The Migration Pattern of a Cementless Hydroxyapatite-Coated Titanium Stem under Immediate Full Weight-Bearing—A Randomized Controlled Trial Using Model-Based RSA
Abstract
:1. Introduction
2. Methods
2.1. Implants and Surgical Technique
2.2. Clinical and Radiological Evaluation
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Australian Orthopaedic Association National Joint Replacement Registry (AOANJR). Hip, Knee & Shoulder Arthroplasty: 2018 Annual Report; AOA: Adelaide, Australia, 2018. [Google Scholar]
- Pilliar, R.M.; Lee, J.M.; Maniatopoulos, C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin. Orthop. Relat. Res. 1986, 108–113. [Google Scholar] [CrossRef]
- Nieuwenhuijse, M.J.; Valstar, E.R.; Kaptein, B.L.; Nelissen, R.G. Good diagnostic performance of early migration as a predictor of late aseptic loosening of acetabular cups: Results from ten years of follow-up with Roentgen stereophotogrammetric analysis (RSA). J. Bone Jt. Surg. Am. 2012, 94, 874–880. [Google Scholar] [CrossRef]
- Valstar, E.; Kaptein, B.; Nelissen, R. Radiostereometry and new prostheses. ACTA Orthop. 2012, 83, 103–104. [Google Scholar] [CrossRef]
- van der Voort, P.; Pijls, B.G.; Nieuwenhuijse, M.J.; Jasper, J.; Fiocco, M.; Plevier, J.W.; Middeldorp, S.; Valstar, E.R.; Nelissen, R.G. Early subsidence of shape-closed hip arthroplasty stems is associated with late revision. A systematic review and meta-analysis of 24 RSA studies and 56 survival studies. ACTA Orthop. 2015, 86, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.A.; Plante-Bordeneuve, P. Early migration and late aseptic failure of proximal femoral prostheses. J. Bone Jt. Surg. Br. 1994, 76, 432–438. [Google Scholar] [CrossRef]
- Kendrick, J.B.; Noble, P.C.; Tullos, H.S. Distal stem design and the torsional stability of cementless femoral stems. J. Arthroplast. 1995, 10, 463–469. [Google Scholar] [CrossRef]
- Mjoberg, B.; Hansson, L.I.; Selvik, G. Instability of total hip prostheses at rotational stress. A roentgen stereophotogrammetric study. ACTA Orthop. Scand. 1984, 55, 504–506. [Google Scholar] [CrossRef]
- Nunn, D.; Freeman, M.A.; Tanner, K.E.; Bonfield, W. Torsional stability of the femoral component of hip arthroplasty. Response to an anteriorly applied load. J. Bone Jt. Surg. Br. 1989, 71, 452–455. [Google Scholar] [CrossRef]
- Hurschler, C.; Seehaus, F.; Emmerich, J.; Kaptein, B.L.; Windhagen, H. Accuracy of model-based RSA contour reduction in a typical clinical application. Clin. Orthop. Relat. Res. 2008, 466, 1978–1986. [Google Scholar] [CrossRef] [Green Version]
- Valstar, E.R.; de Jong, F.W.; Vrooman, H.A.; Rozing, P.M.; Reiber, J.H. Model-based Roentgen stereophotogrammetry of orthopaedic implants. J. Biomech. 2001, 34, 715–722. [Google Scholar] [CrossRef]
- Cruz-Pardos, A.; Garcia-Rey, E.; Garcia-Cimbrelo, E. Total hip arthroplasty with use of the cementless zweymuller alloclassic system: A concise follow-up, at a minimum of 25 years, of a previous report. J. Bone Jt. Surg. Am. 2017, 99, 1927–1931. [Google Scholar] [CrossRef]
