What Is the Impact of Intraoperative Microscope-Integrated OCT in Ophthalmic Surgery? Relevant Applications and Outcomes. A Systematic Review
Abstract
:1. Introduction
2. Experimental Section
3. Results
3.1. MI-OCT and Anterior Segment Surgery
3.1.1. Glaucoma Surgery
3.1.2. Cornea Surgery
3.1.3. Cataract Surgery
- Type I cataract, with regularly arranged cortical fibres without raised intra-lenticular pressure (ILP).
- Type II cataract, with anterior cortical convexity and raised pre-operative ILP, but without fluid release and ILP resolution at the begin of capsulorhexis.
- Type III cataract, with intralenticular clefts combined with areas of homogeneous ground glass appearance, raised pre-operative ILP with fluid release, and partial ILP resolution at the begin of capsulorhexis.
- Type IV cataract, with homogeneous ground glass appearance of the anterior lens cortex, raised pre-operative ILP, fluid release, and complete ILP resolution at the begin of capsulorhexis.
3.1.4. Strabismus Surgery
3.2. MI-OCT and Posterior Segment Surgery
3.2.1. Macular Surgery
3.2.2. Retinal Detachment Surgery
3.2.3. Proliferative Diabetic Retinopathy Surgery
3.2.4. Other MI-OCT Applications
3.3. MI-OCT and Paediatric Examination
4. Discussion
Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geerling, G.; Muller, M.; Winter, C.; Hoerauf, H.; Oelckers, S.; Laqua, H.; Birngruber, R. Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery. Arch. Ophthalmol. 2005, 123, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Zevallos, O.M.; Viehland, C.; Keller, B.; Draelos, M.; Kuo, A.N.; Toth, C.A.; Izatt, J.A. Review of intraoperative optical coherence tomography: Technology and applications [Invited]. Biomed. Opt. Express 2017, 8, 1607–1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radhakrishnan, S.; Rollins, A.M.; Roth, J.E.; Yazdanfar, S.; Westphal, V.; Bardenstein, D.S.; Izatt, J.A. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch. Ophthalmol. 2001, 119, 1179–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavala, S.H.; Farsiu, S.; Maldonado, R.; Wallace, D.K.; Freedman, S.F.; Toth, C.A. Insights into advanced retinopathy of prematurity using handheld spectral domain optical coherence tomography imaging. Ophthalmology 2009, 116, 2448–2456. [Google Scholar] [CrossRef] [Green Version]
- Dayani, P.N.; Maldonado, R.; Farsiu, S.; Toth, C.A. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery. Retina 2009, 29, 1457–1468. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.; Baranano, D.E.; Fortun, J.A.; Schwent, B.J.; Cribbs, B.E.; Bergstrom, C.S.; Hubbard, G.B., 3rd; Srivastava, S.K. Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery. Ophthalmology 2011, 118, 2212–2217. [Google Scholar] [CrossRef]
- Meyer, C.H.; Saxena, S.; Sadda, S.V.R. Spectral Domain Optical Coherence Tomography in Macular Diseases; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Binder, S.; Falkner-Radler, C.I.; Hauger, C.; Matz, H.; Glittenberg, C. Feasibility of intrasurgical spectral-domain optical coherence tomography. Retina 2011, 31, 1332–1336. [Google Scholar] [CrossRef]
- Boppart, S.A.; Bouma, B.E.; Pitris, C.; Tearney, G.J.; Southern, J.F.; Brezinski, M.E.; Fujimoto, J.G. Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography. Radiology 1998, 208, 81–86. [Google Scholar] [CrossRef]
- Ehlers, J.P. Intraoperative optical coherence tomography: Past, present, and future. Eye 2016, 30, 193–201. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Dupps, W.J.; Kaiser, P.K.; Goshe, J.; Singh, R.P.; Petkovsek, D.; Srivastava, S.K. The Prospective Intraoperative and Perioperative Ophthalmic ImagiNg with Optical CoherEncE TomogRaphy (PIONEER) Study: 2-year results. Am. J. Ophthalmol. 2014, 158, 999–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehlers, J.P.; Modi, Y.S.; Pecen, P.E.; Goshe, J.; Dupps, W.J.; Rachitskaya, A.; Sharma, S.; Yuan, A.; Singh, R.; Kaiser, P.K.; et al. The DISCOVER Study 3-Year Results: Feasibility and Usefulness of Microscope-Integrated Intraoperative OCT during Ophthalmic Surgery. Ophthalmology 2018, 125, 1014–1027. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Howick, J.; Glasziou, P.; Aronson, J.K. Evidence-based mechanistic reasoning. J. R. Soc. Med. 2010, 103, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Keaney, M.; Lorimer, A.R. Auditing the implementation of SIGN (Scottish Intercollegiate Guidelines Network) clinical guidelines. Int. J. Health Care Qual. Assur. 1999, 12, 314–317. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
- Pfau, M.; Michels, S.; Binder, S.; Becker, M.D. Clinical Experience with the First Commercially Available Intraoperative Optical Coherence Tomography System. Ophthalmic Surg. Lasers Imaging Retin. 2015, 46, 1001–1008. [Google Scholar] [CrossRef]
