Overexpression of PD-1 on Peripheral Blood Lymphocytes in Patients with Idiopathic Pulmonary Arterial Hypertension and Its Association with High Viral Loads of Epstein-Barr Virus and Poor Clinical Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. Preparation of Material
2.3. Immunophenotyping
2.4. Cytokine Quantification in the Plasma
2.5. DNA Isolation and Calculation of EBV Load and Assessment of Anti-EBV Antibody Status
2.6. Patients’ Infection Status Assessment
2.7. Statistical Analysis
3. Results
3.1. IPAH Patients Have a More Immunosuppressive Blood Cell Profile than Healthy Controls
3.2. Proinflammatory Cytokine Levels in IPAH Patients’ Plasma are Elevated
3.3. Haemodynamic Parameters of the IPAH Patients
3.4. EBV Status is Correlated with the Severity of Clinical Manifestation of IPAH and Expression of PD-1 on CD4+ T Cells
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53. [Google Scholar] [CrossRef]
- Pahal, P.; Sharma, S. Idiopathic Pulmonary Artery Hypertension (IPAH); Statpearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Galie, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: The joint task force for the diagnosis and treatment of pulmonary hypertension of the european society of cardiology (ESC) and the european respiratory society (ERS): Endorsed by: Association for european paediatric and congenital cardiology (AEPC), international society for heart and lung transplantation (ISHLT). Eur. Heart J. 2016, 37, 67–119. [Google Scholar] [PubMed]
- Kopeć, G.; Kurzyna, M.; Mroczek, E.; Chrzanowski, Ł.; Mularek-Kubzdela, T.; Skoczylas, I.; Kuśmierczyk, B.; Pruszczyk, P.; Błaszczak, P.; Lewicka, E.; et al. Characterization of Patients with Pulmonary Arterial Hypertension: Data from the Polish Registry of Pulmonary Hypertension (BNP-PL). J. Clin. Med. 2020, 9, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopeć, G.; Kurzyna, M.; Mroczek, E.; Chrzanowski, Ł.; Mularek-Kubzdela, T.; Skoczylas, I.; Kuśmierczyk, B.; Pruszczyk, P.; Błaszczak, P.; Lewicka, E.; et al. Database of Pulmonary Hypertension in the Polish Population (BNP PL): Design of the registry. Kardiol. Pol. 2019, 77, 972–974. [Google Scholar] [PubMed] [Green Version]
- Soon, E.; Holmes, A.M.; Treacy, C.M.; Doughty, N.J.; Southgate, L.; Machado, R.D.; Trembath, R.C.; Jennings, S.; Barker, L.; Nicklin, P.; et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 2010, 122, 920–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savai, R.; Pullamsetti, S.S.; Kolbe, J.; Bieniek, E.; Voswinckel, R.; Fink, L.; Scheed, A.; Ritter, C.; Dahal, B.K.; Vater, A.; et al. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2012, 186, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Austin, E.D.; Rock, M.T.; Mosse, C.A.; Vnencak-Jones, C.L.; Yoder, S.M.; Robbins, I.M.; Loyd, J.E.; Meyrick, B.O. T lymphocyte subset abnormalities in the blood and lung in pulmonary arterial hypertension. Respir. Med. 2010, 104, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Edwards, A.L.; Gunningham, S.P.; Clare, G.C.; Hayman, M.W.; Smith, M.; Frampton, C.M.; Robinson, B.A.; Troughton, R.W.; Beckert, L.E. Professional killer cell deficiencies and decreased survival in pulmonary arterial hypertension. Respirology 2013, 18, 1271–1277. [Google Scholar] [CrossRef]