- Kolb, A.; Grubl, A.; Schneckener, C.D.; Chiari, C.; Kaider, A.; Lass, R.; Windhager, R. Cementless total hip arthroplasty with the rectangular titanium Zweymuller stem: A concise follow-up, at a minimum of twenty years, of previous reports. J. Bone Jt. Surg. Am. 2012, 94, 1681–1684. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Hoornenborg, D.; Sierevelt, I.N.; Spuijbroek, J.A.; Cheung, J.; van der Vis, H.M.; Beimers, L.; Haverkamp, D. Does hydroxyapatite coating enhance ingrowth and improve longevity of a Zweymuller type stem? A double-blinded randomised RSA trial. HIP Int. 2018, 28, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Onsten, I.; Carlsson, A.S.; Sanzen, L.; Besjakov, J. Migration and wear of a hydroxyapatite-coated hip prosthesis. A controlled roentgen stereophotogrammetric study. J. Bone Jt. Surg. Br. 1996, 78, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Valstar, E.R.; Gill, R.; Ryd, L.; Flivik, G.; Borlin, N.; Karrholm, J. Guidelines for standardization of radiostereometry (RSA) of implants. ACTA Orthop. 2005, 76, 563–572. [Google Scholar] [CrossRef]
- Ranstam, J.; Ryd, L.; Onsten, I. Accurate accuracy assessment: Review of basic principles. ACTA Orthop. Scand. 2000, 71, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Nysted, M.; Foss, O.A.; Klaksvik, J.; Benum, P.; Haugan, K.; Husby, O.S.; Aamodt, A. Small and similar amounts of micromotion in an anatomical stem and a customized cementless femoral stem in regular-shaped femurs. A 5-year follow-up randomized RSA study. ACTA Orthop. 2014, 85, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Innmann, M.M.; Gotterbarm, T.; Kretzer, J.P.; Merle, C.; Ewerbeck, V.; Weiss, S.; Aldinger, P.R.; Streit, M.R. Minimum ten-year results of a 28-mm metal-on-metal bearing in cementless total hip arthroplasty in patients fifty years of age and younger. Int. Orthop. 2014, 38, 929–934. [Google Scholar] [CrossRef] [Green Version]
- Mahomed, N.N.; Arndt, D.C.; McGrory, B.J.; Harris, W.H. The Harris hip score: Comparison of patient self-report with surgeon assessment. J. Arthroplast. 2001, 16, 575–580. [Google Scholar] [CrossRef]
- Pisecky, L.; Hipmair, G.; Schauer, B.; Bohler, N. 30-years of experience with the cementless implanted Alloclassic total hip arthroplasty system-An ultra-long-term follow-up. J. Orthop. 2018, 15, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Bieger, R.; Freitag, T.; Ignatius, A.; Reichel, H.; Durselen, L. Primary stability of a shoulderless Zweymuller hip stem: A comparative in vitro micromotion study. J. Orthop. Surg. Res. 2016, 11, 73. [Google Scholar] [CrossRef] [Green Version]
- Nelissen, R.G.; Pijls, B.G.; Karrholm, J.; Malchau, H.; Nieuwenhuijse, M.J.; Valstar, E.R. RSA and registries: The quest for phased introduction of new implants. J. Bone Jt. Surg. Am. 2011, 93, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Strom, H.; Nilsson, O.; Milbrink, J.; Mallmin, H.; Larsson, S. The effect of early weight bearing on migration pattern of the uncemented CLS stem in total hip arthroplasty. J. Arthroplast. 2007, 22, 1122–1129. [Google Scholar] [CrossRef]
