Soluble Urokinase Plasminogen Activator Receptor (suPAR) Concentrations Are Elevated in Patients with Neuroendocrine Malignancies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Study and Patient Cohort
2.2. Measurement of Circulating suPAR Levels
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics of the Two NEN Cohorts
3.2. Circulating Levels of suPAR Are Elevated in NET Patients
3.3. suPAR Serum Concentrations Are not Associated with Disease Characteristics in Patients with NET
3.4. suPAR Serum Concentrations Are not Associated with Overall Survival in Patients with NET
3.5. suPAR Serum Concentrations are Similarly Elevated in Patients with Neuroendocrine Tumors and Neuroendocrine Carcinoma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
5′-tetramethylbenzidine | TMB |
Area under the curve | AUC |
Cholangiocellular carcinoma | CCA |
Colorectal Cancer | CRC |
Confidence Interval | CI |
Chromogranin A | CgA |
Enzyme-linked immunosorbent assay | ELISA |
Grade | G |
Neuroendocrine carcinoma | NEC |
Neuroendocrine neoplasm | NEN |
Neuroendocrine tumors | NET |
Odds Ratio | OR |
Overall survival | OS |
Pancreatic ductal adenocarcinoma | PDAC |
Peptide receptor radionuclide therapy | PRRT |
Receiver operating characteristic | ROC |
Soluble urokinase-type plasminogen activator receptor | suPAR |
Somatostatin receptor | SSR |
Temozolomide/Capecitabine | TEM/CAP |
TNM classification of malignant tumors | TNM |
Urokinase plasminogen activator receptor | uPAR |
References
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, M.K.; Carneiro, F.; Cree, I.A. The 2019 WHO classification of tumours of the digestive system. Histopathology 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorbye, H.; Welin, S.; Langer, S.W.; Vestermark, L.W.; Holt, N.; Osterlund, P.; Dueland, S.; Hofsli, E.; Guren, M.G.; Ohrling, K.; et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): The NORDIC NEC study. Ann. Oncol. 2013, 24, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Rinke, A.; Wiedenmann, B.; Auernhammer, C.; Bartenstein, P.; Bartsch, D.K.; Begum, N.; Faiss, S.; Fottner, C.; Gebauer, B.; Goretzki, P.; et al. Practice guideline neuroendocrine tumors—AWMF-Reg. 021-27. Z. Gastroenterol. 2018, 56, 583–681. [Google Scholar]
- Perren, A.; Couvelard, A.; Scoazec, J.Y.; Costa, F.; Borbath, I.; Delle Fave, G.; Gorbounova, V.; Gross, D.; Grossma, A.; Jense, R.T.; et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Pathology: Diagnosis and Prognostic Stratification. Neuroendocrinology 2017, 105, 196–200. [Google Scholar] [CrossRef]
- Scoville, S.D.; Cloyd, J.M.; Pawlik, T.M. New and emerging systemic therapy options for well-differentiated gastroenteropancreatic neuroendocrine tumors. Expert Opin. Pharm. 2020, 21, 183–191. [Google Scholar] [CrossRef]
- Maggio, I.; Manuzzi, L.; Lamberti, G.; Ricci, A.D.; Tober, N.; Campana, D. Landscape and Future Perspectives of Immunotherapy in Neuroendocrine Neoplasia. Cancers 2020, 12, 832. [Google Scholar] [CrossRef] [Green Version]