- Kumar, R.S.; Jariwala, M.U.; Sathidevi, A.V.; Venugopal, J.P.; Puttaiah, N.K.; Balu, R.; Rao, A.S.D.; Shetty, R. A Pilot Study on Feasibility and Effectiveness of Intraoperative Spectral-Domain Optical Coherence Tomography in Glaucoma Procedures. Transl. Vis. Sci. Technol. 2015, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Dada, T.; Angmo, D.; Midha, N.; Sidhu, T. Intraoperative Optical Coherence Tomography Guided Bleb Needling. J. Ophthalmic Vis. Res. 2016, 11, 452–454. [Google Scholar] [CrossRef]
- Tanito, M. Optical Coherence Tomography Observation of Gonio Structures during Microhook Ab Interno Trabeculotomy. J. Ophthalmol. 2017, 2017, 6310835. [Google Scholar] [CrossRef]
- Heindl, L.M.; Siebelmann, S.; Dietlein, T.; Huttmann, G.; Lankenau, E.; Cursiefen, C.; Steven, P. Future prospects: Assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery. Curr. Eye Res. 2015, 40, 1288–1291. [Google Scholar] [CrossRef] [PubMed]
- Siebelmann, S.; Cursiefen, C.; Lappas, A.; Dietlein, T. Intraoperative Optical Coherence Tomography Enables Noncontact Imaging During Canaloplasty. J. Glaucoma 2016, 25, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Junker, B.; Jordan, J.F.; Framme, C.; Pielen, A. Intraoperative optical coherence tomography and ab interno trabecular meshwork surgery with the Trabectome. Clin. Ophthalmol. 2017, 11, 1755–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehlers, J.P.; Kaiser, P.K.; Srivastava, S.K. Intraoperative optical coherence tomography using the RESCAN 700: Preliminary results from the DISCOVER study. Br. J. Ophthalmol. 2014, 98, 1329–1332. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; Goshe, J.; Dupps, W.J.; Kaiser, P.K.; Singh, R.P.; Gans, R.; Eisengart, J.; Srivastava, S.K. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: The DISCOVER Study RESCAN Results. JAMA Ophthalmol. 2015, 133, 1124–1132. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, N.; Ganger, A.; Singh, D.; Kashyap, S.; Tandon, R. Sutureless Customized Lamellar Corneal Transplant in a Patient with Gelatinous Drop-Like Corneal Dystrophy. Exp. Clin. Transplant. 2019, 17, 844–848. [Google Scholar] [CrossRef]
- Selvan, H.; Patil, M.; Yadav, S.; Tandon, R. Triple chamber: A clinical rarity after deep anterior lamellar keratoplasty and role of optical coherence tomography in management. Int. Ophthalmol. 2018, 38, 2683–2687. [Google Scholar] [CrossRef]
- Sharma, N.; Aron, N.; Kakkar, P.; Titiyal, J.S. Continuous intraoperative OCT guided management of post-deep anterior lamellar keratoplasty descemet’s membrane detachment. Saudi J. Ophthalmol. 2016, 30, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Pasricha, N.D.; Shieh, C.; Carrasco-Zevallos, O.M.; Keller, B.; Izatt, J.A.; Toth, C.A.; Kuo, A.N. Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy. Cornea 2015, 34, 1606–1610. [Google Scholar] [CrossRef] [Green Version]
- Steverink, J.G.; Wisse, R.P.L. Intraoperative optical coherence tomography in descemet stripping automated endothelial keratoplasty: Pilot experiences. Int. Ophthalmol. 2017, 37, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Titiyal, J.S.; Kaur, M.; Falera, R.; Jose, C.P.; Sharma, N. Evaluation of Time to Donor Lenticule Apposition Using Intraoperative Optical Coherence Tomography in Descemet Stripping Automated Endothelial Keratoplasty. Cornea 2016, 35, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Titiyal, J.S.; Kaur, M.; Shaikh, F.; Bari, A. ‘Acute-angled bevel’ sign to assess donor lenticule orientation in ultra-thin descemet stripping automated endothelial keratoplasty. BMJ Case Rep. 2019, 12, e227927. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.; Guilbert, E.; Grise-Dulac, A.; Sabatier, P.; Gatinel, D. Intraoperative OCT-Assisted DMEK: 14 Consecutive Cases. Cornea 2015, 34, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Muijzer, M.B.; Soeters, N.; Godefrooij, D.A.; van Luijk, C.M.; Wisse, R.P.L. Intraoperative Optical Coherence Tomography-Assisted Descemet Membrane Endothelial Keratoplasty: Toward More Efficient, Safer Surgery. Cornea 2020, 39, 674–679. [Google Scholar] [CrossRef]
- Sharma, N.; Sahay, P.; Maharana, P.K.; Kumar, P.; Ahsan, S.; Titiyal, J.S. Microscope Integrated Intraoperative Optical Coherence Tomography-Guided DMEK in Corneas with Poor Visualization. Clin. Ophthalmol. 2020, 14, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.S.; Goshe, J.M.; Srivastava, S.K.; Ehlers, J.P. Intraoperative Optical Coherence Tomography-Assisted Descemet Membrane Endothelial Keratoplasty in the DISCOVER Study: First 100 Cases. Am. J. Ophthalmol. 2020, 210, 167–173. [Google Scholar] [CrossRef]