- Khan, A.R.; Hams, E.; Floudas, A.; Sparwasser, T.; Weaver, C.T.; Fallon, P.G. Pd-l1hi b cells are critical regulators of humoral immunity. Nat. Commun. 2015, 6, 5997. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, G.; Wang, Z.; Liu, B.; Han, N.; Li, J.; Lu, C.; Liu, X.; Zhang, Q.; Yang, Q.; et al. Pd-1-expressing b cells suppress cd4(+) and cd8(+) t cells via pd-1/pd-l1-dependent pathway. Mol. Immunol. 2019, 109, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Hu, L.; Zhang, X.; Jiang, S.; Li, J.; Zhang, Z.; Wang, X. The diverse function of pd-1/pd-l pathway beyond cancer. Front. Immunol. 2019, 10, 2298. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Fosco, D.; Kline, D.E.; Meng, L.; Nishi, S.; Savage, P.A.; Kline, J. Pd-1 regulates extrathymic regulatory t-cell differentiation. Eur. J. Immunol. 2014, 44, 2603–2616. [Google Scholar] [CrossRef] [Green Version]
- Barber, D.L.; Wherry, E.J.; Masopust, D.; Zhu, B.; Allison, J.P.; Sharpe, A.H.; Freeman, G.J.; Ahmed, R. Restoring function in exhausted cd8 t cells during chronic viral infection. Nature 2006, 439, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Gianchecchi, E.; Delfino, D.V.; Fierabracci, A. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun. Rev. 2013, 12, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, H.; Barnett, C. HIV-associated pulmonary hypertension. Curr. Opin. HIV AIDS 2017, 12, 566–571. [Google Scholar] [CrossRef]
- Hashimoto, T.; Sakata, Y.; Fukushima, K.; Maeda, T.; Arita, Y.; Shioyama, W.; Nakaoka, Y.; Hori, Y.; Morii, E.; Aozasa, K.; et al. Pulmonary arterial hypertension associated with chronic active Epstein-Barr virus infection. Intern. Med. 2011, 50, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Cool, C.D.; Rai, P.R.; Yeager, M.E.; Hernandez-Saavedra, D.; Serls, A.E.; Bull, T.M.; Geraci, M.W.; Brown, K.K.; Routes, J.M.; Tuder, R.M.; et al. Expression of human herpesvirus 8 in primary pulmonary hypertension. N. Engl. J. Med. 2003, 349, 1113–1122. [Google Scholar] [CrossRef]
- Bull, T.M.; Cool, C.D.; Serls, A.E.; Rai, P.R.; Parr, J.; Neid, J.M.; Geraci, M.W.; Campbell, T.B.; Voelkel, N.F.; Badesch, D.B. Primary pulmonary hypertension, castleman’s disease and human herpesvirus-8. Eur. Respir. J. 2003, 22, 403–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valmary, S.; Dorfmuller, P.; Montani, D.; Humbert, M.; Brousset, P.; Degano, B. Human gamma-herpesviruses Epstein-Barr virus and human herpesvirus-8 are not detected in the lungs of patients with severe pulmonary arterial hypertension. Chest 2011, 139, 1310–1316. [Google Scholar] [CrossRef]
- Bendayan, D.; Sarid, R.; Cohen, A.; Shitrit, D.; Shechtman, I.; Kramer, M.R. Absence of human herpesvirus 8 DNA sequences in lung biopsies from israeli patients with pulmonary arterial hypertension. Respiration 2008, 75, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Kurzyna, M.; Araszkiewicz, A.; Blaszczak, P.; Grabka, M.; Hawranek, M.; Kopec, G.; Mroczek, E.; Zembala, M.; Torbicki, A.; Ochala, A. Summary of recommendations for the haemodynamic and angiographic assessment of the pulmonary circulation. Joint statement of the polish cardiac society’s working group on pulmonary circulation and association of cardiovascular interventions. Kardiol. Pol. 2015, 73, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Pellegatta, S.; Di Ianni, N.; Pessina, S.; Paterra, R.; Anghileri, E.; Eoli, M.; Finocchiaro, G. Abcc3 expressed by CD56(DIM) CD16(+) NK cells predicts response in glioblastoma patients treated with combined chemotherapy and dendritic cell immunotherapy. Int. J. Mol. Sci. 2019, 20, 5886. [Google Scholar] [CrossRef] [Green Version]
