther, T.; Hamm, C.W.; et al. Diagnostic accuracy of computed tomography angiography for the detection of coronary artery disease in patients referred for transcatheter aortic valve implantation. Clin. Res. Cardiol. 2015, 104, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Pontone, G.; Andreini, D.; Bartorelli, A.L.; Annoni, A.; Mushtaq, S.; Bertella, E.; Formenti, A.; Cortinovis, S.; Alamanni, F.; Fusari, M.; et al. Feasibility and accuracy of a comprehensive multidetector computed tomography acquisition for patients referred for balloon-expandable transcatheter aortic valve implantation. Am. Heart J. 2011, 161, 1106–1113. [Google Scholar] [CrossRef]
- Rossi, A.; de Cecco, C.N.; Kennon, S.R.O.; Zou, L.; Meinel, F.G.; Toscano, W.; Segreto, S.; Achenbach, S.; Hausleiter, J.; Schoepf, U.J.; et al. CT angiography to evaluate coronary artery disease and revascularization requirement before trans-catheter aortic valve replacement. J. Cardiovasc. Comput. Tomogr. 2017, 11, 338–346. [Google Scholar] [CrossRef]
- van den Boogert, T.P.W.; Vendrik, J.; Claessen, B.E.P.M.; Baan, J.; Beijk, M.A.; Limpens, J.; Boekholdt, S.A.M.; Hoek, R.; Planken, R.N.; Henriques, J.P. CTCA for detection of significant coronary artery disease in routine TAVI work-up: A systematic review and meta-analysis. Neth. Heart J. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faroux, L.; Guimaraes, L.; Wintzer-Wehekind, J.; Junquera, L.; Ferreira-Neto, A.N.; Del Val, D.; Muntané-Carol, G.; Mohammadi, S.; Paradis, J.-M.; Rodés-Cabau, J. Coronary Artery Disease and Transcatheter Aortic Valve Replacement: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 74, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Strong, C.; Ferreira, A.; Teles, R.C.; Mendes, G.; Abecasis, J.; Cardoso, G.; Guerreiro, S.; Freitas, P.; Santos, A.C.; Saraiva, C.; et al. Diagnostic accuracy of computed tomography angiography for the exclusion of coronary artery disease in candidates for transcatheter aortic valve implantation. Sci. Rep. 2019, 9, 19942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chieffo, A.; Giustino, G.; Spagnolo, P.; Panoulas, V.F.; Montorfano, M.; Latib, A.; Figini, F.; Agricola, E.; Gerli, C.; Franco, A.; et al. Routine Screening of Coronary Artery Disease With Computed Tomographic Coronary Angiography in Place of Invasive Coronary Angiography in Patients Undergoing Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2015, 8, e002025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, A.; Jaiswal, P. Transcatheter Aortic Valve Implantation (TAVI) Market by Procedure (Transfemoral Implantation, Transapical Implantation, and Transaortic Implantation)—Global Opportunity Analysis and Industry Forecast, 2018–2025. 2018. Available online: https://www.alliedmarketresearch.com/tavi-market (accessed on 14 April 2020).
- Grover, F.L.; Vemulapalli, S.; Carroll, J.D.; Edwards, F.H.; Mack, M.J.; Thourani, V.H.; Brindis, R.G.; Shahian, D.M.; Ruiz, C.E.; Jacobs, J.P.; et al. 2016 Annual Report of The Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. J. Am. Coll. Cardiol. 2017, 69, 1215–1230. [Google Scholar] [CrossRef] [PubMed]
- Arthur, S.A.; Warren, R.J.; Frank, J.H.; Noel, R.Z.; Manuel, V.; Robert, D. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar]
- Leipsic, J.; Abbara, S.; Achenbach, S.; Cury, R.; Earls, J.P.; Mancini, G.J.; Nieman, K.; Pontone, G.; Raff, G.L. SCCT guidelines for the interpretation and reporting of coronary CT angiography: A report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J. Cardiovasc. Comput. Tomogr. 2014, 8, 342–358. [Google Scholar] [CrossRef]
