Lipoprotein(a) Lowering—From Lipoprotein Apheresis to Antisense Oligonucleotide Approach
Abstract
:1. Introduction—An Overview
Cardiovascular (CV) Risk Associated with Lipoprotein (a) Levels
2. Statins
3. Nicotinic Acid
4. PCSK9 Inhibitors
5. Other Approaches to Lower Lp(a) Levels
6. Lipoprotein Apheresis (LA) to Reduce Lipoprotein(a)
7. Antisense Antinuocleotide
8. Future Perspectives and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Emerging Risk Factors Collaboration; Erqou, S.; Kaptoge, S.; Perry, P.L.; Di Angelantonio, E.; Thompson, A.; White, I.R.; Marcovina, S.M.; Collins, R.; Thompson, S.G.; et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 2009, 302, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamstrup, P.R.; Tybjaerg-Hansen, A.; Steffensen, R.; Nordestgaard, B.G. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA 2009, 301, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
- Saleheen, D.; Haycock, P.C.; Zhao, W.; Rasheed, A.; Taleb, A.; Imran, A.; Abbas, S.; Majeed, F.; Akhtar, S.; Qamar, N.; et al. Apolipoprotein(a) isoform size, lipoprotein(a) concentration, and coronary artery disease: A mendelian randomisation analysis. Lancet Diabetes Endocrinol. 2017, 5, 524–533. [Google Scholar] [CrossRef] [Green Version]
- Roeseler, E.; Julius, U.; Heigl, F.; Spitthoever, R.; Heutling, D.; Breitenberger, P.; Leebmann, J.; Lehmacher, W.; Kamstrup, P.R.; Nordestgaard, B.G.; et al. Lipoprotein Apheresis for Lipoprotein(a)-Associated Cardiovascular Disease: Prospective 5 Years of Follow-Up and Apolipoprotein(a) Characterization. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 2019–2027. [Google Scholar] [CrossRef] [Green Version]
- Frank, S.; Krasznai, K.; Durovic, S.; Lobentanz, E.M.; Dieplinger, H.; Wagner, E.; Zatloukal, K.; Cotten, M.; Utermann, G.; Kostner, G.M.; et al. High-level expression of various apolipoprotein(a) isoforms by “transferrinfection”: The role of kringle IV sequences in the extracellular association with low-density lipoprotein. Biochemistry 1994, 33, 12329–12339. [Google Scholar] [CrossRef] [Green Version]
- Trieu, V.N.; McConathy, W.J. A two-step model for lipoprotein(a) formation. J. Biol. Chem. 1995, 270, 15471–15474. [Google Scholar] [CrossRef] [Green Version]
- Von Zychlinski, A.; Williams, M.; McCormick, S.; Kleffmann, T. Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins. J. Proteomics 2014, 106, 181–190. [Google Scholar] [CrossRef]
- Vuorio, A.; Watts, G.F.; Schneider, W.J.; Tsimikas, S.; Kovanen, P.T. Familial hypercholesterolemia and elevated lipoprotein(a): Double heritable risk and new therapeutic opportunities. J. Intern. Med. 2020, 287, 2–18. [Google Scholar] [CrossRef]
- Alonso, R.; Andres, E.; Mata, N.; Fuentes-Jimenez, F.; Badimon, L.; Lopez-Miranda, J.; Padro, T.; Muniz, O.; Diaz-Diaz, J.L.; Mauri, M.; et al. Lipoprotein(a) levels in familial hypercholesterolemia: An important predictor of cardiovascular disease independent of the type of LDL receptor mutation. J. Am. Coll. Cardiol. 2014, 63, 1982–1989. [Google Scholar] [CrossRef] [Green Version]
- Berberich, A.J.; Hegele, R.A. The complex molecular genetics of familial hypercholesterolaemia. Nat. Rev. Cardiol. 2019, 16, 9–20. [Google Scholar] [CrossRef]
- Langsted, A.; Kamstrup, P.R.; Benn, M.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. High lipoprotein(a) as a possible cause of clinical familial hypercholesterolaemia: A prospective cohort study. Lancet Diabetes Endocrinol. 2016, 4, 577–587. [Google Scholar] [CrossRef]
