Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions
Abstract
:1. Introduction
2. HPT and Peripheral Regulation of TH Metabolism during Ageing
3. TH and Other Pathways Involved in Preservation of FOR and Ovarian Health
4. Circulating TH/TSH Levels and Premature Ovarian Dysfunctions
5. Peripheral TH Metabolism/Signalling and Markers of Ovarian Reserve: Potential “Local” Crosstalk
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pelosi, E.; Forabosco, A.; Schlessinger, D. Genetics of the ovarian reserve. Front Genet. 2015, 6, 308. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, N.P.; Sakkas, E.; Vaiarelli, A.; Poppe, K.; Camus, M.; Tournaye, H. Thyroid autoimmunity, hypothyroidism and ovarian reserve: A cross-sectional study of 5000 women based on age-specific AMH values. Hum. Reprod. 2015, 30, 1690–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, A.G. Local Regulation of Thyroid Hormone Signaling. Vitam Horm. 2018, 106, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, D.; Ambrosino, C. Non-coding RNAs as integrators of the effects of age, genes, and environment on ovarian aging. Cell Death Dis. 2019, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, D.; Porreca, I.; Ceccarelli, M.; Threadgill, D.W.; Barrington, W.T.; Petriella, A.; D’Angelo, F.; Cobellis, G.; De Stefano, F.; D’Agostino, M.N.; et al. Transcriptional landscape of mouse-aged ovaries reveals a unique set of non-coding RNAs associated with physiological and environmental ovarian dysfunctions. Cell Death Discov. 2018, 4, 112. [Google Scholar] [CrossRef] [PubMed]
- Shupnik, M.A.; Ridgway, E.C.; Chin, W.W. Molecular biology of thyrotropin. Endocr. Rev. 1989, 10, 459–475. [Google Scholar] [CrossRef]
- Joseph-Bravo, P.; Jaimes-Hoy, L.; Uribe, R.M.; Charli, J.L. 60 Years of Neuroendocrinology: Trh, the first hypophysiotropic releasing hormone isolated: Control of the pituitary-thyroid axis. J. Endocrinol. 2015, 226, T85–T100. [Google Scholar] [CrossRef] [Green Version]
- Kakucska, I.; Rand, W.; Lechan, R.M. Thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is dependent upon feedback regulation by both triiodothyronine and thyroxine. Endocrinology 1992, 130, 2845–2850. [Google Scholar] [CrossRef]
- Larsen, P.R. Thyroid-pituitary interaction: Feedback regulation of thyrotropin secretion by thyroid hormones. N. Engl. J. Med. 1982, 306, 23–32. [Google Scholar] [CrossRef]
- Fonseca, T.L.; Correa-Medina, M.; Campos, M.P.; Wittmann, G.; Werneck-de-Castro, J.P.; Arrojo e Drigo, R.; Mora-Garzon, M.; Ueta, C.B.; Caicedo, A.; Fekete, C.; et al. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J. Clin. Investig. 2013, 123, 1492–1500. [Google Scholar] [CrossRef] [Green Version]
- Dai, G.; Levy, O.; Carrasco, N. Cloning and characterization of the thyroid iodide transporter. Nature 1996, 379, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.A.; Wang, R.; Kreman, T.M.; Sheffield, V.C.; Karniski, L.P. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat. Genet. 1999, 21, 440–443. [Google Scholar] [CrossRef]
- Gereben, B.; Zavacki, A.M.; Ribich, S.; Kim, B.W.; Huang, S.A.; Simonides, W.S.; Zeold, A.; Bianco, A.C. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 2008, 29, 898–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianco, A.C.; Salvatore, D.; Gereben, B.; Berry, M.J.; Larsen, P.R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 2002, 23, 38–89. [Google Scholar] [CrossRef] [PubMed]
- Peeters, R.P.; Visser, T.J. Metabolism of Thyroid Hormone. 2000. Available online: https://www.thyroidmanager.org/chapter/metabolism-of-thyroid-hormone/ (accessed on 1 March 2020).