- Rindi, G.; Klersy, C.; Albarello, L.; Baudin, E.; Bianchi, A.; Buchler, M.W.; Caplin, M.; Couvelard, A.; Cros, J.; de Herder, W.W.; et al. Competitive Testing of the WHO 2010 versus the WHO 2017 Grading of Pancreatic Neuroendocrine Neoplasms: Data from a Large International Cohort Study. Neuroendocrinology 2018, 107, 375–386. [Google Scholar] [CrossRef]
- Janson, E.T.; Sorbye, H.; Welin, S.; Federspiel, B.; Gronbaek, H.; Hellman, P.; Ladekarl, M.; Langer, S.W.; Mortensen, J.; Schalin-Jantti, C.; et al. Nordic guidelines 2014 for diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms. Acta Oncol. 2014, 53, 1284–1297. [Google Scholar] [CrossRef]
- Merola, E.; Rinke, A.; Partelli, S.; Gress, T.M.; Andreasi, V.; Kollar, A.; Perren, A.; Christ, E.; Panzuto, F.; Pascher, A.; et al. Surgery with Radical Intent: Is There an Indication for G3 Neuroendocrine Neoplasms? Ann. Surg. Oncol. 2020, 27, 1348–1355. [Google Scholar] [CrossRef]
- Rindi, G.; Wiedenmann, B. Neuroendocrine neoplasia goes molecular—Time for a change. Nat. Rev. Clin. Oncol. 2019, 16, 149–150. [Google Scholar] [CrossRef]
- Montuori, N.; Ragno, P. Multiple activities of a multifaceted receptor: Roles of cleaved and soluble uPAR. Front. Biosci. 2009, 14, 2494–2503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guthaus, E.; Schmiedeberg, N.; Burgle, M.; Magdolen, V.; Kessler, H.; Schmitt, M. The urokinase receptor (uPAR, CD87) as a target for tumor therapy: UPA-silica particles (SP-uPA) as a new tool for assessing synthetic peptides to interfere with uPA/uPA-receptor interaction. Recent Results Cancer Res. 2003, 162, 3–14. [Google Scholar] [PubMed]
- Larsen, F.F.; Petersen, J.A. Novel biomarkers for sepsis: A narrative review. Eur. J. Intern. Med. 2017, 45, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Han, Y.; Zhao, J.; Cui, J.; Wang, K.; Wang, R.; Liu, Y. Serum soluble urokinase-type plasminogen activator receptor as a biological marker of bacterial infection in adults: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donadello, K.; Scolletta, S.; Covajes, C.; Vincent, J.L. suPAR as a prognostic biomarker in sepsis. BMC Med. 2012, 10, 1741–7015. [Google Scholar] [CrossRef] [Green Version]
- Benz, F.; Roy, S.; Trautwein, C.; Roderburg, C.; Luedde, T. Circulating MicroRNAs as Biomarkers for Sepsis. Int. J. Mol. Sci. 2016, 17, 78. [Google Scholar] [CrossRef] [Green Version]
- Mazar, A.P. The urokinase plasminogen activator receptor (uPAR) as a target for the diagnosis and therapy of cancer. Anticancer Drugs 2001, 12, 387–400. [Google Scholar] [CrossRef]
- Loosen, S.H.; Breuer, A.; Tacke, F.; Kather, J.N.; Gorgulho, J.; Alizai, P.H.; Bednarsch, J.; Roeth, A.A.; Lurje, G.; Schmitz, S.M.; et al. Circulating levels of soluble urokinase plasminogen activator receptor predict outcome after resection of biliary tract cancer. JHEP Rep. 2020, 2, 100080. [Google Scholar] [CrossRef] [Green Version]
- Loosen, S.H.; Luedde, M.; Lurje, G.; Spehlmann, M.; Paffenholz, P.; Ulmer, T.F.; Tacke, F.; Vucur, M.; Trautwein, C.; Neumann, U.P.; et al. Serum Levels of Kisspeptin Are Elevated in Patients with Pancreatic Cancer. Dis. Markers 2019, 2019, 5603474. [Google Scholar] [CrossRef]
