Mild Cognitive Impairment Subtypes and Type 2 Diabetes in Elderly Subjects
Abstract
:1. Introduction
2. Methods
2.1. Study Population and Recruitment
2.2. MCI Diagnostic Criteria
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADL | Activities of Daily Living; |
AD | Alzheimer’s disease; |
aMCI | amnestic mild cognitive impairment; |
aMCI-md | amnestic mild cognitive impairment, multi-domain; |
aMCI-sd | amnestic mild cognitive impairment, single-domain; |
FCSRT | Free and Cued Selective Reminding Test; |
FCSRT ITR | Free and Cued Selective Reminding Test, Immediate Total Recall; |
FCSRT ISC | Free and Cued Selective Reminding Test, Index of Sensitivity of Cueing; |
HbA1c | glycated hemoglobin levels; |
IADL | Instrumental Activities of Daily Living; |
MCI | Mild Cognitive Impairment; |
MMSE | Mini-Mental State Examination; |
naMCI | non-amnestic mild cognitive impairment; |
naMCI-md | non-amnestic mild cognitive impairment, multi-domain; |
naMCI-sd | non-amnestic mild cognitive impairment, single-domain; |
ND-MCI | MCI subjects without diabetes; |
T2D | type 2 diabetes; |
T2D-MCI | MCI subjects with type 2 diabetes. |
References
- Cukierman, T.; Gerstein, H.C.; Williamson, J.D. Cognitive decline and dementia in diabetes-systematic overview of prospective observational studies. Diabetologia 2005, 48, 2460–2469. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, J.A.; Tang, M.X.; Stern, Y.; Shea, S.; Mayeux, R. Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am. J. Epidemiol. 2001, 154, 635–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciudin, A.; Espinosa, A.; Simó-Servat, O.; Ruiz, A.; Alegret, M.; Hernández, C.; Boada, M.; Simó, R. Type 2 diabetes is an independent risk factor for dementia conversion in patients with mild cognitive impairment. J. Diabetes Complicat. 2017, 31, 1272–1274. [Google Scholar] [CrossRef]
- Li, J.; Cesari, M.; Liu, F.; Dong, B.; Vellas, B. Effects of Diabetes Mellitus on Cognitive Decline in Patients with Alzheimer Disease: A Systematic Review. Can. J. Diabetes 2017, 41, 114–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Rivas, N.; Méndez-Bailón, M.; Miguel-Yanes, J.M.; Hernández-Barrera, V.; Miguel-Díez, J.; Jimenez-Garcia, R.; López-de-Andrés, A. Observational study of vascular dementia in the Spanish elderly population according to Type 2 diabetes status: Trends in incidence, characteristics and oucomes (2004–2013). BMJ Open 2017, 7, e016390. [Google Scholar] [CrossRef]
- Peila, R.; Rodriguez, B.L.; Launer, L.J. Type 2 diabetes, APOE gene and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 2002, 51, 1256–1262. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.Q.; De Felice, F.G.; Fernandez, S.; Chen, H.; Lambert, M.P.; Quon, M.J.; Krafft, G.A.; Klein, W.L. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J. 2008, 22, 246–260. [Google Scholar] [CrossRef] [Green Version]
- Arab, L.; Sadeghi, R.; Walker, D.G.; Lue, L.F.; Sabbagh, M.N. Consequences of aberrant insulin regulation in the brain: Can treating diabetes be effective for Alzheimer’s disease. Curr. Neuropharmacol. 2011, 9, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Roberts, R.O.; Geda, Y.E.; Knopman, D.S.; Christianson, T.J.; Pankratz, V.S.; Boeve, B.F.; Vella, A.; Rocca, W.A.; Petersen, R.C. Association of duration and severity of diabetes mellitus with mild cognitive impairment. Arch. Neurol. 2008, 65, 1066–1073. [Google Scholar] [CrossRef] [Green Version]