- Cost, B.; Goshe, J.M.; Srivastava, S.; Ehlers, J.P. Intraoperative optical coherence tomography-assisted descemet membrane endothelial keratoplasty in the DISCOVER study. Am. J. Ophthalmol. 2015, 160, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Eguchi, H.; Kusaka, S.; Arimura-Koike, E.; Tachibana, K.; Tsujioka, D.; Fukuda, M.; Shimomura, Y. Intraoperative optical coherence tomography (RESCAN((R)) 700) for detecting iris incarceration and iridocorneal adhesion during keratoplasty. Int. Ophthalmol. 2017, 37, 761–765. [Google Scholar] [CrossRef]
- Petrovic, A.; Gianniou, C.; Hashemi, K.; Kymionis, G. Intraoperative anterior optical coherence tomography-guided synechiolysis in a post-penetrating keratoplasty patient with peripheral corneal opacification. Ther. Clin. Risk Manag. 2018, 14, 1387–1390. [Google Scholar] [CrossRef] [Green Version]
- Siebelmann, S.; Horstmann, J.; Scholz, P.; Bachmann, B.; Matthaei, M.; Hermann, M.; Cursiefen, C. Intraoperative changes in corneal structure during excimer laser phototherapeutic keratectomy (PTK) assessed by intraoperative optical coherence tomography. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 575–581. [Google Scholar] [CrossRef]
- Pahuja, N.; Shetty, R.; Jayadev, C.; Nuijts, R.; Hedge, B.; Arora, V. Intraoperative Optical Coherence Tomography Using the RESCAN 700: Preliminary Results in Collagen Crosslinking. BioMed Res. Int. 2015, 2015, 572698. [Google Scholar] [CrossRef] [PubMed]
- Pujari, A.; Mukhija, R.; Urkude, J.; Singh, R.; Agarwal, D.; Sharma, N. Intraoperative assessment of corneal injuries using microscope-integrated optical coherence tomography. Indian J. Ophthalmol. 2018, 66, 1614–1615. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Nongrem, G.; Maharana, P.K.; Sharma, N. Unilateral acute hydrops in a child with bilateral microcornea and iridofundal coloboma. Indian J. Ophthalmol. 2019, 67, 1351–1353. [Google Scholar] [CrossRef] [PubMed]
- Siebelmann, S.; Handel, A.; Matthaei, M.; Bachmann, B.; Cursiefen, C. Microscope-Integrated Optical Coherence Tomography-Guided Drainage of Acute Corneal Hydrops in Keratoconus Combined with Suturing and Gas-Aided Reattachment of Descemet Membrane. Cornea 2019, 38, 1058–1061. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, B.; Handel, A.; Siebelmann, S.; Matthaei, M.; Cursiefen, C. Mini-Descemet Membrane Endothelial Keratoplasty for the Early Treatment of Acute Corneal Hydrops in Keratoconus. Cornea 2019, 38, 1043–1048. [Google Scholar] [CrossRef]
- Siebelmann, S.; Steven, P.; Hos, D.; Huttmann, G.; Lankenau, E.; Bachmann, B.; Cursiefen, C. Advantages of microscope-integrated intraoperative online optical coherence tomography: Usage in Boston keratoprosthesis type I surgery. J. Biomed. Opt. 2016, 21, 16005. [Google Scholar] [CrossRef]
- Schmidt, E.M.; Stiefel, H.C.; Houghton, D.C.; Chamberlain, W.D. Intraoperative Optical Coherence Tomography to Guide Corneal Biopsy: A Case Report. Cornea 2019, 38, 639–641. [Google Scholar] [CrossRef]
- Sharma, N.; Singhal, D.; Maharana, P.K.; Jain, R.; Sahay, P.; Titiyal, J.S. Continuous intraoperative optical coherence tomography-guided shield ulcer debridement with tuck in multilayered amniotic membrane transplantation. Indian J. Ophthalmol. 2018, 66, 816–819. [Google Scholar] [CrossRef]
- Urkude, J.; Titiyal, J.S.; Sharma, N. Intraoperative Optical Coherence Tomography-Guided Management of Cap-Lenticule Adhesion during SMILE. J. Refract. Surg. 2017, 33, 783–786. [Google Scholar] [CrossRef]
- Das, S.; Kummelil, M.K.; Kharbanda, V.; Arora, V.; Nagappa, S.; Shetty, R.; Shetty, B.K. Microscope Integrated Intraoperative Spectral Domain Optical Coherence Tomography for Cataract Surgery: Uses and Applications. Curr. Eye Res. 2016, 41, 643–652. [Google Scholar] [CrossRef]
- Titiyal, J.S.; Kaur, M.; Ramesh, P.; Shah, P.; Falera, R.; Bageshwar, L.M.S.; Kinkar, A.; Sharma, N. Impact of Clear Corneal Incision Morphology on Incision-Site Descemet Membrane Detachment in Conventional and Femtosecond Laser-Assisted Phacoemulsification. Curr. Eye Res. 2018, 43, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, N.S.; Arbisser, L.B.; Shilova, N.F.; Melnik, M.A.; Belodedova, A.V.; Knyazer, B.; Malyugin, B.E. Anterior vitreous detachment: Risk factor for intraoperative complications during phacoemulsification. J. Cataract. Refract. Surg. 2020, 46, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Titiyal, J.S.; Kaur, M.; Shaikh, F.; Goel, S.; Bageshwar, L.M.S. Real-time intraoperative dynamics of white cataract-intraoperative optical coherence tomography-guided classification and management. J. Cataract. Refract. Surg. 2020, 46, 598–605. [Google Scholar] [CrossRef]