- Loosen, S.H.; Tacke, F.; Binnebosel, M.; Leyh, C.; Vucur, M.; Heitkamp, F.; Schoening, W.; Ulmer, T.F.; Alizai, P.H.; Trautwein, C.; et al. Serum levels of soluble urokinase plasminogen activator receptor (suPAR) predict outcome after resection of colorectal liver metastases. Oncotarget 2018, 9, 27027–27038. [Google Scholar] [CrossRef] [Green Version]
- Brunner, N.; Nielsen, H.J.; Hamers, M.; Christensen, I.J.; Thorlacius-Ussing, O.; Stephens, R.W. The urokinase plasminogen activator receptor in blood from healthy individuals and patients with cancer. Apmis 1999, 107, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.L.; Fan, J.H.; Wu, J. Prognostic Role of Circulating Soluble uPAR in Various Cancers: A Systematic Review and Meta-Analysis. Clin. Lab. 2017, 63, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Roderburg, C.; Urban, G.W.; Bettermann, K.; Vucur, M.; Zimmermann, H.; Schmidt, S.; Janssen, J.; Koppe, C.; Knolle, P.; Castoldi, M.; et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011, 53, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Von Scholten, B.J.; Persson, F.; Rosenlund, S.; Eugen-Olsen, J.; Pielak, T.; Faber, J.; Hansen, T.W.; Rossing, P. Effects of liraglutide on cardiovascular risk biomarkers in patients with type 2 diabetes and albuminuria: A sub-analysis of a randomized, placebo-controlled, double-blind, crossover trial. Diabetes Obes. Metab. 2017, 19, 901–905. [Google Scholar] [CrossRef]
- Can, U.; Buyukinan, M.; Yerlikaya, F.H. Serum levels of soluble urokinase plasminogen activator receptor as a new inflammatory marker in adolescent obesity. Indian J. Med. Res. 2017, 145, 327–333. [Google Scholar]
- Hayek, S.S.; Leaf, D.E.; Samman Tahhan, A.; Raad, M.; Sharma, S.; Waikar, S.S.; Sever, S.; Camacho, A.; Wang, X.; Dande, R.R.; et al. Soluble Urokinase Receptor and Acute Kidney Injury. N. Engl. J. Med. 2020, 382, 416–426. [Google Scholar] [CrossRef]
- Tacke, F. Risk Prediction for Acute Kidney Injury—Super Important, Now suPAR Easy? N Engl J. Med. 2020, 382, 470–472. [Google Scholar] [CrossRef]
- Patel, N.; Barbieri, A.; Gibson, J. Neuroendocrine Tumors of the Gastrointestinal Tract and Pancreas. Surg. Pathol. Clin. 2019, 12, 1021–1044. [Google Scholar] [CrossRef]
- Sonbol, M.B.; Halfdanarson, T.R. Management of Well-Differentiated High-Grade (G3) Neuroendocrine Tumors. Curr. Treat. Options Oncol. 2019, 20, 019–0670. [Google Scholar] [CrossRef]
- Chouliaras, K.; Newman, N.A.; Shukla, M.; Swett, K.R.; Levine, E.A.; Sham, J.; Mann, G.N.; Shen, P. Analysis of recurrence after the resection of pancreatic neuroendocrine tumors. J. Surg. Oncol. 2018, 118, 416–421. [Google Scholar] [CrossRef]