- Luchsinger, J.A.; Reitz, C.; Patel, B.; Tang, M.X.; Manly, J.J.; Mayeux, R. Relation of diabetes to mild cognitive impairment. Arch. Neurol. 2007, 64, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Velayudhan, L.; Poppe, M.; Archer, N.; Proitsi, P.; Brown, R.G.; Lovestone, S. Risk of developing dementia in people with diabetes and mild cognitive impairment. Br. J. Psychiatry 2010, 196, 36–40. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild Cognitive Impairment as a diagnostic entity. J. Int. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Yuan, X.I.; Wang, X.G. Mild Cognitive impairment in type 2 diabetes mellitus and related risk factors: A review. Rev. Neurosci. 2017, 28, 715–723. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, Y.; Miao, R.; Zhao, J.; Zhang, W.; Huang, G.; Ma, F. The characteristic of cognitive function in Type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2015, 109, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Wu, T.; Miao, R.; Xiao, Y.Y.; Zhang, W.; Huang, G. Conversion of mild cognitive impairment to dementia among subjects with diabetes: A population-based study of incidence and risk factors with five years of follow-up. J. Alzheimers Dis. 2015, 43, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.O.; Knopman, D.S.; Geda, Y.E.; Cha, R.H.; Pankratz, V.S.; Baertlein, L.; Boeve, B.F.; Tangalos, E.G.; Ivnik, J.; Mielke, M.M.; et al. Association of diabetes with amnestic and nonamnestic mild cognitive impairment. Alzheimers Dement. 2014, 10, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, S.E.; Fischer, A.L.; Dixon, R.A. Exploring Effects of Type 2 Diabetes on Cognitive Functioning in Older Adults. Neuropsychology 2009, 23, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A pratical method for granding the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of illness in the aged. The index of ADL: A standardized measure of biological and psychosocial function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 2018, 41 (Suppl. S1), 513–527. [Google Scholar]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment-beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern Med. 2004, 256, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Caffò, A.O.; De Caro, M.F.; Picucci, L.; Notarnicola, A.; Settanni, A.; Livrea, P.; Lancioni, G.E.; Bosco, A. Reorientation deficits are associated with amnestic mild cognitive impairment. Am. J. Alzheimers Dis. Dement. 2012, 27, 321–330. [Google Scholar] [CrossRef]
- Spinnler, H.; Tognoni, G. Standardizzazione e Taratura Italiana di Test Neuropsicologici; Masson Italia Periodici: Milan, Italy, 1987; pp. 47–50. [Google Scholar]
- Amodio, P.; Wenin, H.; Del Piccolo, F.; Mapelli, D.; Montagnese, S.; Pellegrini, A.; Musto, C.; Gatta, A.; Umiltà, C. Variability of trail making test, symbol digit test and line trait test in normal people. A normative study taking into account age-dependent decline and sociobiological variables. Aging Clin. Exp. Res. 2002, 14, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Caffarra, P.; Vezzadini, G.; Dieci, F.; Zonato, F.; Venneri, A. Una versione abbreviata del test di Stroop: Dati normativi nella popolazione italiana. Nuova Riv. Neurol. 2002, 12, 111–115. [Google Scholar]
- Laiacona, M.; Inzaghi, M.G.; De Tanti, A.; Capitani, E. Wisconsin card sorting test: A new global score, with Italian norms, and its relationship with the Weigl sorting test. Neurol. Sci. 2000, 21, 279–291. [Google Scholar] [CrossRef]
- Gainotti, G.; Marra, C.; Villa, G. A double dissociation between accuracy and time of execution on attentional tasks in Alzheimer’s disease and multi-infarct dementia. Brain 2001, 124, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Appollonio, I.; Leone, M.; Isella, V.; Piamarta, F.; Consoli, T.; Villa, M.L.; Forapani, E.; Russo, A.; Nichelli, P. The Frontal Assesment Battery (FAB): Normative values in an Italian population sample. Neurol. Sci. 2005, 26, 108–116. [Google Scholar] [CrossRef]