- Lum, S.M.; Nicoloff, J.T.; Spencer, C.A.; Kaptein, E.M. Peripheral tissue mechanism for maintenance of serum triiodothyronine values in a thyroxine-deficient state in man. J. Clin. Investig. 1984, 73, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.J.; Fiering, S.N.; Thai, B.; Wu, S.Y.; St Germain, E.; Parlow, A.F.; St Germain, D.L.; Galton, V.A. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 2006, 147, 580–589. [Google Scholar] [CrossRef] [Green Version]
- Visser, T.J. Role of sulfation in thyroid hormone metabolism. Chem. Biol. Interact. 1994, 92, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A. Structure and function of the type 3 deiodinase gene. Thyroid 2005, 15, 865–874. [Google Scholar] [CrossRef]
- Moreno, M.; Giacco, A.; Di Munno, C.; Goglia, F. Direct and rapid effects of 3,5-diiodo-L-thyronine (T2). Mol. Cell Endocrinol. 2017, 458, 121–126. [Google Scholar] [CrossRef]
- Lanni, A.; Moreno, M.; Cioffi, M.; Goglia, F. Effect of 3,3’-diiodothyronine and 3,5-diiodothyronine on rat liver oxidative capacity. Mol. Cell Endocrinol. 1992, 86, 143–148. [Google Scholar] [CrossRef]
- Gnocchi, D.; Ellis, E.C.S.; Johansson, H.; Eriksson, M.; Bruscalupi, G.; Steffensen, K.R.; Parini, P. Diiodothyronines regulate metabolic homeostasis in primary human hepatocytes by modulating mTORC1 and mTORC2 activity. Mol. Cell Endocrinol. 2020, 499, 110604. [Google Scholar] [CrossRef] [PubMed]
- Pappa, T.; Ferrara, A.M.; Refetoff, S. Inherited defects of thyroxine-binding proteins. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 735–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagenbuch, B. Cellular entry of thyroid hormones by organic anion transporting polypeptides. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Friesema, E.C.; Kuiper, G.G.; Jansen, J.; Visser, T.J.; Kester, M.H. Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism. Mol. Endocrinol. 2006, 20, 2761–2772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzagalli, F.; Hagenbuch, B.; Stieger, B.; Klenk, U.; Folkers, G.; Meier, P.J. Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol. Endocrinol. 2002, 16, 2283–2296. [Google Scholar] [CrossRef] [Green Version]
- Yen, P.M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 2001, 81, 1097–1142. [Google Scholar] [CrossRef] [Green Version]
- Davis, P.J.; Davis, F.B.; Mousa, S.A.; Luidens, M.K.; Lin, H.Y. Membrane receptor for thyroid hormone: Physiologic and pharmacologic implications. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 99–115. [Google Scholar] [CrossRef]
- Davis, P.J.; Glinsky, G.V.; Lin, H.Y.; Leith, J.T.; Hercbergs, A.; Tang, H.Y.; Ashur-Fabian, O.; Incerpi, S.; Mousa, S.A. Corrigendum: “Cancer Cell Gene Expression Modulated from Plasma Membrane Integrin alphavbeta3 by Thyroid Hormone and Nanoparticulate Tetrac”. Front. Endocrinol. (Lausanne) 2015, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Bergh, J.J.; Lin, H.Y.; Lansing, L.; Mohamed, S.N.; Davis, F.B.; Mousa, S.; Davis, P.J. Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 2005, 146, 2864–2871. [Google Scholar] [CrossRef]
- Zhang, X.K.; Kahl, M. Regulation of retinoid and thyroid hormone action through homodimeric and heterodimeric receptors. Trends Endocrinol. Metab. 1993, 4, 156–162. [Google Scholar] [CrossRef]
- Harvey, C.B.; Williams, G.R. Mechanism of thyroid hormone action. Thyroid 2002, 12, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Lonard, D.M.; O’Malley, B.W. Nuclear receptor coactivators: Master regulators of human health and disease. Annu. Rev. Med. 2013, 65, 279–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.Y. Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev. Endocr. Metab. Disord. 2000, 1, 9–18. [Google Scholar] [CrossRef]
- Davis, P.J.; Leonard, J.L.; Davis, F.B. Mechanisms of nongenomic actions of thyroid hormone. Front. Neuroendocrinol. 2008, 29, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.J.; Goglia, F.; Leonard, J.L. Nongenomic actions of thyroid hormone. Nat. Rev. Endocrinol. 2015, 12, 111–121. [Google Scholar] [CrossRef]