- Lytvynchuk, L.M.; Glittenberg, C.G.; Falkner-Radler, C.I.; Neumaier-Ammerer, B.; Smretschnig, E.; Hagen, S.; Ansari-Shahrezaei, S.; Binder, S. Evaluation of intraocular lens position during phacoemulsification using intraoperative spectral-domain optical coherence tomography. J. Cataract. Refract. Surg. 2016, 42, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Titiyal, J.S.; Kaur, M.; Sahu, S.; Sharma, N.; Sinha, R. Real-time assessment of intraoperative vaulting in implantable collamer lens and correlation with postoperative vaulting. Eur. J. Ophthalmol. 2017, 27, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Sahay, P.; Shaji, K.R.; Maharana, P.K.; Titiyal, J.S. Spontaneous anterior dislocation of lens in a case of ectopia lentis et pupillae: A rare entity treated by a novel technique of microscope integrated optical coherence tomography (MIOCT) guided intralenticular lens aspiration. BMJ Case Rep. 2019, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Pujari, A.; Sharma, P.; Phuljhele, S.; Kapoor, S.; Chawla, R.; Saxena, R.; Sharma, N. Intraoperative optical coherence tomography-guided scleral suture passage while performing surgery on extraocular muscles. Indian J. Ophthalmol. 2018, 66, 1654–1655. [Google Scholar] [CrossRef]
- Pihlblad, M.S.; Troia, A.; Tibrewal, S.; Shah, P.R. Pre-, Intra-, and Post-Operative Evaluation of Extraocular Muscle Insertions Using Optical Coherence Tomography: A Comparison of Four Devices. J. Clin. Med. 2019, 8, 1732. [Google Scholar] [CrossRef] [Green Version]
- Kunikata, H.; Nakazawa, T. Intraoperative Optical Coherence Tomography-Assisted 27-Gauge Vitrectomy in Eyes with Vitreoretinal Diseases. Case Rep. Ophthalmol. 2015, 6, 216–222. [Google Scholar] [CrossRef]
- Runkle, A.; Srivastava, S.K.; Ehlers, J.P. Microscope-Integrated OCT Feasibility and Utility With the EnFocus System in the DISCOVER Study. Ophthalmic Surg. Lasers Imaging Retin. 2017, 48, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Leisser, C.; Hirnschall, N.; Hackl, C.; Doller, B.; Varsits, R.; Findl, O. Diagnostic precision of a microscope-integrated intraoperative OCT device in patients with epiretinal membranes. Eur. J. Ophthalmol. 2018, 28, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Falkner-Radler, C.I.; Glittenberg, C.; Gabriel, M.; Binder, S. Intrasurgical Microscope-Integrated Spectral Domain Optical Coherence Tomography-Assisted Membrane Peeling. Retina 2015, 35, 2100–2106. [Google Scholar] [CrossRef] [PubMed]
- Leisser, C.; Hackl, C.; Hirnschall, N.; Luft, N.; Doller, B.; Draschl, P.; Rigal, K.; Findl, O. Visualizing Macular Structures During Membrane Peeling Surgery With an Intraoperative Spectral-Domain Optical Coherence Tomography Device. Ophthalmic Surg. Lasers Imaging Retin. 2016, 47, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Leisser, C.; Hirnschall, N.; Palkovits, S.; Doeller, B.; Kefer, K.; Findl, O. Intraoperative Optical Coherence Tomography-Guided Membrane Peeling for Surgery of Macular Pucker: Advantages and Limitations. Ophthalmologica 2019, 241, 234–240. [Google Scholar] [CrossRef]
- Uchida, A.; Srivastava, S.K.; Ehlers, J.P. Analysis of Retinal Architectural Changes Using Intraoperative OCT Following Surgical Manipulations With Membrane Flex Loop in the DISCOVER Study. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3440–3444. [Google Scholar] [CrossRef] [Green Version]
- Leisser, C.; Hackl, C.; Hirnschall, N.; Findl, O. Effect of subfoveal and extrafoveal hyporeflective zones due to iatrogenic traction during membrane peeling for epiretinal membranes on postoperative outcomes. Ophthalmologica 2019. [Google Scholar] [CrossRef]
- Leisser, C.; Palkovits, S.; Hienert, J.; Ullrich, M.; Zwickl, H.; Georgiev, S.; Findl, O. Effect of iatrogenic traction during macular peeling surgery on postoperative microperimetry. Ophthalmic Res. 2020. [Google Scholar] [CrossRef]
- Leisser, C.; Hirnschall, N.; Hackl, C.; Doller, B.; Varsits, R.; Ullrich, M.; Kefer, K.; Karl, R.; Findl, O. Risk factors for postoperative intraretinal cystoid changes after peeling of idiopathic epiretinal membranes among patients randomized for balanced salt solution and air-tamponade. Acta Ophthalmol. 2018, 96, e439–e444. [Google Scholar] [CrossRef] [Green Version]
- Moisseiev, E.; Yiu, G. Role of Tractional Forces and Internal Limiting Membrane in Macular Hole Formation: Insights from Intraoperative Optical Coherence Tomography. Case Rep. Ophthalmol. 2016, 7, 372–376. [Google Scholar] [CrossRef]