- Costa, A.; Bagoj, E.; Monaco, M.; Zabberoni, S.; De Rosa, S.; Papantonio, A.M.; Mundi, C.; Caltagirone, C.; Carlesimo, G.A. Standardization and normative data obtained the Italian population for a new verbal fluency instrument, the phonemic/semantic alternate fluency test. Neurol. Sci. 2014, 35, 365–372. [Google Scholar] [CrossRef]
- Monaco, M.; Costa, A.; Caltagirone, C.; Carlesimo, G.A. Forward and backward span for verbal and visuo-spatial data: Standardization and normative data from an Italian adult population. Neurol. Sci. 2013, 34, 749–754. [Google Scholar] [CrossRef]
- Carlesimo, G.A.; Caltagirone, C.; Gainotti, G. The Mental Deterioration Battery: Normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. Eur. Neurol. 1996, 36, 378–384. [Google Scholar] [CrossRef]
- Novelli, G.; Papagno, C.; Capitani, E.; Laiacona, M. Tre test clinici di memoria verbale a lungo termine. Taratura su soggetti normali. Arch. Psicol. Neurol. Psichiatr. 1986, 47, 278–296. [Google Scholar]
- Frasson, P.; Ghiretti, R.; Catricalà, E.; Pomati, S.; Marcone, A.; Parisi, L.; Rossini, P.M.; Cappa, S.F.; Mariani, C.; Vanacore, N.; et al. Free and Cued Selective Reminding Test: An Italian normative study. Neurol. Sci. 2011, 32, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Luzzi, S.; Pesallaccia, M.; Fabi, K.; Muti, M.; Viticchi, G.; Provinciali, L.; Piccirilli, M. Non-verbal memory measured by Rey-Osterrieth Complex Figure B: Normative data. Neurol. Sci. 2011, 32, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Capasso, R.; Miceli, G. Esame Neuropsicologico per l’Afasia, 1st ed.; Springer: Milan, Italy, 2001. [Google Scholar]
- Catricalà, E.; Della Rosa, P.A.; Ginex, V.; Mussetti, Z.; Plebani, V.; Cappa, S.F. An Italian battery for the assessment of semantic memory disorders. Neurol. Sci. 2013, 34, 985–993. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, X.; Han, S.; Liu, Q.; Zhou, J. Type 2 Diabetes Mellitus Is Associated with the Risk of Cognitive Impairment: A Meta-Analysis. J. Mol. Neurosci. 2019, 68, 251–260. [Google Scholar] [CrossRef]
- Bruce, D.G.; Davis, W.A.; Casey, G.P.; Starkstein, S.E.; Clarnette, R.M.; Almeida, O.P.; Davis, T.M. Predictors of cognitive decline in older individuals with diabetes. Diabetes Care 2008, 31, 2103–2107. [Google Scholar] [CrossRef] [Green Version]
- Winkler, A.; Dlugaj, M.; Weimar, C.; Jöckel, K.H.; Erbel, R.; Dragano, N.; Moebus, S. Association of diabetes mellitus and mild cognitive impairment in middle-aged men and women. J. Alzheimers Dis. 2014, 42, 1269–1277. [Google Scholar] [CrossRef]
- Schmidtke, K.; Hermeneit, S. High rate of conversion to Alzheimer’s disease in a cohort of amnestic MCI patients. Int. Psychogeriatr. 2008, 20, 96–108. [Google Scholar] [CrossRef]
- Reinvang, I.; Grambaite, R.; Espeseth, T. Executive Dysfunction in MCI: Subtype or Early Symptom. Int. J. Alzheimer’s Dis. 2012, 2012, 936272. [Google Scholar] [CrossRef] [Green Version]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Dekosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.; et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007, 6, 734–746. [Google Scholar] [CrossRef]
- Chasles, M.J.; Tremblay, A.; Escudier, F.; Lajeunesse, A.; Benoit, S.; Langlois, R.; Joubert, S.; Rouleau, I. An examination of semantic impairment in Amnestic MCI and AD: What can we learn from verbal fluency? Arch. Clin. Neuropsychol. 2019, 35, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Zhu, C.W.; Grossman, H.; Schimming, C. Longitudinal Cognitive Profiles in Diabetes: Results From the National Alzheimer’s Coordinating Center’s Uniform Data. J. Am. Geriatr. Soc. 2017, 65, 2198–2204. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, M.; Jia, Y.; Hughes, T.F.; Snitz, B.E.; Chang, C.H.; Berman, S.B.; Sullivan, K.J.; Kamboh, M.I. Mild Cognitive Impairment That Does Not Progress To Dementia: A Population-Based Study. J. Am. Geriatr. Soc. 2019, 67, 232–238. [Google Scholar] [CrossRef]