- Kraft, H.G.; Lingenhel, A.; Raal, F.J.; Hohenegger, M.; Utermann, G. Lipoprotein(a) in homozygous familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 522–528. [Google Scholar] [CrossRef] [Green Version]
- Trinder, M.; DeCastro, M.L.; Azizi, H.; Cermakova, L.; Jackson, L.M.; Frohlich, J.; Mancini, G.B.J.; Francis, G.A.; Brunham, L.R. Ascertainment Bias in the Association Between Elevated Lipoprotein(a) and Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 2020, 75, 2682–2693. [Google Scholar] [CrossRef] [PubMed]
- Lackner, C.; Cohen, J.C.; Hobbs, H.H. Molecular definition of the extreme size polymorphism in apolipoprotein(a). Hum. Mol. Genet. 1993, 2, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Noureen, A.; Kronenberg, F.; Utermann, G. Structure, function, and genetics of lipoprotein (a). J. Lipid Res. 2016, 57, 1339–1359. [Google Scholar] [CrossRef] [Green Version]
- Gencer, B.; Kronenberg, F.; Stroes, E.S.; Mach, F. Lipoprotein(a): The revenant. Eur. Heart J. 2017, 38, 1553–1560. [Google Scholar] [CrossRef]
- Wilson, D.P.; Jacobson, T.A.; Jones, P.H.; Koschinsky, M.L.; McNeal, C.J.; Nordestgaard, B.G.; Orringer, C.E. Use of Lipoprotein(a) in clinical practice: A biomarker whose time has come. A scientific statement from the National Lipid Association. J. Clin. Lipidol. 2019, 13, 374–392. [Google Scholar] [CrossRef]
- Scharnagl, H.; Stojakovic, T.; Dieplinger, B.; Dieplinger, H.; Erhart, G.; Kostner, G.M.; Herrmann, M.; Marz, W.; Grammer, T.B. Comparison of lipoprotein (a) serum concentrations measured by six commercially available immunoassays. Atherosclerosis 2019, 289, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Roth, C.; Krychtiuk, K.A.; Gangl, C.; Schrutka, L.; Distelmaier, K.; Wojta, J.; Hengstenberg, C.; Berger, R.; Speidl, W.S. Lipoprotein(a) plasma levels are not associated with survival after acute coronary syndromes: An observational cohort study. PLoS ONE 2020, 15, e0227054. [Google Scholar] [CrossRef]
- Tsimikas, S.; Stroes, E.S.G. The dedicated “Lp(a) clinic”: A concept whose time has arrived? Atherosclerosis 2020, 300, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Ference, B.A.; Staley, J.R.; Freitag, D.F.; Mason, A.M.; Nielsen, S.F.; Willeit, P.; Young, R.; Surendran, P.; Karthikeyan, S.; et al. Association of LPA Variants With Risk of Coronary Disease and the Implications for Lipoprotein(a)-Lowering Therapies: A Mendelian Randomization Analysis. JAMA Cardiol. 2018, 3, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Lamina, C.; Kronenberg, F.; Lp, G.C. Estimation of the Required Lipoprotein(a)-Lowering Therapeutic Effect Size for Reduction in Coronary Heart Disease Outcomes: A Mendelian Randomization Analysis. JAMA Cardiol. 2019, 4, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Kronenberg, F. Therapeutic lowering of lipoprotein(a): How much is enough? Atherosclerosis 2019, 288, 163–165. [Google Scholar] [CrossRef] [Green Version]
- Julius, U.; Tselmin, S.; Schatz, U.; Fischer, S.; Birkenfeld, A.L.; Bornstein, S.R. Actual situation of lipoprotein apheresis in patients with elevated lipoprotein(a) levels. Atheroscler. Suppl. 2019, 40, 1–7. [Google Scholar] [CrossRef]