- Silvestri, E.; Lombardi, A.; de Lange, P.; Schiavo, L.; Lanni, A.; Goglia, F.; Visser, T.J.; Moreno, M. Age-related changes in renal and hepatic cellular mechanisms associated with variations in rat serum thyroid hormone levels. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E1160–E1168. [Google Scholar] [CrossRef] [Green Version]
- Pfundt, R.; Del Rosario, M.; Vissers, L.; Kwint, M.P.; Janssen, I.M.; de Leeuw, N.; Yntema, H.G.; Nelen, M.R.; Lugtenberg, D.; Kamsteeg, E.J.; et al. Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders. Genet. Med. 2017, 19, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Colicchia, M.; Campagnolo, L.; Baldini, E.; Ulisse, S.; Valensise, H.; Moretti, C. Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum. Reprod. Update 2014, 20, 884–904. [Google Scholar] [CrossRef]
- Maia, A.L.; Kieffer, J.D.; Harney, J.W.; Larsen, P.R. Effect of 3,5,3’-Triiodothyronine (T3) administration on dio1 gene expression and T3 metabolism in normal and type 1 deiodinase-deficient mice. Endocrinology 1995, 136, 4842–4849. [Google Scholar] [CrossRef]
- Maia, A.L.; Goemann, I.M.; Meyer, E.L.; Wajner, S.M. Deiodinases: The balance of thyroid hormone: Type 1 iodothyronine deiodinase in human physiology and disease. J. Endocrinol. 2011, 209, 283–297. [Google Scholar] [CrossRef] [Green Version]
- Leng, O.; Razvi, S. Hypothyroidism in the older population. Thyroid Res. 2019, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Weghofer, A.; Barad, D.H.; Darmon, S.; Kushnir, V.A.; Gleicher, N. What affects functional ovarian reserve, thyroid function or thyroid autoimmunity? Reprod. Biol. Endocrinol. 2016, 14, 26. [Google Scholar] [CrossRef] [PubMed]
- Feart, C.; Pallet, V.; Boucheron, C.; Higueret, D.; Alfos, S.; Letenneur, L.; Dartigues, J.F.; Higueret, P. Aging affects the retinoic acid and the triiodothyronine nuclear receptor mRNA expression in human peripheral blood mononuclear cells. Eur. J. Endocrinol. 2005, 152, 449–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldhuis, J.D. Changes in pituitary function with ageing and implications for patient care. Nat. Rev. Endocrinol. 2013, 9, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianco, A.C.; Dumitrescu, A.; Gereben, B.; Ribeiro, M.O.; Fonseca, T.L.; Fernandes, G.W.; Bocco, B. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr. Rev. 2019, 40, 1000–1047. [Google Scholar] [CrossRef]
- Kovanci, E.; Rohozinski, J.; Simpson, J.L.; Heard, M.J.; Bishop, C.E.; Carson, S.A. Growth differentiating factor-9 mutations may be associated with premature ovarian failure. Fertil. Steril. 2007, 87, 143–146. [Google Scholar] [CrossRef]
- Persani, L.; Rossetti, R.; Cacciatore, C.; Fabre, S. Genetic defects of ovarian TGF-beta-like factors and premature ovarian failure. J. Endocrinol. Investig. 2011, 34, 244–251. [Google Scholar] [CrossRef]
- Rossetti, R.; Ferrari, I.; Bonomi, M.; Persani, L. Genetics of primary ovarian insufficiency. Clin. Genet. 2016, 91, 183–198. [Google Scholar] [CrossRef] [Green Version]
- Huhtaniemi, I.; Hovatta, O.; La Marca, A.; Livera, G.; Monniaux, D.; Persani, L.; Heddar, A.; Jarzabek, K.; Laisk-Podar, T.; Salumets, A.; et al. Advances in the Molecular Pathophysiology, Genetics, and Treatment of Primary Ovarian Insufficiency. Trends Endocrinol. Metab. 2018, 29, 400–419. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Alwani, M.; Kosta, S.; Kaur, R.; Agarwal, S. BMP15 and GDF9 Gene Mutations in Premature Ovarian Failure. J. Reprod. Infertil. 2017, 18, 185–189. [Google Scholar]