- Ryan, T.J.; Bauman, W.B.; Kennedy, J.W.; Kereiakes, D.J.; King, S.B.; McCallister, B.D.; Smith, S.C.; Ullyot, D.J. Guidelines for percutaneous transluminal coronary angioplasty. A report of the American Heart Association/American College of Cardiology Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Percutaneous Transluminal Coronary Angioplasty). Circulation 1993, 88, 2987–3007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serruys, P.W.; Morice, M.C.; Kappetein, A.P.; Colombo, A.; Holmes, D.R.; Mack, M.J.; Ståhle, E.; Feldman, T.E.; van den Brand, M.; Bass, E.J.; et al. Percutaneous Coronary Intervention versus Coronary-Artery Bypass Grafting for Severe Coronary Artery Disease. N. Engl. J. Med. 2009, 360, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Cutlip, D.E.; Windecker, S.; Mehran, R.; Boam, A.; Cohen, D.J.; van Es, G.-A.; Steg, P.G.; Morel, M.-a.; Mauri, L.; Vranckx, P.; et al. Clinical end points in coronary stent trials: A case for standardized definitions. Circulation 2007, 115, 2344–2351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roques, F.; Nashef, S.A.; Michel, P.; Gauducheau, E.; de Vincentiis, C.; Baudet, E.; Cortina, J.; David, M.; Faichney, A.; Gabrielle, F.; et al. Risk factors and outcome in European cardiac surgery: Analysis of the EuroSCORE multinational database of 19030 patients. Eur. J. Cardiothorac. Surg. 1999, 15, 816–823. [Google Scholar] [CrossRef] [Green Version]
- Chava, S.; Gentchos, G.; Abernethy, A.; Leavitt, B.; Terrien, E.; Dauerman, H.L. Routine CT angiography to detect severe coronary artery disease prior to transcatheter aortic valve replacement. J. Thromb. Thrombolysis 2017, 44, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Chaikriangkrai, K.; Jhun, H.Y.; Shantha, G.P.S.; Abdulhak, A.B.; Tandon, R.; Alqasrawi, M.; Klappa, A.; Pancholy, S.; Deshmukh, A.; Bhama, J.; et al. Diagnostic Accuracy of Coronary Computed Tomography Before Aortic Valve Replacement: Systematic Review and Meta-Analysis. J. Thorac. Imaging 2018, 33, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Kruk, M.; Noll, D.; Achenbach, S.; Mintz, G.S.; Pręgowski, J.; Kaczmarska, E.; Kryczka, K.; Pracoń, R.; Dzielińska, Z.; Sleszycka, J.; et al. Impact of coronary artery calcium characteristics on accuracy of CT angiography. JACC Cardiovasc. Imaging 2014, 7, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulla, J.; Pedersen, K.S.; Budoff, M.; Kofoed, K.F. Influence of coronary calcification on the diagnostic accuracy of 64-slice computed tomography coronary angiography: A systematic review and meta-analysis. Int. J. Cardiovasc. Imaging 2012, 28, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Arbab-Zadeh, A.; Miller, J.M.; Rochitte, C.E.; Dewey, M.; Niinuma, H.; Gottlieb, I.; Paul, N.; Clouse, M.E.; Shapiro, E.P.; Hoe, J.; et al. Diagnostic accuracy of computed tomography coronary angiography according to pre-test probability of coronary artery disease and severity of coronary arterial calcification. The CORE-64 (Coronary Artery Evaluation Using 64-Row Multidetector Computed Tomography Angiography) International Multicenter Study. J. Am. Coll. Cardiol. 2012, 59, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Conte, E.; Sonck, J.; Mushtaq, S.; Collet, C.; Mizukami, T.; Barbato, E.; Tanzilli, A.; Nicoli, F.; de Bruyne, B.; Andreini, D. FFRCT and CT perfusion: A review on the evaluation of functional impact of coronary artery stenosis by cardiac CT. Int. J. Cardiol. 2020, 300, 289–296. [Google Scholar] [CrossRef]