- Madsen, C.M.; Kamstrup, P.R.; Langsted, A.; Varbo, A.; Nordestgaard, B.G. Lipoprotein(a)-Lowering by 50 mg/dL (105 nmol/L) May Be Needed to Reduce Cardiovascular Disease 20% in Secondary Prevention: A Population-Based Study. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 255–266. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Chapman, M.J.; Ray, K.; Boren, J.; Andreotti, F.; Watts, G.F.; Ginsberg, H.; Amarenco, P.; Catapano, A.; Descamps, O.S.; et al. Lipoprotein(a) as a cardiovascular risk factor: Current status. Eur. Heart J. 2010, 31, 2844–2853. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Guan, W.; Cao, J.; Steffen, B.T.; Post, W.S.; Stein, J.H.; Tattersall, M.C.; Kaufman, J.D.; McConnell, J.P.; Hoefner, D.M.; Warnick, R.; et al. Race is a key variable in assigning lipoprotein(a) cutoff values for coronary heart disease risk assessment: The Multi-Ethnic Study of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 996–1001. [Google Scholar] [CrossRef] [Green Version]
- Boffa, M.B.; Koschinsky, M.L. Lipoprotein (a): Truly a direct prothrombotic factor in cardiovascular disease? J. Lipid Res. 2016, 57, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.S.; Goldstein, J.L. Plasma lipoproteins: Teaching old dogmas new tricks. Nature 1987, 330, 113–114. [Google Scholar] [CrossRef] [PubMed]
- Ghiselli, G.; Gaddi, A.; Barozzi, G.; Ciarrocchi, A.; Descovich, G. Plasma lipoprotein(a) concentration in familial hypercholesterolemic patients without coronary artery disease. Metabolism 1992, 41, 833–838. [Google Scholar] [CrossRef]
- Dahlen, G.H.; Weinehall, L.; Stenlund, H.; Jansson, J.H.; Hallmans, G.; Huhtasaari, F.; Wall, S. Lipoprotein(a) and cholesterol levels act synergistically and apolipoprotein A-I is protective for the incidence of primary acute myocardial infarction in middle-aged males. An incident case-control study from Sweden. J. Intern. Med. 1998, 244, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Langsted, A.; Kamstrup, P.R.; Nordestgaard, B.G. High lipoprotein(a) and high risk of mortality. Eur. Heart J. 2019, 40, 2760–2770. [Google Scholar] [CrossRef]
- Langsted, A.; Kamstrup, P.R.; Nordestgaard, B.G. Response to ‘Lipoprotein(a): It is not the cholesterol content: It is the apolipoprotein(a)!’. Eur. Heart J. 2019, 40, 3577. [Google Scholar] [CrossRef]
- Chan, D.C.; Pang, J.; Hooper, A.J.; Bell, D.A.; Burnett, J.R.; Watts, G.F. Effect of Lipoprotein(a) on the Diagnosis of Familial Hypercholesterolemia: Does It Make a Difference in the Clinic? Clin. Chem. 2019, 65, 1258–1266. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Langsted, A. Lipoprotein (a) as a cause of cardiovascular disease: Insights from epidemiology, genetics, and biology. J. Lipid Res. 2016, 57, 1953–1975. [Google Scholar] [CrossRef] [Green Version]
- Ellis, K.L.; Pang, J.; Chieng, D.; Bell, D.A.; Burnett, J.R.; Schultz, C.J.; Hillis, G.S.; Watts, G.F. Elevated lipoprotein(a) and familial hypercholesterolemia in the coronary care unit: Between Scylla and Charybdis. Clin. Cardiol. 2018, 41, 378–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavanello, C.; Pirazzi, C.; Bjorkman, K.; Sandstedt, J.; Tarlarini, C.; Mosca, L.; Romeo, S.; Calabresi, L.; Mancina, R.M. Individuals with familial hypercholesterolemia and cardiovascular events have higher circulating Lp(a) levels. J. Clin. Lipidol. 2019, 13, 778–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, S.C.; Gill, D.; Mason, A.M.; Jiang, T.; Back, M.; Butterworth, A.S.; Burgess, S. Lipoprotein(a) in Alzheimer, Atherosclerotic, Cerebrovascular, Thrombotic, and Valvular Disease: Mendelian Randomization Investigation. Circulation 2020, 141, 1826–1828. [Google Scholar] [CrossRef] [PubMed]