- Roy, S.; Gandra, D.; Seger, C.; Biswas, A.; Kushnir, V.A.; Gleicher, N.; Kumar, T.R.; Sen, A. Oocyte-Derived Factors (GDF9 and BMP15) and FSH Regulate AMH Expression Via Modulation of H3K27AC in Granulosa Cells. Endocrinology 2018, 159, 3433–3445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzumcu, M.; Kuhn, P.E.; Marano, J.E.; Armenti, A.E.; Passantino, L. Early postnatal methoxychlor exposure inhibits folliculogenesis and stimulates anti-Mullerian hormone production in the rat ovary. J. Endocrinol. 2006, 191, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Xiong, G.P.; Luo, X.M.; Huang, S.Z.; Liu, J.; Huang, X.L.; Xie, Y.Z.; Lin, W.P. Dibutyl Phthalate Inhibits the Effects of Follicle-Stimulating Hormone on Rat Granulosa Cells Through Down-Regulation of Follicle-Stimulating Hormone Receptor. Biol. Reprod. 2016, 94, 144. [Google Scholar] [CrossRef] [PubMed]
- Maeso, I.; Irimia, M.; Tena, J.J.; Casares, F.; Gomez-Skarmeta, J.L. Deep conservation of cis-regulatory elements in metazoans. Philos. Trans. R. Soc. Lond B Biol. Sci. 2013, 368, 20130020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Ven, L.T.; van den Brandhof, E.J.; Vos, J.H.; Power, D.M.; Wester, P.W. Effects of the antithyroid agent propylthiouracil in a partial life cycle assay with zebrafish. Environ. Sci. Technol. 2006, 40, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sechman, A. The role of thyroid hormones in regulation of chicken ovarian steroidogenesis. Gen. Comp. Endocrinol. 2013, 190, 68–75. [Google Scholar] [CrossRef]
- Chen, Y.D.; Hoch, F.L. Mitochondrial inner membrane in hypothyroidism. Arch. Biochem. Biophys. 1976, 172, 741–744. [Google Scholar] [CrossRef] [Green Version]
- Heijlen, M.; Houbrechts, A.M.; Darras, V.M. Zebrafish as a model to study peripheral thyroid hormone metabolism in vertebrate development. Gen. Comp. Endocrinol. 2013, 188, 289–296. [Google Scholar] [CrossRef]
- Duarte-Guterman, P.; Navarro-Martin, L.; Trudeau, V.L. Mechanisms of crosstalk between endocrine systems: Regulation of sex steroid hormone synthesis and action by thyroid hormones. Gen. Comp. Endocrinol. 2014, 203, 69–85. [Google Scholar] [CrossRef]
- Aghajanova, L.; Lindeberg, M.; Carlsson, I.B.; Stavreus-Evers, A.; Zhang, P.; Scott, J.E.; Hovatta, O.; Skjoldebrand-Sparre, L. Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reprod. Biomed. Online 2009, 18, 337–347. [Google Scholar] [CrossRef]
- Rae, M.T.; Niven, D.; Ross, A.; Forster, T.; Lathe, R.; Critchley, H.O.; Ghazal, P.; Hillier, S.G. Steroid signalling in human ovarian surface epithelial cells: The response to interleukin-1alpha determined by microarray analysis. J. Endocrinol. 2004, 183, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Rae, M.T.; Gubbay, O.; Kostogiannou, A.; Price, D.; Critchley, H.O.; Hillier, S.G. Thyroid hormone signaling in human ovarian surface epithelial cells. J. Clin. Endocrinol. Metab. 2007, 92, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Kohrle, J. Local activation and inactivation of thyroid hormones: The deiodinase family. Mol. Cell Endocrinol. 1999, 151, 103–119. [Google Scholar] [CrossRef]
- Zhang, S.S.; Carrillo, A.J.; Darling, D.S. Expression of multiple thyroid hormone receptor mRNAs in human oocytes, cumulus cells, and granulosa cells. Mol. Hum. Reprod. 1997, 3, 555–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavreus Evers, A. Paracrine interactions of thyroid hormones and thyroid stimulation hormone in the female reproductive tract have an impact on female fertility. Front. Endocrinol. (Lausanne) 2012, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Cramer, D.W.; Sluss, P.M.; Powers, R.D.; McShane, P.; Ginsburgs, E.S.; Hornstein, M.D.; Vitonis, A.F.; Barbieri, R.L. Serum prolactin and TSH in an in vitro fertilization population: Is there a link between fertilization and thyroid function? J. Assist. Reprod. Genet. 2003, 20, 210–215. [Google Scholar] [CrossRef]
- Zhang, C.; Xia, G.; Tsang, B.K. Interactions of thyroid hormone and FSH in the regulation of rat granulosa cell apoptosis. Front. Biosci (Elite Ed). 2011, 3, 1401–1413. [Google Scholar] [CrossRef]
- Verga Falzacappa, C.; Timperi, E.; Bucci, B.; Amendola, D.; Piergrossi, P.; D’Amico, D.; Santaguida, M.G.; Centanni, M.; Misiti, S. T(3) preserves ovarian granulosa cells from chemotherapy-induced apoptosis. J. Endocrinol. 2012, 215, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Doufas, A.G.; Mastorakos, G. The hypothalamic-pituitary-thyroid axis and the female reproductive system. Ann. N. Y. Acad. Sci. 2000, 900, 65–76. [Google Scholar] [CrossRef]