- Yamanaka, F.; Shishido, K.; Ochiai, T.; Moriyama, N.; Yamazaki, K.; Sugitani, A.; Tani, T.; Tobita, K.; Mizuno, S.; Tanaka, Y.; et al. Instantaneous Wave-Free Ratio for the Assessment of Intermediate Coronary Artery Stenosis in Patients With Severe Aortic Valve Stenosis: Comparison With Myocardial Perfusion Scintigraphy. JACC Cardiovasc. Interv. 2018, 11, 2032–2040. [Google Scholar] [CrossRef]
- Burgstahler, C.; Kunze, M.; Gawaz, M.P.; Rasche, V.; Wöhrle, J.; Hombach, V.; Merkle, N. Adenosine stress first pass perfusion for the detection of coronary artery disease in patients with aortic stenosis: A feasibility study. Int. J. Cardiovasc. Imaging 2008, 24, 195–200. [Google Scholar] [CrossRef]
Group A | Group B | p Value | |||
---|---|---|---|---|---|
n = 388 | n = 72 | ||||
Age (years) | 79.6 | ±7.2 | 79.9 | ±8.1 | 0.75 |
Female | 191 | 49.2% | 47 | 65.3% | 0.01 |
BMI (kg/m2) | 29.2 | ±6.2 | 29.3 | ±5.2 | 0.87 |
Diabetes mellitus (Type I or II) | 49 | 12.6% | 11 | 15.3% | 0.55 |
Hypertension | 346 | 89.2% | 64 | 88.9% | 0.74 |
Hyperlipidemia | 227 | 58.5% | 38 | 52.8% | 0.13 |
Chronic kidney disease | 164 | 42.3% | 34 | 47.2% | 0.58 |
Prior PCI | 111 | 28.6% | 4 | 5.6% | <0.001 |
Prior myocardial infarction | 49 | 12.6% | 1 | 1.4% | 0.005 |
Peripheral artery disease | 43 | 11.1% | 7 | 9.7% | 0.74 |
Prior stroke or TIA | 31 | 8.0% | 5 | 6.9% | 0.77 |
Current smoking | 51 | 13.1% | 7 | 9.7% | 0.36 |
NYHA classification III/IV | 260 | 67.0% | 37 | 51.4% | 0.006 |
Left ventricular EF (%) | 55.3 | ±12.9 | 59.9 | ±12.7 | 0.003 |
Aortic valve area (cm2) | 0.70 | (0.60–0.90) | 0.70 | (0.60–0.90) | 0.39 |
Logistic EuroSCORE (%) | 15.2 | (10.1–23.7) | 13.0 | (7.8–19.6) | 0.07 |
HR at rest (beats/min) | 76.8 | ±15.4 | 75.6 | ±15.7 | 0.38 |
Sinus rhythm | 215 | 64.7% | 49 | 68.1% | 0.48 |
Group A | Group B | p Value | |||
---|---|---|---|---|---|
n = 388 | n = 72 | ||||
HR during scan (beats/min) | 71.5 | (62.5–83.1) | 71 | (60.5–81.9) | 0.5 |
HR variability (beats/min) | 8 | (2.0–37.0) | 5.5 | (2.0–34.0) | 0.34 |
Contrast to noise ratio (HU) | 11.6 | ±4.3 | 11.9 | ±4.1 | 0.59 |
CAC | 859 | (285–1975) | 99 | (36–303) | <0.001 |
CAD+ | CAD− | <0.001 | |||
n = 272 | n = 116 | ||||
1792 | 463 | ||||
(617–2330) | (60–628) | ||||
Tube potential 70 kV | 8 | 2.1% | 2 | 2.8% | 0.07 |
Tube potential 80 kV | 213 | 54.9% | 34 | 47.2% | |
Tube potential 100 kV | 139 | 35.8% | 34 | 47.2% | |
Tube potential 120 kV | 18 | 4.6% | 0 | 0% | |
DLP (mGy×cm) | 900.4 | ±384.9 | 834.1 | ±317.8 | 0.12 |
Image Quality Parameter on cCTA − Group A | cCTA CAD− | cCTA CAD+ | p Value | ||
---|---|---|---|---|---|
n = 116 | n = 272 | ||||
Mean Calcification Score (0–3) | 0.74 | ±0.67 | 1.81 | ±0.97 | <0.001 |
Mean Artifact Score (0–3) | 0.41 | ±0.62 | 0.90 | ±1.06 | <0.001 |
Mean Opacification Score (0–3) | 2.36 | ±0.75 | 2.18 | ±0.80 | 0.05 |
Mean Image Quality (0–3) | 2.17 | ±0.74 | 1.69 | ±0.97 | <0.001 |
n | TP | TN | FP | FN | Sen. | Spe. | PPV | NPV | |
---|---|---|---|---|---|---|---|---|---|
Coronary segments | 4947 | 222 | 3989 | 702 | 34 | 86.7% | 85.0% | 24.0% | 99.2% |
Coronary vessels | 1551 | 189 | 980 | 366 | 16 | 92.2% | 72.8% | 34.1% | 98.4% |
Patients with stents | 87 | 45 | 9 | 33 | 0 | 100.0% | 21.4% | 57.7% | 100.0% |
All patients | 388 | 135 | 113 | 137 | 3 | 97.8% | 45.2% | 49.6% | 97.4% |
Odds Ratio | 95% Confidence Interval | p Value | |
---|---|---|---|