- Thanassoulis, G.; Campbell, C.Y.; Owens, D.S.; Smith, J.G.; Smith, A.V.; Peloso, G.M.; Kerr, K.F.; Pechlivanis, S.; Budoff, M.J.; Harris, T.B.; et al. Genetic associations with valvular calcification and aortic stenosis. N. Engl. J. Med. 2013, 368, 503–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferretti, G.; Bacchetti, T.; Johnston, T.P.; Banach, M.; Pirro, M.; Sahebkar, A. Lipoprotein(a): A missing culprit in the management of athero-thrombosis? J. Cell. Physiol. 2018, 233, 2966–2981. [Google Scholar] [CrossRef] [PubMed]
- Kamstrup, P.R.; Nordestgaard, B.G. Elevated Lipoprotein(a) Levels, LPA Risk Genotypes, and Increased Risk of Heart Failure in the General Population. JACC Heart Fail. 2016, 4, 78–87. [Google Scholar] [CrossRef]
- Golledge, J.; Rowbotham, S.; Velu, R.; Quigley, F.; Jenkins, J.; Bourke, M.; Bourke, B.; Thanigaimani, S.; Chan, D.C.; Watts, G.F. Association of Serum Lipoprotein (a) With the Requirement for a Peripheral Artery Operation and the Incidence of Major Adverse Cardiovascular Events in People With Peripheral Artery Disease. J. Am. Heart Assoc. 2020, 9, e015355. [Google Scholar] [CrossRef]
- Youssef, A.; Clark, J.R.; Koschinsky, M.L.; Boffa, M.B. Lipoprotein(a): Expanding Our Knowledge of Aortic Valve Narrowing. Trends Cardiovasc. Med. 2020. [Google Scholar] [CrossRef]
- Guddeti, R.R.; Patil, S.; Ahmed, A.; Sharma, A.; Aboeata, A.; Lavie, C.J.; Alla, V.M. Lipoprotein(a) and calcific aortic valve stenosis: A systematic review. Prog. Cardiovasc. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Yahya, R.; Berk, K.; Verhoeven, A.; Bos, S.; van der Zee, L.; Touw, J.; Erhart, G.; Kronenberg, F.; Timman, R.; Sijbrands, E.; et al. Statin treatment increases lipoprotein(a) levels in subjects with low molecular weight apolipoprotein(a) phenotype. Atherosclerosis 2019, 289, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Tsimikas, S.; Gordts, P.; Nora, C.; Yeang, C.; Witztum, J.L. Statin therapy increases lipoprotein(a) levels. Eur. Heart J. 2019. [Google Scholar] [CrossRef]
- Pirillo, A.; Catapano, A.L. Statins increase Lp(a) plasma level: Is this clinically relevant? Eur. Heart J. 2019. [Google Scholar] [CrossRef]
- Chennamsetty, I.; Claudel, T.; Kostner, K.M.; Baghdasaryan, A.; Kratky, D.; Levak-Frank, S.; Frank, S.; Gonzalez, F.J.; Trauner, M.; Kostner, G.M. Farnesoid X receptor represses hepatic human APOA gene expression. J. Clin. Investig. 2011, 121, 3724–3734. [Google Scholar] [CrossRef] [Green Version]
- Banach, M.; Penson, P.E. Statins and Lp(a): Do not make perfect the enemy of excellent. Eur. Heart J. 2020, 41, 190–191. [Google Scholar] [CrossRef] [PubMed]
- Tsimikas, S.; Gordts, P.; Nora, C.; Yeang, C.; Witztum, J.L. Statins and increases in Lp(a): An inconvenient truth that needs attention. Eur. Heart J. 2020, 41, 192–193. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Chan, D.C.; Ooi, E.M.M.; Marcovina, S.M.; Barrett, P.H.R.; Watts, G.F. Apolipoprotein(a) Kinetics in Statin-Treated Patients With Elevated Plasma Lipoprotein(a) Concentration. J. Clin. Endocrinol. Metab. 2019, 104, 6247–6255. [Google Scholar] [CrossRef]
- Nandakumar, R.; Matveyenko, A.; Thomas, T.; Pavlyha, M.; Ngai, C.; Holleran, S.; Ramakrishnan, R.; Ginsberg, H.N.; Karmally, W.; Marcovina, S.M.; et al. Effects of mipomersen, an apolipoprotein B100 antisense, on lipoprotein (a) metabolism in healthy subjects. J. Lipid Res. 2018, 59, 2397–2402. [Google Scholar] [CrossRef] [Green Version]
- McCormick, S.P.A.; Schneider, W.J. Lipoprotein(a) catabolism: A case of multiple receptors. Pathology 2019, 51, 155–164. [Google Scholar] [CrossRef]