- Porazzi, P.; Calebiro, D.; Benato, F.; Tiso, N.; Persani, L. Thyroid gland development and function in the zebrafish model. Mol. Cell Endocrinol. 2009, 312, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, F.; Braunbeck, T. Alterations along the Hypothalamic-Pituitary-Thyroid Axis of the Zebrafish (Danio rerio) after Exposure to Propylthiouracil. J. Thyroid Res. 2011, 376243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhi, S.; Torres, L.; Patino, R. Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios. Gen. Comp. Endocrinol. 2007, 150, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, X.; Deng, J.; Hecker, M.; Al-Khedhairy, A.; Giesy, J.P.; Zhou, B. Effects of prochloraz or propylthiouracil on the cross-talk between the HPG, HPA, and HPT axes in zebrafish. Environ. Sci. Technol. 2010, 45, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.Y.; Ng, T.B. Effect of hypothyroidism induced by propylthiouracil and thiourea on male and female reproductive systems of neonatal mice. J. Exp. Zool. 1995, 273, 160–169. [Google Scholar] [CrossRef]
- Meng, L.; Rijntjes, E.; Swarts, H.J.; Keijer, J.; Teerds, K.J. Prolonged hypothyroidism severely reduces ovarian follicular reserve in adult rats. J. Ovarian Res. 2017, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Jan, S.Z.; Hamer, G.; van Pelt, A.M.; van der Stelt, I.; Keijer, J.; Teerds, K.J. Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis. Biol. Reprod. 2018, 99, 853–863. [Google Scholar] [CrossRef]
- Meng, L.; Rijntjes, E.; Swarts, H.; Bunschoten, A.; van der Stelt, I.; Keijer, J.; Teerds, K. Dietary-Induced Chronic Hypothyroidism Negatively Affects Rat Follicular Development and Ovulation Rate and Is Associated with Oxidative Stress. Biol. Reprod. 2016, 94, 90. [Google Scholar] [CrossRef]
- Serakides, R.; Nunes, V.A.; Nascimiento, E.F.D.; Ribeiro, A.F.C.; Silva, C.M.D. Foliculogênese e esteroidogênese ovarianas em ratas adultas hipertireóideas. Arq. Bras. Endocrinol. Metab. 2001, 45, 258–264. [Google Scholar] [CrossRef]
- Fedail, J.S.; Zheng, K.; Wei, Q.; Kong, L.; Shi, F. Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats. Endocrine 2014, 46, 594–604. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Wang, Z.; Niu, W.; Zhu, B.; Xia, G. Effect of different culture systems and 3, 5, 3’-triiodothyronine/follicle-stimulating hormone on preantral follicle development in mice. PLoS ONE 2013, 8, e61947. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.Y.; Umezu, M.; Sato, E. Improvement of follicular development rather than gonadotrophin secretion by thyroxine treatment in infertile immature hypothyroid rdw rats. J. Reprod. Fertil. 2000, 119, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Sulieman, F.J.; Li, J.; Wei, Q.; Xu, M.; Shi, F. Nitric oxide and thyroid hormone receptor alpha 1 contribute to ovarian follicular development in immature hyper- and hypo-thyroid rats. Reprod. Biol. 2015, 15, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, G.; de Rooij, D.G.; de Jong, F.H.; van den Hurk, R. Effect of hypothyroidism on ovarian follicular development, granulosa cell proliferation and peripheral hormone levels in the prepubertal rat. Eur. J. Endocrinol. 1996, 134, 649–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrealday, S.; Kodaman, P.; Pal, L. Premature Ovarian Insufficiency—An update on recent advances in understanding and management. F1000Research 2017, 6, 2069. [Google Scholar] [CrossRef] [PubMed]
- Hollowell, J.G.; Staehling, N.W.; Flanders, W.D.; Hannon, W.H.; Gunter, E.W.; Spencer, C.A.; Braverman, L.E. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 2002, 87, 489–499. [Google Scholar] [CrossRef]
- Ayesha, V.J.; Goswami, D. Premature Ovarian Failure: An Association with Autoimmune Diseases. J. Clin. Diagn. Res. 2016, 10, QC10–QC12. [Google Scholar] [CrossRef]