- Dos Santos Matioli1, M.N.P.; Suemoto, C.K.; Rodriguez, R.D.; Farias, D.S.; da Silva, M.M.; Leite, R.E.P.; Ferretti-Rebustini, R.E.L.; Pasqualucci, C.A.; Filho, W.J.; Grinberg, L.T.; et al. Association between diabetes and causes of dementia: Evidence from a clinicopathological study. Dement Neuropsychol. 2017, 11, 406–412. [Google Scholar] [CrossRef]
- Klein, J.P.; Waxman, S.G. The brain in diabetes: Molecular changes in neurons and their implications for end-organ damage. Lancet Neurol. 2003, 2, 548–554. [Google Scholar] [CrossRef]
- Ott, A.; Stolk, R.P.; van Harskamp, F.; Pols, H.A.; Hofman, A.; Breteler, M.M. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999, 53, 1937–1942. [Google Scholar] [CrossRef]
- De la Monte, S.M.; Wands, J.R. Alzheimer’s disease is type 3 diabetes-Evidence reviewed. J. Diabetes Sci. Technol. 2008, 2, 1101–1113. [Google Scholar] [CrossRef] [Green Version]
- Devaskar, S.U.; Giddings, S.J.; Rajakumar, P.A.; Carnaghi, L.R.; Menon, R.K.; Zahm, D.S. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem. 1994, 269, 8445–8454. [Google Scholar]
- Craft, S.; Watson, G.S. Insulin and neurodegenerative disease: Shared and specific mechanisms. Lancet Neurol. 2004, 3, 169–178. [Google Scholar] [CrossRef]
- De Santi, S.; de Leon, M.J.; Rusinek, H.; Convit, A.; Tarshish, C.Y.; Roche, A.; Tsui, W.H.; Kandil, E.; Boppana, M.; Daisley, K.; et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol. Aging 2001, 22, 529–539. [Google Scholar] [CrossRef]
- Ferreira, L.S.S.; Fernandes, C.S.; Vieira, M.N.N.; De Felice, F.G. Insulin Resistance in Alzheimer’s Disease. Front. Neurosci. 2018, 12, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biessels, G.J.; Despa, F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat. Rev. Endocrinol. 2018, 14, 591–604. [Google Scholar] [CrossRef] [PubMed]
Attention and executive functions | Attention Matrices Test [24] |
Trail Making Test A, TMT-A, and Trail Making Test, TMT-B [25] | |
Stroop Test [26] | |
Weigl’s Sorting Test [27] | |
Multiple Features Target Cancellation Test (MFTC): time; accuracy; error [28] | |
Frontal Assessment Battery (FAB) [29] | |
Phonemic Fluency (FAS) [30] | |
Memory | Digit span [31] |
Rey Auditory Verbal Learning Test: immediate and delayed recall [32] | |
Prose Memory Test [33] | |
Free and Cued Selective Reminding Test (FCSRT): Immediate Free Recall (IFR); Immediate Total Recall (ITR); Delayed Free Recall (DFR); Delayed Total Recall (DTR); Index of Sensitivity Cueing (ISC) [34] | |
Rey–Osterrieth Complex Figure B: immediate and delayed recall [35] | |
Language | Animal fluency [36] |
Fluency for semantic categories [37] | |
Oral comprehension [36] | |
Verbal Naming [36] | |
Noun Naming (CAGI) [37] | |
Visual constructional ability | Rey–Osterrieth Complex Figure B copy [35] |
T2D-MCI n = 39 | ND–MCI n = 37 | p | |
---|---|---|---|
Age *, mean (sd) | 74.21 (4.58) | 76.68 (6.30) | 0.06 |
Female, n (%) | 18 (46.15) | 22 (59.46) | 0.25 |
Education (years) *, mean (sd) | 7.44 (2.98) | 8.27 (3.90) | 0.30 |
MMSE ^, median (iqr) | 26.30 (2.40) | 25.70 (2.00) | 0.10 |
HbA1c *, mean (sd) | 7.62 (1.67) | 5.30 (0.80) | 0.01 |
BMI *, mean (sd) | 28.33 (5.23) | 23.63 (2.50) | 0.00 |
Hypertension, n (%) | 26 (66.67) | 18 (48.65) | 0.11 |
Neuropathy, n (%) | 6 (15.38) | 0 (0.00) | 0.01 |