- Sawaguchi, S.; Maruko, I.; Mikami, Y.; Hasegawa, T.; Koizumi, H.; Iida, T. Macular Hole Formation Identified with Intraoperative Oct during Vitrectomy for Vitreomacular Traction Syndrome. Retin Cases Brief Rep. 2017, 11, 380–382. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, B. HOLE-DOOR SIGN: A Novel Intraoperative Optical Coherence Tomography Feature Predicting Macular Hole Closure. Retina 2018, 38, 2045–2050. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Itoh, Y.; Koto, T.; Kurimori, H.Y.; Hirakata, A. Intraoperative OCT Findings May Predict Postoperative Visual Outcome in Eyes with Idiopathic Macular Hole. Ophthalmol. Retin. 2019, 3, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, E.; Palmieri, M.; Aharrh-Gnama, A.; Ciciarelli, V.; Mastropasqua, R.; Carpineto, P. Intraoperative optical coherence tomography in the full-thickness macular hole surgery with internal limiting membrane inverted flap placement. Int. Ophthalmol. 2018, 39, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, M.; Micelli Ferrari, L.; Cicinelli, M.V.; Nikolopoulou, E.; Zito, R.; Bandello, F.; Querques, G.; Micelli Ferrari, T. Feasibility and Safety of Intraoperative Optical Coherence Tomography-Guided Short-Term Posturing Prescription after Macular Hole Surgery. Ophthalmic Res. 2020, 63, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Dogra, M.; Singh, S.R.; Moharana, B.; Tigari, B.; Singh, R. Microscope-Integrated Optical Coherence Tomography-Guided Autologous Full-Thickness Neurosensory Retinal Autograft for Large Macular Hole-Related Total Retinal Detachment. Retina 2020. [Google Scholar] [CrossRef]
- Abraham, J.R.; Srivastava, S.K.; Le, T.K.; Sharma, S.; Rachitskaya, A.; Reese, J.L.; Ehlers, J.P. Intraoperative OCT-Assisted Retinal Detachment Repair in the DISCOVER Study: Impact and Outcomes. Ophthalmol. Retin. 2020, 4, 378–383. [Google Scholar] [CrossRef]
- Leisser, C.; Varsits, R.; Findl, O. Does perfluoro-n-octane use in 23G vitrectomy for retinal detachment surgery affect the integrity of the ellipsoid zone? Eur. J. Ophthalmol. 2016, 26, 639–642. [Google Scholar] [CrossRef]
- Toygar, O.; Riemann, C.D. Intraoperative optical coherence tomography in macula involving rhegmatogenous retinal detachment repair with pars plana vitrectomy and perfluoron. Eye 2016, 30, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Obeid, A.; Ehmann, D.; Adam, M.; Kasi, S.; Shahlaee, A.; Klufas, M.A.; Hsu, J.; Mehta, S.; Chiang, A.; Garg, S.; et al. Comparison of Residual Subfoveal Fluid by Intraoperative OCT After Macula-Involving RRD Repair Using Direct Drainage, Drainage Retinotomy, or Perfluoro-n-Octane. Ophthalmic Surg. Lasers Imaging Retin. 2019, 50, 497–503. [Google Scholar] [CrossRef]
- Smith, A.G.; Cost, B.M.; Ehlers, J.P. Intraoperative OCT-Assisted Subretinal Perfluorocarbon Liquid Removal in the DISCOVER Study. Ophthalmic Surg. Lasers Imaging Retin. 2015, 46, 964–966. [Google Scholar] [CrossRef] [Green Version]
- Lytvynchuk, L.M.; Glittenberg, C.G.; Ansari-Shahrezaei, S.; Binder, S. Intraoperative optical coherence tomography assisted analysis of pars Plana vitrectomy for retinal detachment in morning glory syndrome: A case report. BMC Ophthalmol. 2017, 17, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundar, D.; Kumar, A.; Chawla, R.; Sen, S.; Ravani, R.; Kakkar, P.; Chatra, K. Microscope-integrated optical coherence tomography-aided intraoperative diagnosis and management of peripheral tractional retinoschisis. Indian J. Ophthalmol. 2018, 66, 1323–1324. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Srivastava, S.K.; Reese, J.L.; Shwani, Z.; Ehlers, J.P. Intraoperative OCT-assisted Surgery for Proliferative Diabetic Retinopathy in the DISCOVER Study. Ophthalmol. Retin. 2018, 2, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Asahina, Y.; Tachi, N.; Asahina, Y.; Yoshimura, K.; Ueta, Y.; Hashimoto, Y. Six-month postoperative outcomes of intraoperative OCT-guided surgical cystotomy for refractory cystoid macular edema in diabetic eyes. Clin. Ophthalmol. 2017, 11, 2099–2105. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Gupta, V. Intraoperative optical coherence tomography and proportional reflux hydrodissection-guided pars plana vitrectomy for complex severe proliferative diabetic retinopathy. Indian J. Ophthalmol. 2020, 68, 177–181. [Google Scholar] [CrossRef]
- Bruyere, E.; Philippakis, E.; Dupas, B.; Nguyen-Kim, P.; Tadayoni, R.; Couturier, A. Benefit of Intraoperative Optical Coherence Tomography for Vitreomacular Surgery in Highly Myopic Eyes. Retina 2018, 38, 2035–2044. [Google Scholar] [CrossRef]
- Itoh, Y.; Inoue, M.; Kato, Y.; Koto, T.; Hirakata, A. Alterations of Foveal Architecture during Vitrectomy for Myopic Retinoschisis Identified by Intraoperative Optical Coherence Tomography. Ophthalmologica 2019, 242, 87–97. [Google Scholar] [CrossRef]