- Goswami, R.; Marwaha, R.K.; Goswami, D.; Gupta, N.; Ray, D.; Tomar, N.; Singh, S. Prevalence of thyroid autoimmunity in sporadic idiopathic hypoparathyroidism in comparison to type 1 diabetes and premature ovarian failure. J. Clin. Endocrinol. Metab. 2006, 91, 4256–4259. [Google Scholar] [CrossRef] [Green Version]
- Novosad, J.A.; Kalantaridou, S.N.; Tong, Z.B.; Nelson, L.M. Ovarian antibodies as detected by indirect immunofluorescence are unreliable in the diagnosis of autoimmune premature ovarian failure: A controlled evaluation. BMC Womens Health 2003, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Gleicher, N.; Ryan, E.; Weghofer, A.; Blanco-Mejia, S.; Barad, D.H. Miscarriage rates after dehydroepiandrosterone (DHEA) supplementation in women with diminished ovarian reserve: A case control study. Reprod. Biol. Endocrinol. 2009, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Krassas, G.E.; Poppe, K.; Glinoer, D. Thyroid function and human reproductive health. Endocr. Rev. 2010, 31, 702–755. [Google Scholar] [CrossRef] [Green Version]
- Michalakis, K.G.; Mesen, T.B.; Brayboy, L.M.; Yu, B.; Richter, K.S.; Levy, M.; Widra, E.; Segars, J.H. Subclinical elevations of thyroid-stimulating hormone and assisted reproductive technology outcomes. Fertil. Steril. 2011, 95, 2634–2637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahri, S.; Tehrani, F.R.; Amouzgar, A.; Rahmati, M.; Tohidi, M.; Vasheghani, M.; Azizi, F. Overtime trend of thyroid hormones and thyroid autoimmunity and ovarian reserve: A longitudinal population study with a 12-year follow up. BMC Endocr. Disord. 2019, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Huang, Y.L.; Tzeng, C.R.; Huang, R.L.; Chen, C.H. Idiopathic Low Ovarian Reserve Is Associated with More Frequent Positive Thyroid Peroxidase Antibodies. Thyroid 2017, 27, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Poppe, K.; Glinoer, D.; Van Steirteghem, A.; Tournaye, H.; Devroey, P.; Schiettecatte, J.; Velkeniers, B. Thyroid dysfunction and autoimmunity in infertile women. Thyroid 2002, 12, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.; Shimasaki, S. Molecular Aspects and Clinical Relevance of GDF9 and BMP15 in Ovarian Function. Vitam. Horm. 2018, 107, 317–348. [Google Scholar] [CrossRef]
- Mayer, A.; Fouquet, B.; Pugeat, M.; Misrahi, M. BMP15 “knockout-like” effect in familial premature ovarian insufficiency with persistent ovarian reserve. Clin. Genet. 2017, 92, 208–212. [Google Scholar] [CrossRef]
- Chu, Y.L.; Xu, Y.R.; Yang, W.X.; Sun, Y. The role of FSH and TGF-beta superfamily in follicle atresia. Aging (Albany N.Y.) 2018, 10, 305–321. [Google Scholar] [CrossRef]
- Price, C.A.; Estienne, A. The life and death of the dominant follicle. Anim. Reprod. 2018, 15 (Suppl. S1), 680–690. [Google Scholar] [CrossRef]
- Wakim, A.N.; Polizotto, S.L.; Buffo, M.J.; Marrero, M.A.; Burholt, D.R. Thyroid hormones in human follicular fluid and thyroid hormone receptors in human granulosa cells. Fertil. Steril. 1993, 59, 1187–1190. [Google Scholar] [CrossRef]
- Canipari, R.; Mangialardo, C.; Di Paolo, V.; Alfei, F.; Ucci, S.; Russi, V.; Santaguida, M.G.; Virili, C.; Segni, M.; Misiti, S.; et al. Thyroid hormones act as mitogenic and pro survival factors in rat ovarian follicles. J. Endocrinol. Investig. 2019, 42, 271–282. [Google Scholar] [CrossRef]
- Maruo, T.; Hayashi, M.; Matsuo, H.; Yamamoto, T.; Okada, H.; Mochizuki, M. The role of thyroid hormone as a biological amplifier of the actions of follicle-stimulating hormone in the functional differentiation of cultured porcine granulosa cells. Endocrinology 1987, 121, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tian, Y.; Ding, Y.; Heng, D.; Xu, K.; Liu, W.; Zhang, C. Role of CYP51 in the Regulation of T3 and FSH-Induced Steroidogenesis in Female Mice. Endocrinology 2017, 158, 3974–3987. [Google Scholar] [CrossRef]