- Genc, C.G.; Falconi, M.; Partelli, S.; Muffatti, F.; van Eeden, S.; Doglioni, C.; Klumpen, H.J.; van Eijck, C.H.J.; Nieveen van Dijkum, E.J.M. Recurrence of Pancreatic Neuroendocrine Tumors and Survival Predicted by Ki67. Ann. Surg. Oncol. 2018, 25, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Loosen, S.H.; Tacke, F.; Puthe, N.; Binneboesel, M.; Wiltberger, G.; Alizai, P.H.; Kather, J.N.; Paffenholz, P.; Ritz, T.; Koch, A.; et al. High baseline soluble urokinase plasminogen activator receptor (suPAR) serum levels indicate adverse outcome after resection of pancreatic adenocarcinoma. Carcinogenesis 2019, 40, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Illemann, M.; Bird, N.; Majeed, A.; Laerum, O.D.; Lund, L.R.; Dano, K.; Nielsen, B.S. Two distinct expression patterns of urokinase, urokinase receptor and plasminogen activator inhibitor-1 in colon cancer liver metastases. Int. J. Cancer 2009, 124, 1860–1870. [Google Scholar] [CrossRef] [PubMed]
- Rinke, A.; Gress, T.M. Neuroendocrine Cancer, Therapeutic Strategies in G3 Cancers. Digestion 2017, 95, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Crippa, S.; Partelli, S.; Belfiori, G.; Palucci, M.; Muffatti, F.; Adamenko, O.; Cardinali, L.; Doglioni, C.; Zamboni, G.; Falconi, M. Management of neuroendocrine carcinomas of the pancreas (WHO G3): A tailored approach between proliferation and morphology. World, J. Gastroenterol. 2016, 22, 9944–9953. [Google Scholar] [CrossRef] [PubMed]
- Gussen, H.; Hohlstein, P.; Bartneck, M.; Warzecha, K.T.; Buendgens, L.; Luedde, T.; Trautwein, C.; Koch, A.; Tacke, F. Neutrophils are a main source of circulating suPAR predicting outcome in critical illness. J. Intensive Care 2019, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.; Zimmermann, H.W.; Gassler, N.; Jochum, C.; Weiskirchen, R.; Bruensing, J.; Buendgens, L.; Duckers, H.; Bruns, T.; Gerken, G.; et al. Clinical relevance and cellular source of elevated soluble urokinase plasminogen activator receptor (suPAR) in acute liver failure. Liver Int. 2014, 34, 1330–1339. [Google Scholar] [CrossRef]
Characteristics | All Patients |
---|---|
n = 157 (100%) | |
Sex, female | 75 (48%) |
Age at initial diagnosis, median | 46 (36–80) |
Comorbidities | n = 86 |
Diabetes | n = 15 (17%) |
Arterial hypertension | n = 20 (23%) |
Primary tumor localization | |
ileum | n = 82 (52%) |
pancreas | n = 73 (46%) |
Other: | n = 2 (1%) |
Lung | n = 1 |
Ovary | n = 1 |
Median survival (months), range | n = 188 (42–331) |
No. of patients alive | n = 54 (34%) |
No. of death patients | n = 43 (27%) |
No. of patients lost-to-follow-up | n = 60 (38%) |
Grading | |
G1 | n = 83 (55%) |
G2 | n = 57 (36%) |
G3 | n = 12 (0.6%) |
Ki-67 (%), median (range) | 2 (1–25) |
Ki-67 ≤ 3 | n = 88 (64%) |
Ki-67 > 3 and ≤ 10 | n = 41 (30%) |
Ki-67 > 10 and ≤ 20 | n = 9 (7%) |
Metastases | n = 122 (80%) |
Hepatic metastases | n = 20 (83%) |
Lymph node metastases | n = 16 (64%) |
Bone metastases | n = 6 (27%) |
Peritoneal carcinomatosis | n = 7 (32%) |
T-stage | |
T1 | n = 9 (8%) |
T2 | n = 31 (26%) |
T3 | n = 45 (38%) |
T4 | n = 35 (29%) |
Relapse | |
no | n= 53 (71%) |
yes | n = 22 (29%) |
Functional disease | |
no | n = 77 (53%) |
yes | n = 68 (47%) |
SSR expression | |
no | n = 22 (16%) |
yes | n = 117 (84%) |
Creatinine (mg/dL) median (range) | 0.85 (0.44–2.89) |
<1.5 mg/dL | n = 126 (92%) |
≥1.5 mg/dL | n = 10 (7%) |