Model 1 a | |||
BMI | 0.97 | [0.93–1.00] | 0.05 |
HR | 0.99 | [0.98–1.00] | 0.11 |
Model 1 b | |||
BMI (5 kg/m2) | 0.82 | [0.69–0.99] | 0.03 |
Model 2 | |||
BMI | 0.97 | [0.93–1.01] | 0.11 |
HR | 0.99 | [0.98–1.00] | 0.09 |
logCAC | 1.64 | [0.35–7.65] | 0.52 |
√ number of calcified lesions | 0.84 | [0.55–1.28] | 0.40 |
logCAC/ number of calcified lesions | 0.49 | [0.12–2.05] | 0.32 |
In Hospital Events | Group A n = 273 | Group B n = 58 | p Value | ||
---|---|---|---|---|---|
MACCE | 17 | 6.2% | 4 | 6.9% | 0.56 |
All-cause mortality | 7 | 2.6% | 1 | 1.7% | 0.72 |
Cardiovascular mortality | 3 | 1.1% | 0 | 0.0% | 0.48 |
Cerebrovascular events | 12 | 4.4% | 3 | 5.2% | 0.81 |
Myocardial infarction | 2 | 0.7% | 0 | 0.0% | 0.59 |
Acute kidney injury | 23 | 8.4% | 4 | 6.9% | 0.71 |
n | Prev. | TP | FP | TN | FN | Sen. | Spe. | PPV | NPV | |
---|---|---|---|---|---|---|---|---|---|---|
Pontone et al. (2011) [19] | 60 | 43.3% | 23 | 4 | 30 | 3 | 88.5% | 88.2% | 85.2% | 90.9% |
Andreini et al. (2014) [13] | 325 | 29.8% | 87 | 21 | 207 | 10 | 89.7% | 90.8% | 80.6% | 95.4% |
Hamdan et al. (2015) [15] | 115 | 42.6% | 47 | 18 | 48 | 2 | 95.9% | 72.7% | 72.3% | 96.0% |
Harris et al. (2015) [16] | 100 | 74.0% | 73 | 11 | 15 | 1 | 98.6% | 57.7% | 86.9% | 93.8% |
Opolski et al. (2015) [18] | 475 | 56.8% | 265 | 129 | 76 | 5 | 98.1% | 37.1% | 67.3% | 93.8% |
Matsumoto et al. (2017) [17] | 60 | 40.0% | 22 | 15 | 21 | 2 | 91.7% | 58.3% | 59.5% | 91.3% |
Rossi et al. (2017) [20] | 140 | 41.4% | 53 | 37 | 45 | 5 | 91.4% | 54.9% | 58.9% | 90.0% |
Annoni et al. (2018) [14] | 115 | 20.0% | 22 | 12 | 80 | 1 | 95.7% | 87.0% | 64.7% | 98.8% |
Strong et al. (2019) [23] | 200 | 34.5% | 69 | 76 | 55 | 0 | 100.0% | 42.0% | 47.6% | 100.0% |
Our results | 388 | 35.6% | 135 | 137 | 113 | 3 | 97.8% | 45.2% | 49.6% | 97.4% |
Combined results | 1978 | 41.9% | 40.2% | 23.3% | 34.9% | 1.6% | 96.1% | 60.0% | 63.4% | 95.6% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gohmann, R.F.; Lauten, P.; Seitz, P.; Krieghoff, C.; Lücke, C.; Gottschling, S.; Mende, M.; Weiß, S.; Wilde, J.; Kiefer, P.; et al. Combined Coronary CT-Angiography and TAVI-Planning: A Contrast-Neutral Routine Approach for Ruling-Out Significant Coronary Artery Disease. J. Clin. Med. 2020, 9, 1623. https://doi.org/10.3390/jcm9061623
Gohmann RF, Lauten P, Seitz P, Krieghoff C, Lücke C, Gottschling S, Mende M, Weiß S, Wilde J, Kiefer P, et al. Combined Coronary CT-Angiography and TAVI-Planning: A Contrast-Neutral Routine Approach for Ruling-Out Significant Coronary Artery Disease. Journal of Clinical Medicine. 2020; 9(6):1623. https://doi.org/10.3390/jcm9061623
Chicago/Turabian StyleGohmann, Robin F., Philipp Lauten, Patrick Seitz, Christian Krieghoff, Christian Lücke, Sebastian Gottschling, Meinhard Mende, Stefan Weiß, Johannes Wilde, Philipp Kiefer, and et al. 2020. "Combined Coronary CT-Angiography and TAVI-Planning: A Contrast-Neutral Routine Approach for Ruling-Out Significant Coronary Artery Disease" Journal of Clinical Medicine 9, no. 6: 1623. https://doi.org/10.3390/jcm9061623
APA StyleGohmann, R. F., Lauten, P., Seitz, P., Krieghoff, C., Lücke, C., Gottschling, S., Mende, M., Weiß, S., Wilde, J., Kiefer, P., Noack, T., Desch, S., Holzhey, D., Borger, M. A., Thiele, H., Abdel-Wahab, M., & Gutberlet, M. (2020). Combined Coronary CT-Angiography and TAVI-Planning: A Contrast-Neutral Routine Approach for Ruling-Out Significant Coronary Artery Disease. Journal of Clinical Medicine, 9(6), 1623. https://doi.org/10.3390/jcm9061623