- De Vincentis, S.; Monzani, M.L.; Brigante, G. Crosstalk between gonadotropins and thyroid axis. Minerva Ginecol. 2018, 70, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Oh, G.S.; Yoon, J.; Lee, G.G.; Lee, K.U.; Kim, S.W. Hepatic TRAP80 selectively regulates lipogenic activity of liver X receptor. J. Clin. Investig. 2018, 125, 183–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, C.C.; Perry, J.D.; Morgan, S.J.; Kahaly, G.J.; Gershengorn, M.C. TSH/IGF-1 Receptor Cross-Talk Rapidly Activates Extracellular Signal-Regulated Kinases in Multiple Cell Types. Endocrinology 2017, 158, 3676–3683. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.C.; Hsu, P.J.; Wu, F.J.; Li, S.H.; Lu, C.H.; Luo, C.W. Thyrostimulin, but not thyroid-stimulating hormone (TSH), acts as a paracrine regulator to activate the TSH receptor in mammalian ovary. J. Biol. Chem. 2010, 285, 3758–3765. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.F.; Ocarino, N.M.; Serakides, R. Thyroid hormones and female reproduction. Biol. Reprod. 2018, 99, 907–921. [Google Scholar] [CrossRef]
- Habibi, H.R.; Nelson, E.R.; Allan, E.R. New insights into thyroid hormone function and modulation of reproduction in goldfish. Gen. Comp. Endocrinol. 2012, 175, 19–26. [Google Scholar] [CrossRef]
- Nelson, E.R.; Allan, E.R.; Pang, F.Y.; Habibi, H.R. Thyroid hormone and reproduction: Regulation of estrogen receptors in goldfish gonads. Mol. Reprod. Dev. 2010, 77, 784–794. [Google Scholar] [CrossRef]
- Howland, B.E.; Ibrahim, E.A. Hyperthyroidism and gonadotropin secretion in male and female rats. Experientia 1973, 29, 1398–1399. [Google Scholar] [CrossRef]
- Franklyn, J.A.; Wood, D.F.; Balfour, N.J.; Ramsden, D.B.; Docherty, K.; Chin, W.W.; Sheppard, M.C. Effect of hypothyroidism and thyroid hormone replacement in vivo on pituitary cytoplasmic concentrations of thyrotropin-beta and alpha-subunit messenger ribonucleic acids. Endocrinology 1987, 120, 2279–2288. [Google Scholar] [CrossRef] [PubMed]
- Samuels, M.H.; Wierman, M.E.; Wang, C.; Ridgway, E.C. The effect of altered thyroid status on pituitary hormone messenger ribonucleic acid concentrations in the rat. Endocrinology 1989, 124, 2277–2282. [Google Scholar] [CrossRef] [PubMed]
- Yoshiura, Y.; Sohn, Y.C.; Munakata, A.; Kobayashi, M.; Aida, K. Molecular cloning of the cDNA encoding the B subunit of thyrotropin and regulation of its gene expression by thyroid hormones in the goldfish, Carassius auratus. Fish Physiol. Biochem. 1999, 21, 201–210. [Google Scholar] [CrossRef]
- Hapon, M.B.; Simoncini, M.; Via, G.; Jahn, G.A. Effect of hypothyroidism on hormone profiles in virgin, pregnant and lactating rats, and on lactation. Reproduction 2003, 126, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Houbrechts, A.M.; Vergauwen, L.; Bagci, E.; Van Houcke, J.; Heijlen, M.; Kulemeka, B.; Hyde, D.R.; Knapen, D.; Darras, V.M. Deiodinase knockdown affects zebrafish eye development at the level of gene expression, morphology and function. Mol. Cell Endocrinol. 2016, 424, 81–93. [Google Scholar] [CrossRef]
- Houbrechts, A.M.; Van Houcke, J.; Darras, V.M. Disruption of deiodinase type 2 in zebrafish disturbs male and female reproduction. J. Endocrinol. 2019. [Google Scholar] [CrossRef]
- Lavado-Autric, R.; Calvo, R.M.; de Mena, R.M.; de Escobar, G.M.; Obregon, M.J. Deiodinase activities in thyroids and tissues of iodine-deficient female rats. Endocrinology 2012, 154, 529–536. [Google Scholar] [CrossRef]
- Hernandez, A.; Martinez, M.E.; Liao, X.H.; Van Sande, J.; Refetoff, S.; Galton, V.A.; St Germain, D.L. Type 3 deiodinase deficiency results in functional abnormalities at multiple levels of the thyroid axis. Endocrinology 2007, 148, 5680–5687. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.J.; Fiering, S.N.; Pallud, S.E.; Parlow, A.F.; St Germain, D.L.; Galton, V.A. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol. Endocrinol. 2001, 15, 2137–2148. [Google Scholar] [CrossRef]