- Kumar, A.; Ravani, R.; Mehta, A.; Simakurthy, S.; Dhull, C. Outcomes of microscope-integrated intraoperative optical coherence tomography-guided center-sparing internal limiting membrane peeling for myopic traction maculopathy: A novel technique. Int. Ophthalmol. 2018, 38, 1689–1696. [Google Scholar] [CrossRef]
- Kumar, A.; Kakkar, P.; Ravani, R.D.; Markan, A. Utility of microscope-integrated optical coherence tomography (MIOCT) in the treatment of myopic macular hole retinal detachment. BMJ Case Rep. 2017, 2017. [Google Scholar] [CrossRef]
- Kumar, J.B.; Ehlers, J.P.; Sharma, S.; Srivastava, S.K. Intraoperative OCT for Uveitis-Related Vitreoretinal Surgery in the DISCOVER Study. Ophthalmol. Retin. 2018, 2, 1041–1049. [Google Scholar] [CrossRef]
- Yaginuma, S.; Inoue, M.; Itoh, Y.; Takahashi, H.; Hirakata, A. Utility of Intraoperative Optical Coherence Tomography in Acute Endophthalmitis. Retin. Cases Brief Rep. 2017, 14, 27–30. [Google Scholar] [CrossRef]
- Lam, B.L.; Davis, J.L.; Gregori, N.Z.; MacLaren, R.E.; Girach, A.; Verriotto, J.D.; Rodriguez, B.; Rosa, P.R.; Zhang, X.; Feuer, W.J. Choroideremia Gene Therapy Phase 2 Clinical Trial: 24-Month Results. Am. J. Ophthalmol. 2019, 197, 65–73. [Google Scholar] [CrossRef]
- Gregori, N.Z.; Lam, B.L.; Davis, J.L. Intraoperative Use of Microscope-Integrated Optical Coherence Tomography for Subretinal Gene Therapy Delivery. Retina 2019, 39, S9–S12. [Google Scholar] [CrossRef] [PubMed]
- Rachitskaya, A.V.; Yuan, A.; Marino, M.J.; Reese, J.; Ehlers, J.P. Intraoperative OCT Imaging of the Argus II Retinal Prosthesis System. Ophthalmic Surg. Lasers Imaging Retin. 2016, 47, 999–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browne, A.W.; Ehlers, J.P.; Sharma, S.; Srivastava, S.K. Intraoperative Optical Coherence Tomography-Assisted Chorioretinal Biopsy in the DISCOVER Study. Retina 2017, 37, 2183–2187. [Google Scholar] [CrossRef] [PubMed]
- Siebelmann, S.; Hermann, M.; Dietlein, T.; Bachmann, B.; Steven, P.; Cursiefen, C. Intraoperative Optical Coherence Tomography in Children with Anterior Segment Anomalies. Ophthalmology 2015, 122, 2582–2584. [Google Scholar] [CrossRef] [PubMed]
- Coppola, M.; Cicinelli, M.V.; Rabiolo, A.; Querques, G.; Bandello, F. The role of intraoperative optical coherence tomography in pediatric hyphema: A case report. Eur. J. Ophthalmol. 2018, 28, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Scorcia, V.; Busin, M.; Lucisano, A.; Beltz, J.; Carta, A.; Scorcia, G. Anterior segment optical coherence tomography-guided big-bubble technique. Ophthalmology 2013, 120, 471–476. [Google Scholar] [CrossRef]
- Kobayashi, A.; Yokogawa, H.; Mori, N.; Sugiyama, K. Visualization of precut DSAEK and pre-stripped DMEK donor corneas by intraoperative optical coherence tomography using the RESCAN 700. BMC Ophthalmol. 2016, 16, 135. [Google Scholar] [CrossRef]
- Xu, D.; Dupps, W.J., Jr.; Srivastava, S.K.; Ehlers, J.P. Automated volumetric analysis of interface fluid in descemet stripping automated endothelial keratoplasty using intraoperative optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5610–5615. [Google Scholar] [CrossRef]
- Singh, A.; Zarei-Ghanavati, M.; Avadhanam, V.; Liu, C. Systematic Review and Meta-Analysis of Clinical Outcomes of Descemet Membrane Endothelial Keratoplasty Versus Descemet Stripping Endothelial Keratoplasty/Descemet Stripping Automated Endothelial Keratoplasty. Cornea 2017, 36, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Price, M.O.; Gupta, P.; Lass, J.; Price, F.W., Jr. EK (DLEK, DSEK, DMEK): New Frontier in Cornea Surgery. Annu. Rev. Vis. Sci. 2017, 3, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.M.; van Dijk, K.; Melles, G.R.J. Update on Bowman layer transplantation. Curr. Opin. Ophthalmol. 2019, 30, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Todorich, B.; Shieh, C.; DeSouza, P.J.; Carrasco-Zevallos, O.M.; Cunefare, D.L.; Stinnett, S.S.; Izatt, J.A.; Farsiu, S.; Mruthyunjaya, P.; Kuo, A.N.; et al. Impact of Microscope-Integrated OCT on Ophthalmology Resident Performance of Anterior Segment Surgical Maneuvers in Model Eyes. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT146–OCT153. [Google Scholar] [CrossRef] [Green Version]
- Christensen, U.C.; Kroyer, K.; Sander, B.; Larsen, M.; la Cour, M. Prognostic significance of delayed structural recovery after macular hole surgery. Ophthalmology 2009, 116, 2430–2436. [Google Scholar] [CrossRef]
- Takahashi, H.; Kishi, S. Tomographic features of early macular hole closure after vitreous surgery. Am. J. Ophthalmol. 2000, 130, 192–196. [Google Scholar] [CrossRef]