Chromogranin A, median (range) | 97 (0–7986) |
<97 μg/L | n = 46 (49%) |
≥97 μg/L | n = 48 (51%) |
Characteristics | All Patients (n = 30) |
---|---|
Sex, female | 12 (40%) |
Age at initial diagnosis, median (years) | 49 (26–71) |
Comorbidities | |
Diabetes | n = 3 (27%) |
Arterial hypertension | n = 3 (27%) |
Primary tumor localization | |
Pancreas | n = 14 (47%) |
Ileum | n = 2 (6%) |
Stomach | n = 7 (23%) |
Other: | n = 7 (23%) |
Rectum | n= 2 |
Thymus | n = 1 |
Lung | n = 1 |
Larynx | n = 1 |
Cortex of suprarenal gland | n = 1 |
CUP | n = 1 |
Median survival (months), range | n = 123 (0–176) |
No. of patients alive | n = 11 (37%) |
No. of death patients | n = 7 (23%) |
No. of patients lost-to-follow-up | n = 12 (40%) |
Metastases | n = 20 |
Hepatic metastases | n = 20 (20/24; 83%) |
Lymph node metastases | n = 16 (16/25; 64%) |
Bone metastases | n = 6 (6/22; 27%) |
Peritoneal carcinomatosis | n = 7 (7/22; 32%) |
Grading: | n = 29 |
G1 | n = 0 |
G2 | n = 2 (7%) |
G3 | n = 25 (93%) |
Ki-67 (%), median (range) | 28 (20–95) |
Ki-67 ≤ 20 | n = 8 (36%) |
Ki-67 >20 | n = 14 (64%) |
T stage | n = 9 |
T1 | n = 0 |
T2 | n = 2 (22%) |
T3 | n= 3 (33%) |
T4 | n = 4 (44%) |
Relapse | |
no | n = 19 (95%) |
yes | n = 1 (5%) |
Functional disease | |
no | n = 16 (80%) |
yes | n = 4 (20%) |
SSR expression | n = 22 |
no | n = 16 (73%) |
yes | n = 6 (27%) |
Creatinine (mg/dL), median; (range) | 0.85; (0.52–1.60) |
Creatine < 1 | n = 21 (81%) |
Creatine ≥ 1 | n = 5 (19%) |
Chromogranin A (μg/L), median; (range) | 138 (1–454) |
<137 μg/L | n = 4 (50%) |
≥137 μg/L | n = 4 (50%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özdirik, B.; Stueven, A.; Knorr, J.; Geisler, L.; Mohr, R.; Demir, M.; Hellberg, T.; Loosen, S.H.; Benz, F.; Wiedenmann, B.; et al. Soluble Urokinase Plasminogen Activator Receptor (suPAR) Concentrations Are Elevated in Patients with Neuroendocrine Malignancies. J. Clin. Med. 2020, 9, 1647. https://doi.org/10.3390/jcm9061647
Özdirik B, Stueven A, Knorr J, Geisler L, Mohr R, Demir M, Hellberg T, Loosen SH, Benz F, Wiedenmann B, et al. Soluble Urokinase Plasminogen Activator Receptor (suPAR) Concentrations Are Elevated in Patients with Neuroendocrine Malignancies. Journal of Clinical Medicine. 2020; 9(6):1647. https://doi.org/10.3390/jcm9061647
Chicago/Turabian StyleÖzdirik, Burcin, Anna Stueven, Jana Knorr, Lukas Geisler, Raphael Mohr, Münevver Demir, Teresa Hellberg, Sven H. Loosen, Fabian Benz, Bertram Wiedenmann, and et al. 2020. "Soluble Urokinase Plasminogen Activator Receptor (suPAR) Concentrations Are Elevated in Patients with Neuroendocrine Malignancies" Journal of Clinical Medicine 9, no. 6: 1647. https://doi.org/10.3390/jcm9061647
APA StyleÖzdirik, B., Stueven, A., Knorr, J., Geisler, L., Mohr, R., Demir, M., Hellberg, T., Loosen, S. H., Benz, F., Wiedenmann, B., Tacke, F., Wree, A., Jann, H., & Roderburg, C. (2020). Soluble Urokinase Plasminogen Activator Receptor (suPAR) Concentrations Are Elevated in Patients with Neuroendocrine Malignancies. Journal of Clinical Medicine, 9(6), 1647. https://doi.org/10.3390/jcm9061647