- Karrholm, J.; Herberts, P.; Hultmark, P.; Malchau, H.; Nivbrant, B.; Thanner, J. Radiostereometry of hip prostheses. Review of methodology and clinical results. Clin. Orthop. Relat. Res. 1997, 344, 94–110. [Google Scholar]
- Campbell, D.; Mercer, G.; Nilsson, K.G.; Wells, V.; Field, J.R.; Callary, S.A. Early migration characteristics of a hydroxyapatite-coated femoral stem: An RSA study. Int. Orthop. 2011, 35, 483–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zweymuller, K.; Semlitsch, M. Concept and material properties of a cementless hip prosthesis system with Al2O3 ceramic ball heads and wrought Ti-6Al-4V stems. Arch. Orthop. Trauma Surg. 1982, 100, 229–236. [Google Scholar] [CrossRef] [PubMed]
Parameter | SL-PLUS MIA (n = 22) | SL-PLUS (n = 22) | p-Value |
---|---|---|---|
Age at surgery † (years) | 60 (39–74) | 60 (42–82) | 0.988 |
Female gender (%) | 68% | 64% | 0.750 |
Operated hip (right/left) (n) | 10/12 | 12/10 | 0.546 |
Body height † (cm) | 170 (156–187) | 169 (156–194) | 0.893 |
Body weight † (kg) | 84 (58–115) | 76 (50–123) | 0.142 |
HHS preoperatively † (points) | 50 (28–70) | 49 (20–73) | 0.754 |
Translation (mm) | Rotation (Degrees) | |
---|---|---|
Transverse axis | 0.17 (0.10, SD 0.08) | 0.45 (0.33, SD 0.22) |
Longitudinal axis | 0.33 (0.15, SD 0.16) | 1.29 (0.87, SD 0.63) |
Sagittal axis | 0.62 (0.29, SD 0.30) | 0.42 (0.14, SD 0.20) |
SL-PLUS (n = 15) | SL-PLUS MIA (n = 14) | SL-PLUS vs. SL-PLUS MIA | ||||
---|---|---|---|---|---|---|
Time | Mean (SD) | (95% CI) | Mean (SD) | (95% CI) | p-Value | |
Translation (mm) | ||||||
Medial(+)/Lateral(−) | 6 weeks | 0.02 (0.28) | −0.13 to 0.17 | 0.06 (0.26) | −0.09 to 0.20 | 0.729 |
3 months | 0.01 (0.28) | −0.15 to 0.16 | 0.04 (0.32) | −0.14 to 0.23 | 0.743 | |
6 months | −0.02 (0.31) | −0.19 to 0.15 | 0.04 (0.23) | −0.10 to 0.17 | 0.569 | |
12 months | −0.01 (0.27) | −0.16 to 0.14 | 0.02 (0.35) | −0.18 to 0.21 | 0.821 | |
24 months | −0.02 (0.27) | −0.17 to 0.13 | −0.03 (0.25) | −0.17 to 0.12 | 0.927 | |
Proximal(+)/Distal(−) | 6 weeks | −0.41 (0.83) | −0.86 to 0.05 | −1.07 (0.92) | −1.61 to −0.54 | 0.050 |
3 months | −0.48 (0.64) | −0.84 to −0.13 | −1.07 (0.90) | −1.59 to −0.55 | 0.051 | |
6 months | −0.54 (0.67) | −0.90 to −0.17 | −1.10 (0.86) | −1.60 to −0.60 | 0.059 | |
12 months | −0.45 (0.76) | −0.87 to −0.02 | −1.15 (0.91) | −1.67 to −0.62 | 0.032 * | |
24 months | −0.40 (0.66) | −0.77 to −0.04 | −1.08 (0.93) | −1.62 to −0.55 | 0.030 * | |
Anterior(+)/Posterior(−) | 6 weeks | 0.03 (0.50) | −0.25 to 0.31 | −0.03 (0.32) | −0.22 to 0.15 | 0.701 |
3 months | −0.20 (0.52) | −0.49 to 0.09 | −0.07 (0.56) | −0.40 to 0.26 | 0.523 | |
6 months | −0.29 (0.64) | −0.64 to 0.07 | −0.22 (0.51) | −0.51 to 0.08 | 0.745 | |
12 months | −0.01 (0.59) | −0.34 to 0.31 | −0.18 (0.73) | −0.60 to 0.24 | 0.499 | |
24 months | −0.22 (0.55) | −0.53 to 0.08 | −0.15 (0.59) | −0.50 to 0.19 | 0.750 | |
Rotation (degrees) | ||||||
Extension(+)/Flexion(−) | 6 weeks | −0.29 (0.67) | −0.66 to 0.09 | −0.31 (0.69) | −0.71 to 0.09 | 0.933 |
3 months | −0.31 (0.63) | −0.65 to 0.04 | −0.34 (0.71) | −0.74 to 0.07 | 0.903 | |