- Korona-Glowniak, I.; Grywalska, E.; Grzegorczyk, A.; Rolinski, J.; Glowniak, A.; Malm, A. Bacterial colonization in patients with chronic lymphocytic leukemia and factors associated with infections and colonization. J. Clin. Med. 2019, 8, 861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grywalska, E.; Pasiarski, M.; Sosnowska-Pasiarska, B.; Macek, P.; Rolinska, A.; Samardakiewicz, M.; Ludian, J.; Gozdz, S.; Rolinski, J. Programmed cell death 1 expression and Epstein-Barr virus infection in chronic lymphocytic leukaemia: A prospective cohort study. Cancer Manag. Res. 2019, 11, 7605–7618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolinski, J.; Grywalska, E.; Pyzik, A.; Dzik, M.; Opoka-Winiarska, V.; Surdacka, A.; Maj, M.; Burdan, F.; Pirozynski, M.; Grabarczyk, P.; et al. Interferon alpha as antiviral therapy in chronic active Epstein-Barr virus disease with interstitial pneumonia—Case report. BMC Infect. Dis. 2018, 18, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Paschale, M.; Clerici, P. Serological diagnosis of Epstein-Barr virus infection: Problems and solutions. World J. Virol. 2012, 1, 31–43. [Google Scholar] [CrossRef]
- Daley, E.; Emson, C.; Guignabert, C.; de Waal Malefyt, R.; Louten, J.; Kurup, V.P.; Hogaboam, C.; Taraseviciene-Stewart, L.; Voelkel, N.F.; Rabinovitch, M.; et al. Pulmonary arterial remodeling induced by a th2 immune response. J. Exp. Med. 2008, 205, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Chaisson, N.F.; Hassoun, P.M. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension. Chest 2013, 144, 1346–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, S.; Nicolls, M.R.; Taraseviciene, L.; Speich, R.; Voelkel, N. Increased regulatory and decreased cd8+ cytotoxic t cells in the blood of patients with idiopathic pulmonary arterial hypertension. Respiration 2008, 75, 272–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Liu, X.; Li, Z.; Chai, Y.; Jiang, Y.; Wang, Q.; Ji, Y.; Zhu, Z.; Wan, Y.; Yuan, Z.; et al. CD8(+)NKT-like cells regulate the immune response by killing antigen-bearing DCS. Sci. Rep. 2015, 5, 14124. [Google Scholar] [CrossRef] [Green Version]
- Sanjo, N.; Nose, Y.; Shishido-Hara, Y.; Mizutani, S.; Sekijima, Y.; Aizawa, H.; Tanizawa, T.; Yokota, T. A controlled inflammation and a regulatory immune system are associated with more favorable prognosis of progressive multifocal leukoencephalopathy. J. Neurol. 2019, 266, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Saeidi, A.; Zandi, K.; Cheok, Y.Y.; Saeidi, H.; Wong, W.F.; Lee, C.Y.Q.; Cheong, H.C.; Yong, Y.K.; Larsson, M.; Shankar, E.M. T-cell exhaustion in chronic infections: Reversing the state of exhaustion and reinvigorating optimal protective immune responses. Front. Immunol. 2018, 9, 2569. [Google Scholar] [CrossRef]
- Speiser, D.E.; Utzschneider, D.T.; Oberle, S.G.; Munz, C.; Romero, P.; Zehn, D. T cell differentiation in chronic infection and cancer: Functional adaptation or exhaustion? Nat. Rev. Immunol. 2014, 14, 768–774. [Google Scholar] [CrossRef]
- Utzschneider, D.T.; Alfei, F.; Roelli, P.; Barras, D.; Chennupati, V.; Darbre, S.; Delorenzi, M.; Pinschewer, D.D.; Zehn, D. High antigen levels induce an exhausted phenotype in a chronic infection without impairing t cell expansion and survival. J. Exp. Med. 2016, 213, 1819–1834. [Google Scholar] [CrossRef] [PubMed]