- Grewal, D.S.; Charles, S.; Parolini, B.; Kadonosono, K.; Mahmoud, T.H. Autologous Retinal Transplant for Refractory Macular Holes: Multicenter International Collaborative Study Group. Ophthalmology 2019, 126, 1399–1408. [Google Scholar] [CrossRef]
- El-Haddad, M.T.; Tao, Y.K. Automated stereo vision instrument tracking for intraoperative OCT guided anterior segment ophthalmic surgical maneuvers. Biomed. Opt. Express 2015, 6, 3014–3031. [Google Scholar] [CrossRef] [Green Version]
- Keller, B.; Draelos, M.; Tang, G.; Farsiu, S.; Kuo, A.N.; Hauser, K.; Izatt, J.A. Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT. Biomed. Opt. Express 2018, 9, 2716–2732. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Uchida, A.; Srivastava, S.K. Intraoperative optical coherence tomography-compatible surgical instruments for real-time image-guided ophthalmic surgery. Br. J. Ophthalmol. 2017, 101, 1306–1308. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Srivastava, S.K.; Feiler, D.; Noonan, A.I.; Rollins, A.M.; Tao, Y.K. Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: Microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLoS ONE 2014, 9, e105224. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, J.; Schulz-Hildebrandt, H.; Bock, F.; Siebelmann, S.; Lankenau, E.; Huttmann, G.; Steven, P.; Cursiefen, C. Label-Free In Vivo Imaging of Corneal Lymphatic Vessels Using Microscopic Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5880–5886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehlers, J.P.; Gupta, P.K.; Farsiu, S.; Maldonado, R.; Kim, T.; Toth, C.A.; Mruthyunjaya, P. Evaluation of contrast agents for enhanced visualization in optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6614–6619. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; McNutt, S.; Dar, S.; Tao, Y.K.; Srivastava, S.K. Visualisation of contrast-enhanced intraoperative optical coherence tomography with indocyanine green. Br. J. Ophthalmol. 2014, 98, 1588–1591. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Uchida, A.; Srivastava, S.K. THE INTEGRATIVE SURGICAL THEATER: Combining Intraoperative Optical Coherence Tomography and 3D Digital Visualization for Vitreoretinal Surgery in the DISCOVER Study. Retina 2018, 38, S88–S96. [Google Scholar] [CrossRef]
- Viehland, C.; Keller, B.; Carrasco-Zevallos, O.M.; Nankivil, D.; Shen, L.; Mangalesh, S.; Viet du, T.; Kuo, A.N.; Toth, C.A.; Izatt, J.A. Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT. Biomed. Opt. Express 2016, 7, 1815–1829. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-Zevallos, O.M.; Keller, B.; Viehland, C.; Shen, L.; Waterman, G.; Todorich, B.; Shieh, C.; Hahn, P.; Farsiu, S.; Kuo, A.N.; et al. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography. Sci. Rep. 2016, 6, 31689. [Google Scholar] [CrossRef]
- Shen, L.; Carrasco-Zevallos, O.; Keller, B.; Viehland, C.; Waterman, G.; Hahn, P.S.; Kuo, A.N.; Toth, C.A.; Izatt, J.A. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography. Biomed. Opt. Express 2016, 7, 1711–1726. [Google Scholar] [CrossRef] [Green Version]
- Potsaid, B.; Baumann, B.; Huang, D.; Barry, S.; Cable, A.E.; Schuman, J.S.; Duker, J.S.; Fujimoto, J.G. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express 2010, 18, 20029–20048. [Google Scholar] [CrossRef] [Green Version]
- Grewal, D.S.; Bhullar, P.K.; Pasricha, N.D.; Carrasco-Zevallos, O.M.; Viehland, C.; Keller, B.; Shen, L.; Izatt, J.A.; Kuo, A.N.; Toth, C.A.; et al. Intraoperative 4-Dimensional Microscope-Integrated Optical Coherence Tomography-Guided 27-Gauge Transvitreal Choroidal Biopsy for Choroidal Melanoma. Retina 2017, 37, 796–799. [Google Scholar] [CrossRef] [Green Version]
- Pasricha, N.D.; Bhullar, P.K.; Shieh, C.; Carrasco-Zevallos, O.M.; Keller, B.; Izatt, J.A.; Toth, C.A.; Freedman, S.F.; Kuo, A.N. Four-dimensional Microscope-Integrated Optical Coherence Tomography to Visualize Suture Depth in Strabismus Surgery. J. Pediatr. Ophthalmol. Strabismus 2017, 54, e1–e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasricha, N.D.; Shieh, C.; Carrasco-Zevallos, O.M.; Keller, B.; Cunefare, D.; Mehta, J.S.; Farsiu, S.; Izatt, J.A.; Toth, C.A.; Kuo, A.N. Needle Depth and Big-Bubble Success in Deep Anterior Lamellar Keratoplasty: An Ex Vivo Microscope-Integrated OCT Study. Cornea 2016, 35, 1471–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhullar, P.K.; Carrasco-Zevallos, O.M.; Dandridge, A.; Pasricha, N.D.; Keller, B.; Shen, L.; Izatt, J.A.; Toth, C.A.; Kuo, A.N. Intraocular Pressure and Big Bubble Diameter in Deep Anterior Lamellar Keratoplasty: An Ex-Vivo Microscope-Integrated OCT With Heads-Up Display Study. Asia Pac. J. Ophthalmol. 2017, 6, 412–417. [Google Scholar] [CrossRef]