6 months | −0.09 (0.63) | −0.43 to 0.26 | −0.02 (0.82) | −0.50 to 0.45 | 0.823 | |
12 months | 0.08 (0.52) | −0.21 to 0.36 | −0.22 (0.90) | −0.74 to 0.30 | 0.277 | |
24 months | −0.03 (0.67) | −0.34 to 0.41 | −0.07 (1.10) | −0.70 to 0.56 | 0.762 | |
Ante(-)/Retroversion(−) | 6 weeks | −0.12 (1.95) | −1.19 to 0.96 | 0.63 (1.45) | −0.21 to 1.46 | 0.256 |
3 months | −0.48 (1.76) | −1.46 to 0.49 | 0.55 (3.14) | −1.26 to 2.36 | 0.280 | |
6 months | −1.15 (1.64) | −2.06 to −0.25 | −0.53 (2.62) | −2.04 to 0.98 | 0.445 | |
12 months | −0.66 (1.48) | −1.48 to 0.16 | −0.06 (3.04) | −1.81 to 1.70 | 0.499 | |
24 months | −1.29 (1.81) | −2.30 to −0.29 | −1.03 (2.81) | −2.65 to 0.59 | 0.766 | |
Valgus(+)/Varus(−) | 6 weeks | 0.02 (0.19) | −0.09 to 0.13 | 0.07 (0.33) | −0.12 to 0.26 | 0.652 |
3 months | 0.07 (0.51) | −0.21 to 0.36 | 0.04 (0.43) | −0.21 to 0.28 | 0.840 | |
6 months | 0.09 (0.47) | −0.18 to 0.35 | 0.03 (0.43) | −0.22 to 0.28 | 0.747 | |
12 months | 0.01 (0.41) | −0.22 to 0.24 | 0.04 (0.65) | −0.33 to 0.42 | 0.876 | |
24 months | 0.04 (0.39) | −0.18 to 0.25 | 0.02 (0.57) | −0.31 to 0.35 | 0.918 |
Follow-Up Interval | SL-PLUS MIA Group (n = 22) | SL-PLUS Group (n = 22) | p-Value |
---|---|---|---|
Preoperative | 50.1 (11.0) | 48.8 (14.8) | 0.754 |
3 months | 84.2 (11.7) | 81.5 (15.2) | 0.534 |
12 months | 93.6 (9.1) | 90.3 (12.8) | 0.354 |
24 months | 95.1 (6.7) | 89.0 (11.9) | 0.053 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reiner, T.; Sonntag, R.; Kretzer, J.P.; Clarius, M.; Jakubowitz, E.; Weiss, S.; Ewerbeck, V.; Merle, C.; Moradi, B.; Kinkel, S.; et al. The Migration Pattern of a Cementless Hydroxyapatite-Coated Titanium Stem under Immediate Full Weight-Bearing—A Randomized Controlled Trial Using Model-Based RSA. J. Clin. Med. 2020, 9, 2077. https://doi.org/10.3390/jcm9072077
Reiner T, Sonntag R, Kretzer JP, Clarius M, Jakubowitz E, Weiss S, Ewerbeck V, Merle C, Moradi B, Kinkel S, et al. The Migration Pattern of a Cementless Hydroxyapatite-Coated Titanium Stem under Immediate Full Weight-Bearing—A Randomized Controlled Trial Using Model-Based RSA. Journal of Clinical Medicine. 2020; 9(7):2077. https://doi.org/10.3390/jcm9072077
Chicago/Turabian StyleReiner, Tobias, Robert Sonntag, Jan Philippe Kretzer, Michael Clarius, Eike Jakubowitz, Stefan Weiss, Volker Ewerbeck, Christian Merle, Babak Moradi, Stefan Kinkel, and et al. 2020. "The Migration Pattern of a Cementless Hydroxyapatite-Coated Titanium Stem under Immediate Full Weight-Bearing—A Randomized Controlled Trial Using Model-Based RSA" Journal of Clinical Medicine 9, no. 7: 2077. https://doi.org/10.3390/jcm9072077
APA StyleReiner, T., Sonntag, R., Kretzer, J. P., Clarius, M., Jakubowitz, E., Weiss, S., Ewerbeck, V., Merle, C., Moradi, B., Kinkel, S., Gotterbarm, T., & Hagmann, S. (2020). The Migration Pattern of a Cementless Hydroxyapatite-Coated Titanium Stem under Immediate Full Weight-Bearing—A Randomized Controlled Trial Using Model-Based RSA. Journal of Clinical Medicine, 9(7), 2077. https://doi.org/10.3390/jcm9072077