- Schonrich, G.; Raftery, M.J. The pd-1/pd-l1 axis and virus infections: A delicate balance. Front. Cell Infect. Microbiol. 2019, 9, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derks, S.; Liao, X.; Chiaravalli, A.M.; Xu, X.; Camargo, M.C.; Solcia, E.; Sessa, F.; Fleitas, T.; Freeman, G.J.; Rodig, S.J.; et al. Abundant PD-L1 expression in Epstein-Barr virus-infected gastric cancers. Oncotarget 2016, 7, 32925–32932. [Google Scholar] [CrossRef] [PubMed]
- Green, M.R.; Rodig, S.; Juszczynski, P.; Ouyang, J.; Sinha, P.; O’Donnell, E.; Neuberg, D.; Shipp, M.A. Constitutive ap-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: Implications for targeted therapy. Clin. Cancer Res. 2012, 18, 1611–1618. [Google Scholar] [CrossRef] [Green Version]
- Hansson, G.K.; Robertson, A.K.; Soderberg-Naucler, C. Inflammation and atherosclerosis. Annu. Rev. Pathol. 2006, 1, 297–329. [Google Scholar] [CrossRef]
- Hsue, P.Y.; Deeks, S.G.; Farah, H.H.; Palav, S.; Ahmed, S.Y.; Schnell, A.; Ellman, A.B.; Huang, L.; Dollard, S.C.; Martin, J.N. Role of hiv and human herpesvirus-8 infection in pulmonary arterial hypertension. AIDS 2008, 22, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Ba, H.; Xu, L.; Peng, H.; Lin, Y.; Li, X.; Wang, H.; Qin, Y. Chronic active Epstein-Barr virus infection with systemic vasculitis and pulmonary arterial hypertension in a child. Front. Pediatr. 2019, 7, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, Y.; Momoi, N.; Akaihata, M.; Nagasawa, K.; Mitomo, M.; Aoyagi, Y.; Endoh, K.; Hosoya, M. Pulmonary arterial hypertension associated with chronic active Epstein-Barr virus infection. Pediatr. Int. 2015, 57, 731–734. [Google Scholar] [CrossRef] [PubMed]
Variable (Unit) | Group | Minimum | 25th Percentile | Median | 75th Percentile | Maximum | p |
---|---|---|---|---|---|---|---|
Neutrophils (103/mm3) | Control | 2.710 | 3.595 | 3.935 | 5.373 | 6.030 | 0.0378 (*) |
IPAH | 2.080 | 4.250 | 5.110 | 6.225 | 8.430 | ||
Lymphocytes (103/mm3) | Control | 1.530 | 1.988 | 2.535 | 2.785 | 3.070 | NS |
IPAH | 1.200 | 1.790 | 2.010 | 2.680 | 3.140 | ||
T lymphocytes (%) | Control | 60.63 | 65.52 | 68.08 | 70.93 | 74.49 | NS |
IPAH | 59.21 | 65.86 | 70.82 | 75.92 | 89.16 | ||
B lymphocytes (%) | Control | 6.04 | 9.86 | 11.40 | 12.37 | 16.90 | NS |
IPAH | 3.50 | 6.30 | 11.90 | 15.47 | 20.67 | ||
NK cells (%) | Control | 12.16 | 13.54 | 14.43 | 17.22 | 19.34 | 0.0002 (***) |
IPAH | 3.99 | 8.05 | 11.23 | 13.57 | 20.43 | ||
NKT-like cells (%) | Control | 1.15 | 2.42 | 3.27 | 3.51 | 4.92 | 0.0043 (**) |
IPAH | 0.67 | 2.92 | 5.23 | 7.45 | 10.94 | ||
CD4+ T lymphocytes (%) | Control | 40.71 | 42.57 | 44.16 | 45.95 | 48.84 | 0.0190 (*) |
IPAH | 19.73 | 26.69 | 36.91 | 49.78 | 62.92 | ||
CD8+ T lymphocytes (%) | Control | 29.33 | 31.22 | 34.74 | 37.25 | 39.60 | 0.0034 (**) |
IPAH | 9.19 | 18.73 | 28.30 | 33.01 | 59.29 | ||
CD4+/CD8+ ratio | Control | 1.030 | 1.188 | 1.290 | 1.433 | 1.570 | NS |
IPAH | 0.340 | 0.785 | 1.250 | 3.065 | 6.850 | ||
Treg (%) | Control | 3.15 | 5.49 | 7.37 | 8.33 | 10.15 | <0.0001 (****) |
IPAH | 5.94 | 9.31 | 11.21 | 14.73 | 23.81 | ||
PD1+ CD4+ T lymphocytes (%) | Control | 2.65 | 3.83 | 5.35 | 6.64 | 7.69 | <0.0001 (****) |
IPAH | 8.00 | 11.73 | 15.49 | 21.46 | 38.24 | ||
PD-L1+ CD4+ T lymphocytes (%) | Control | 0.98 | 1.30 | 1.71 | 2.52 | 3.49 | <0.0001 (****) |