- Hsu, S.T.; Gabr, H.; Viehland, C.; Sleiman, K.; Ngo, H.T.; Carrasco-Zevallos, O.M.; Vajzovic, L.; McNabb, R.P.; Stinnett, S.S.; Izatt, J.A.; et al. Volumetric Measurement of Subretinal Blebs Using Microscope-Integrated Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2018, 7, 19. [Google Scholar] [CrossRef]
- Vajzovic, L.; Sleiman, K.; Viehland, C.; Carrasco-Zevallos, O.M.; Klingeborn, M.; Dandridge, A.; Bowes Rickman, C.; Izatt, J.A.; Toth, C.A. Four-Dimensional Microscope-Integrated Optical Coherence Tomography Guidance in a Model Eye Subretinal Surgery. Retina 2019, 39, S194–S198. [Google Scholar] [CrossRef]
- Gabr, H.; Chen, X.; Zevallos-Carrasco, O.M.; Viehland, C.; Dandrige, A.; Sarin, N.; Mahmoud, T.H.; Vajzovic, L.; Izatt, J.A.; Toth, C.A. Visualization from Intraoperative Swept-Source Microscope-Integrated Optical Coherence Tomography in Vitrectomy for Complications of Proliferative Diabetic Retinopathy. Retina 2018, 38, S110–S120. [Google Scholar] [CrossRef]
- Finn, A.P.; Viehland, C.; Carrasco-Zevallos, O.M.; Izatt, J.A.; Toth, C.A.; Vajzovic, L. Four-Dimensional Microscope-Integrated OCT Use in Argus II Placement. Ophthalmol. Retin. 2018, 2, 510–511. [Google Scholar] [CrossRef]
- Chen, X.; Viehland, C.; Carrasco-Zevallos, O.M.; Keller, B.; Vajzovic, L.; Izatt, J.A.; Toth, C.A. Microscope-Integrated Optical Coherence Tomography Angiography in the Operating Room in Young Children With Retinal Vascular Disease. JAMA Ophthalmol. 2017, 135, 483–486. [Google Scholar] [CrossRef]
- Grimm, M.; Roodaki, H.; Eslami, A.; Navab, N. Automatic intraoperative optical coherence tomography positioning. Int. J. Comput. Assist. Radiol. Surg. 2020. [Google Scholar] [CrossRef] [Green Version]
- Brooks, C.C.; Kitchens, J.; Stone, T.W.; Riemann, C.D. Consolidation of Imaging Modalities Utilizing Digitally Assisted Visualization Systems: The Development of a Surgical Information Handling Cockpit. Clin. Ophthalmol. 2020, 14, 557–569. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, N.; Talcott, K.E.; Srivastava, S.K.; Hu, M.; Rachitskaya, A.; Sharma, S.; Singh, R.P.; Yuan, A.; Reese, J.L.; Ehlers, J.P. Conventional Microscope-Integrated Intraoperative OCT Versus Digitally Enabled Intraoperative OCT in Vitreoretinal Surgery in the DISCOVER Study. Ophthalmic Surg. Lasers Imaging Retin. 2020, 51, S37–S43. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Lee, Y.H.; Gerber, M.J.; Cheng, H.; Yang, Y.C.; Govetto, A.; Francone, A.A.; Soatto, S.; Grundfest, W.S.; Hubschman, J.P.; et al. Intraocular robotic interventional surgical system (IRISS): Semi-automated OCT-guided cataract removal. Int. J. Med. Robot. 2018, 14, e1949. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, F.T.; Zysk, A.M.; Chaney, E.J.; Adie, S.G.; Kotynek, J.G.; Oliphant, U.J.; Bellafiore, F.J.; Rowland, K.M.; Johnson, P.A.; Boppart, S.A. Optical coherence tomography: The intraoperative assessment of lymph nodes in breast cancer. IEEE Eng. Med. Biol. Mag. 2010, 29, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kut, C.; Chaichana, K.L.; Xi, J.; Raza, S.M.; Ye, X.; McVeigh, E.R.; Rodriguez, F.J.; Quinones-Hinojosa, A.; Li, X. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci. Transl. Med. 2015, 7, 292ra100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldenburg, A.L.; Crecea, V.; Rinne, S.A.; Boppart, S.A. Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. Opt. Express 2008, 16, 11525–11539. [Google Scholar] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posarelli, C.; Sartini, F.; Casini, G.; Passani, A.; Toro, M.D.; Vella, G.; Figus, M. What Is the Impact of Intraoperative Microscope-Integrated OCT in Ophthalmic Surgery? Relevant Applications and Outcomes. A Systematic Review. J. Clin. Med. 2020, 9, 1682. https://doi.org/10.3390/jcm9061682
Posarelli C, Sartini F, Casini G, Passani A, Toro MD, Vella G, Figus M. What Is the Impact of Intraoperative Microscope-Integrated OCT in Ophthalmic Surgery? Relevant Applications and Outcomes. A Systematic Review. Journal of Clinical Medicine. 2020; 9(6):1682. https://doi.org/10.3390/jcm9061682
Chicago/Turabian StylePosarelli, Chiara, Francesco Sartini, Giamberto Casini, Andrea Passani, Mario Damiano Toro, Giovanna Vella, and Michele Figus. 2020. "What Is the Impact of Intraoperative Microscope-Integrated OCT in Ophthalmic Surgery? Relevant Applications and Outcomes. A Systematic Review" Journal of Clinical Medicine 9, no. 6: 1682. https://doi.org/10.3390/jcm9061682
APA StylePosarelli, C., Sartini, F., Casini, G., Passani, A., Toro, M. D., Vella, G., & Figus, M. (2020). What Is the Impact of Intraoperative Microscope-Integrated OCT in Ophthalmic Surgery? Relevant Applications and Outcomes. A Systematic Review. Journal of Clinical Medicine, 9(6), 1682. https://doi.org/10.3390/jcm9061682