- Salto, C.; Kindblom, J.M.; Johansson, C.; Wang, Z.; Gullberg, H.; Nordstrom, K.; Mansen, A.; Ohlsson, C.; Thoren, P.; Forrest, D.; et al. Ablation of TRalpha2 and a concomitant overexpression of alpha1 yields a mixed hypo- and hyperthyroid phenotype in mice. Mol. Endocrinol. 2001, 15, 2115–2128. [Google Scholar] [CrossRef] [Green Version]
- Yin, D.; Ruan, X.; Tian, X.; Du, J.; Zhao, Y.; Cui, Y.; Li, Y.; Mueck, A.O. The relationship between thyroid function and metabolic changes in Chinese women with polycystic ovary syndrome. Gynecol. Endocrinol. 2017, 33, 332–335. [Google Scholar] [CrossRef] [PubMed]
Canonical Pathways Identified by Ingenuity Analysis (IPA) | Molecules (Genes) Identifying the Pathway | z-Score | −log(p-Value) | References Pointing out the Regulatory Role of THs Relative to the Pathway |
---|---|---|---|---|
EIF2 Signalling | Eif2s2, Eif3a, Eif3e, Eif3m, Eif5B, Rpl11, Rpl13a, Rpl15, Rpl17, Rpl26 | −3.207 | 23.10 | Torres_Manzo AP. et al.; Oxid Med Cell Longev 2018 Takahashi K. et al.; J Biol Chem. 2014 Goulart-Silva F. et al.; Thyroid 2012 Arrojo E Drigo R. et al; Molecular Endocrinology 2011 |
Regulation of eIF4 and p70S6K Signalling | Eif2s2, Eif3a, Eif3e, Eif3m, Paip2, Ppp2r5a, Rps12, Rps18, Rps23, Rps24 | _ | 12.40 | Ediriweera MK. et al.; Semin Cancer Biol. 2019 Manfredi GI. et al.; Endocrine 2015 Kenessey A. and Ojamaa K.; The Journal of Biological Chemistry 2006 |
Oxidative Phosphorylation | Atp5mc2, Atp5mg, Atp5po, Cox17, Cox6a1, Cox7a2l, Ndufa1, Ndufa4, Ndufb1, Ndufb11 | −2.887 | 8.97 | Lombardi A. et al.; Front Physiol. 2015 Harper ME. and Seifert EL.; Thyroid 2008 Weitzel JM. et al.; Exp Physiol. 2004 Martinez B. et al.; Journal of Neurochemistry 2001 Harper ME. et al.; Biochem Soc Trans. 1993 |
mTOR Signalling | Eif3a, Eif3e, Eif3m, Ppp2r5a, Rps12, Rps18, Rps23, Rps24, Rps25, Rps27a | _ | 8.42 | Varela L. et al.; J Pathol. 2012 Kenessey A. and Ojamaa K.; The Journal of Biological Chemistry 2006 Cao X. et al.; Molecular Endocrinology 2005 |
Protein Ubiquitination Pathway | Bag1, Hsp90aa1, Hspa9, Psma2, Psma 4, Psma 7, Psmb1, Psmb3, Psmb5, Psmb6 | _ | 7.71 | Egri P. and Gereben B.; J Mol Endocrinol. 2014 Dace A. et al.; PNAS 2000 |
Mitochondrial Dysfunction | Atp5mc2, Atp5mg, Atp5po, Cox17, Cox6a1, Cox7a2l, Gpx4, Ndufa1, Ndufa4, Ndufb1 | _ | 7.69 | Tilly JL and Sinclair DA. Cell Metab. 2013 Harper ME. and Seifert EL.; Thyroid 2008 Venditti P. and Di Meo S.; Cell Mol Life Sci. 2006 Siciliano G. et al.; Mol Med. 2002Chen YD. and Hoch FL.; Arch Biochem Biophys. 1976 |
Sirtuin Signalling Pathway | H3f3a/H3f3b, Ndufa1, Ndufa4, Ndufb1, Ndufb11, Ndufb9, Polr1d, Sdhb, Slc25a4, Tomm70 | 0.378 | 3.10 | Al-khaldi A. and Sultan S.; BMC Endocr Disord. 2019 Xiao-Ling Zhou et al.; J Ovarian Res. 2014 Suh J. et al.; PLoS One 2013 Akieda-Asai et al.; PLoS One 2010 |
TCA Cycle II (Eukaryotic) | Dld, Mdh1, Sdhb | _ | 2.76 | Zhou J. et al.; Front Physiol. 2019 Mitchell CS. et al.; J Clin Invest. 2010 |
Mitotic Roles of Polo-Like Kinase | Anapc13, Cdc16, Hsp90aa1, Ppp2r5a | _ | 2.35 | Wang K. et al.; J Biol Chem. 2014 Russo A.M et al.; Thyroid 2013 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colella, M.; Cuomo, D.; Giacco, A.; Mallardo, M.; De Felice, M.; Ambrosino, C. Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions. J. Clin. Med. 2020, 9, 1679. https://doi.org/10.3390/jcm9061679
Colella M, Cuomo D, Giacco A, Mallardo M, De Felice M, Ambrosino C. Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions. Journal of Clinical Medicine. 2020; 9(6):1679. https://doi.org/10.3390/jcm9061679
Chicago/Turabian StyleColella, Marco, Danila Cuomo, Antonia Giacco, Massimo Mallardo, Mario De Felice, and Concetta Ambrosino. 2020. "Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions" Journal of Clinical Medicine 9, no. 6: 1679. https://doi.org/10.3390/jcm9061679
APA StyleColella, M., Cuomo, D., Giacco, A., Mallardo, M., De Felice, M., & Ambrosino, C. (2020). Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions. Journal of Clinical Medicine, 9(6), 1679. https://doi.org/10.3390/jcm9061679