IPAH | 1.43 | 8.83 | 17.84 | 23.91 | 37.42 | ||
PD-1+ CD8+ T lymphocytes (%) | Control | 1.36 | 2.293 | 3.705 | 4.668 | 6.17 | <0.0001 (****) |
IPAH | 3.19 | 8.65 | 13.77 | 15.94 | 24.43 | ||
PD-L1+ CD8+ T lymphocytes (%) | Control | 0.31 | 0.35 | 0.43 | 0.53 | 0.67 | <0.0001 (****) |
IPAH | 0.87 | 1.75 | 9.82 | 19.84 | 35.47 | ||
PD-1+ B lymphocytes (%) | Control | 0.37 | 0.76 | 1.81 | 2.44 | 3.01 | 0.0011 (**) |
IPAH | 0.62 | 1.12 | 4.13 | 8.45 | 18.76 | ||
PD-L1+ B lymphocytes (%) | Control | 0.07 | 0.14 | 0.20 | 0.28 | 1.03 | <0.0001 (****) |
IPAH | 0.14 | 2.37 | 14.20 | 17.39 | 21.05 | ||
IFN-γ (pg/mL) | Control | 0.606 | 1.233 | 2.336 | 3.329 | 4.378 | <0.0001 (****) |
IPAH | 5.579 | 6.092 | 7.044 | 9.738 | 23.300 | ||
IL-6 (pg/mL) | Control | 0.151 | 0.694 | 1.168 | 4.567 | 17.200 | <0.0001 (****) |
IPAH | 2.304 | 3.255 | 7.959 | 16.790 | 411.400 | ||
IL-10 (pg/mL) | Control | 2.775 | 3.045 | 4.081 | 4.800 | 6.157 | NS |
IPAH | 0.068 | 2.144 | 3.908 | 10.570 | 15.710 | ||
IL-2 (pg/mL) | Control | 0.478 | 0.978 | 2.360 | 3.563 | 7.155 | <0.0001 (****) |
IPAH | 9.387 | 11.380 | 13.800 | 31.850 | 150.100 |
Parameter | Minimum | 25th Percentile | Median | 75th Percentile | Maximum |
---|---|---|---|---|---|
BMI (kg/m2) | 17.1 | 24.1 | 26.0 | 30.6 | 40.5 |
BNP (pg/mL) | 210 | 666 | 1546 | 2129 | 10,144 |
6MWD (m) | 136 | 315 | 374 | 454 | 556 |
PVR (mmHg x min-l) | 158 | 473 | 651 | 894 | 1599 |
CI (l/min/m2) | 1.43 | 2.01 | 2.60 | 2.92 | 3.75 |
CO (l/min) | 2.11 | 3.99 | 4.46 | 5.40 | 6.42 |
RAP (mmHg) | 2 | 4 | 9 | 12 | 23 |
MPAP (mmHg) | 25 | 32 | 48 | 53 | 66 |
PASP (mmHg) | 37 | 55 | 77 | 89 | 105 |
RVSP (mmHg) | 42 | 52 | 76 | 82 | 96 |
PAWP (mmHg) | 5 | 7 | 9 | 10 | 14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaszewski, M.; Grywalska, E.; Tomaszewski, A.; Błaszczak, P.; Kurzyna, M.; Roliński, J.; Kopeć, G. Overexpression of PD-1 on Peripheral Blood Lymphocytes in Patients with Idiopathic Pulmonary Arterial Hypertension and Its Association with High Viral Loads of Epstein-Barr Virus and Poor Clinical Parameters. J. Clin. Med. 2020, 9, 1966. https://doi.org/10.3390/jcm9061966
Tomaszewski M, Grywalska E, Tomaszewski A, Błaszczak P, Kurzyna M, Roliński J, Kopeć G. Overexpression of PD-1 on Peripheral Blood Lymphocytes in Patients with Idiopathic Pulmonary Arterial Hypertension and Its Association with High Viral Loads of Epstein-Barr Virus and Poor Clinical Parameters. Journal of Clinical Medicine. 2020; 9(6):1966. https://doi.org/10.3390/jcm9061966
Chicago/Turabian StyleTomaszewski, Michał, Ewelina Grywalska, Andrzej Tomaszewski, Piotr Błaszczak, Marcin Kurzyna, Jacek Roliński, and Grzegorz Kopeć. 2020. "Overexpression of PD-1 on Peripheral Blood Lymphocytes in Patients with Idiopathic Pulmonary Arterial Hypertension and Its Association with High Viral Loads of Epstein-Barr Virus and Poor Clinical Parameters" Journal of Clinical Medicine 9, no. 6: 1966. https://doi.org/10.3390/jcm9061966
APA StyleTomaszewski, M., Grywalska, E., Tomaszewski, A., Błaszczak, P., Kurzyna, M., Roliński, J., & Kopeć, G. (2020). Overexpression of PD-1 on Peripheral Blood Lymphocytes in Patients with Idiopathic Pulmonary Arterial Hypertension and Its Association with High Viral Loads of Epstein-Barr Virus and Poor Clinical Parameters. Journal of Clinical Medicine, 9(6), 1966. https://doi.org/10.3390/jcm9061966