Nephropathy, n (%) | 3 (7.69) | 0 (0.00) | 0.09 |
Chronic Renal Failure, n (%) | 2 (5.13) | 1 (2.70) | 0.59 |
Retinopathy, n (%) | 13 (33.33) | 0 (0.00) | 0.00 |
Supra-aortic Trunks Arterial Disease, n (%) | 2 (5.13) | 1 (2.70) | 0.59 |
Obliterative Arteriopathy of Lower Limbs, n (%) | 5 (12.82) | 2 (5.41) | 0.26 |
Myocardial Ischemia, n (%) | 9 (23.08) | 14 (37.84) | 0.16 |
T2D-MCI | ND-MCI | p | |||
---|---|---|---|---|---|
Mean/Median | SD/IQR | Mean/Median | SD/IQR | ||
FCSRT ITR (immediate total recall) * | 35.25 | 1.31 | 34.38 | 2.25 | 0.04 |
FCSRT DTR (Delayed Total Recall) * | 11.60 | 0.75 | 11.03 | 1.58 | 0.05 |
FCSRT ISC (Index of Sensitivity of Cueing) * | 0.95 | 0.06 | 0.91 | 0.11 | 0.03 |
Rey Auditory Verbal Learning Test (delayed recall) ^ | 6.90 | 3.70 | 5.30 | 4.70 | 0.02 |
Prose Memory Test ^ | 12.50 | 7.50 | 10.00 | 4.50 | 0.01 |
Rey–Osterrieth Complex Figure B (delayed recall) ^ | 16.51 | 5.59 | 13.98 | 5.27 | 0.05 |
Fluency for semantic categories ^ | 40.30 | 9.19 | 36.30 | 8.42 | 0.01 |
Animal fluency ^ | 16.50 | 6.60 | 14.00 | 4.40 | 0.03 |
Noun Naming (CAGI) * | 45.04 | 2.03 | 44.00 | 1.95 | 0.02 |
Independent Variables: | B ± SE | p |
---|---|---|
FCSRT ITR (immediate total recall) * | 1.09 ± 0.41 | 0.01 |
FCSRT DTR (Delayed Total Recall) * | 0.70 ± 0.26 | 0.01 |
FCSRT ISC (Index of Sensitivity of Cueing) * | 0.06 ± 0.02 | 0.01 |
Prose Memory Test ^ | 3.00 ± 0.63 | 0.00 |
Rey–Osterrieth Complex Figure B (delayed recall) ^ | 5.49 ± 1.32 | 0.00 |
Fluency for semantic categories ^ | 3.99 ± 1.32 | 0.00 |
Animal fluency ^ | 2.75 ± 1.03 | 0.01 |
Noun Naming (CAGI) * | 1.29 ± 0.48 | 0.01 |
HbA1c | Duration of T2D | Insulin Treatment | |
---|---|---|---|
Rey Auditory Verbal Learning Test (immediate recall) * | r = −0.37 p = 0.03 | r = −0.27 p = 0.11 | r = −0.39 p = 0.02 |
Rey Auditory Verbal Learning Test (delayed recall) ^ | r = −0.13 p = 0.47 | r = −0.02 p = 0.89 | r = −0.33 p = 0.06 |
Rey–Osterrieth Complex Figure B (immediate recall) ^ | r = −0.30 p = 0.09 | r = −0.38 p = 0.02 | r = −0.25 p = 0.14 |
Rey–Osterrieth Complex Figure B (copy) ^ | r = −0.28 p = 0.11 | r = −0.45 p = 0.01 | r = −0.33 p = 0.05 |
Attention Matrices Test ^ | r = −0.32 p = 0.58 | r = −0.24 p = 0.16 | r = −0.45 p = 0.01 |
MFTC Test (time index) * | r = 0.21 p = 0.23 | r = 0.21 p = 0.22 | r = 0.37 p = 0.02 |
MFTC Test (accuracy index) * | r = −0.18 p = 0.31 | r = −0.34 p = 0.03 | r = 0.09 p = 0.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenza, S.; Paciaroni, L.; Paolini, S.; Bonfigli, A.R.; Di Rosa, M.; Rabini, R.A.; Tortato, E.; Pelliccioni, P.; Pelliccioni, G. Mild Cognitive Impairment Subtypes and Type 2 Diabetes in Elderly Subjects. J. Clin. Med. 2020, 9, 2055. https://doi.org/10.3390/jcm9072055
Valenza S, Paciaroni L, Paolini S, Bonfigli AR, Di Rosa M, Rabini RA, Tortato E, Pelliccioni P, Pelliccioni G. Mild Cognitive Impairment Subtypes and Type 2 Diabetes in Elderly Subjects. Journal of Clinical Medicine. 2020; 9(7):2055. https://doi.org/10.3390/jcm9072055
Chicago/Turabian StyleValenza, Silvia, Lucia Paciaroni, Susy Paolini, Anna Rita Bonfigli, Mirko Di Rosa, Rosa Anna Rabini, Elena Tortato, Paolo Pelliccioni, and Giuseppe Pelliccioni. 2020. "Mild Cognitive Impairment Subtypes and Type 2 Diabetes in Elderly Subjects" Journal of Clinical Medicine 9, no. 7: 2055. https://doi.org/10.3390/jcm9072055
APA StyleValenza, S., Paciaroni, L., Paolini, S., Bonfigli, A. R., Di Rosa, M., Rabini, R. A., Tortato, E., Pelliccioni, P., & Pelliccioni, G. (2020). Mild Cognitive Impairment Subtypes and Type 2 Diabetes in Elderly Subjects. Journal of Clinical Medicine, 9(7), 2055. https://doi.org/10.3390/jcm9072055