- Willeit, P.; Ridker, P.M.; Nestel, P.J.; Simes, J.; Tonkin, A.M.; Pedersen, T.R.; Schwartz, G.G.; Olsson, A.G.; Colhoun, H.M.; Kronenberg, F.; et al. Baseline and on-statin treatment lipoprotein(a) levels for prediction of cardiovascular events: Individual patient-data meta-analysis of statin outcome trials. Lancet 2018, 392, 1311–1320. [Google Scholar] [CrossRef] [Green Version]
- Chennamsetty, I.; Kostner, K.M.; Claudel, T.; Vinod, M.; Frank, S.; Weiss, T.S.; Trauner, M.; Kostner, G.M. Nicotinic acid inhibits hepatic APOA gene expression: Studies in humans and in transgenic mice. J. Lipid Res. 2012, 53, 2405–2412. [Google Scholar] [CrossRef] [Green Version]
- Carlson, L.A.; Hamsten, A.; Asplund, A. Pronounced lowering of serum levels of lipoprotein Lp(a) in hyperlipidaemic subjects treated with nicotinic acid. J. Intern. Med. 1989, 226, 271–276. [Google Scholar] [CrossRef]
- Noma, A.; Maeda, S.; Okuno, M.; Abe, A.; Muto, Y. Reduction of serum lipoprotein(a) levels in hyperlipidaemic patients with alpha-tocopheryl nicotinate. Atherosclerosis 1990, 84, 213–217. [Google Scholar] [CrossRef]
- Sano, R.; Fujino, A.; Saito, T.; Takenaka, K.; Yahata, Y.; Ogyu, A.; Toyota, T. Reduction by niceritrol treatment of serum lipoprotein(a) in normolipidemic patients with coronary artery disease. Tohoku J. Exp. Med. 1993, 169, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Seed, M.; O’Connor, B.; Perombelon, N.; O’Donnell, M.; Reaveley, D.; Knight, B.L. The effect of nicotinic acid and acipimox on lipoprotein(a) concentration and turnover. Atherosclerosis 1993, 101, 61–68. [Google Scholar] [CrossRef]
- Parish, S.; Hopewell, J.C.; Hill, M.R.; Marcovina, S.; Valdes-Marquez, E.; Haynes, R.; Offer, A.; Pedersen, T.R.; Baigent, C.; Collins, R.; et al. Impact of Apolipoprotein(a) Isoform Size on Lipoprotein(a) Lowering in the HPS2-THRIVE Study. Circ. Genom. Precis. Med. 2018, 11, e001696. [Google Scholar] [CrossRef] [Green Version]
- Cenarro, A.; Puzo, J.; Ferrando, J.; Mateo-Gallego, R.; Bea, A.M.; Calmarza, P.; Jarauta, E.; Civeira, F. Effect of Nicotinic acid/Laropiprant in the lipoprotein(a) concentration with regard to baseline lipoprotein(a) concentration and LPA genotype. Metabolism 2014, 63, 365–371. [Google Scholar] [CrossRef]
- Warden, B.A.; Minnier, J.; Watts, G.F.; Fazio, S.; Shapiro, M.D. Impact of PCSK9 inhibitors on plasma lipoprotein(a) concentrations with or without a background of niacin therapy. J. Clin. Lipidol. 2019, 13, 580–585. [Google Scholar] [CrossRef]
- Khera, A.V.; Everett, B.M.; Caulfield, M.P.; Hantash, F.M.; Wohlgemuth, J.; Ridker, P.M.; Mora, S. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: An analysis from the JUPITER Trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin). Circulation 2014, 129, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zenti, M.G.; Altomari, A.; Lupo, M.G.; Botta, M.; Bonora, E.; Corsini, A.; Ruscica, M.; Ferri, N. From lipoprotein apheresis to proprotein convertase subtilisin/kexin type 9 inhibitors: Impact on low-density lipoprotein cholesterol and C-reactive protein levels in cardiovascular disease patients. Eur. J. Prev. Cardiol. 2018, 25, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Macchi, C.; Banach, M.; Corsini, A.; Sirtori, C.R.; Ferri, N.; Ruscica, M. Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels - experimental and clinical approaches with lipid-lowering agents. Eur. J. Prev. Cardiol. 2019, 26, 930–949. [Google Scholar] [CrossRef] [Green Version]
- Liberopoulos, E. Lipoprotein(a) reduction with proprotein convertase subtilisin/kexin type 9 inhibitors: An unsolved mystery. Eur. J. Prev. Cardiol. 2020. [Google Scholar] [CrossRef]
- Croyal, M.; Blanchard, V.; Ouguerram, K.; Chetiveaux, M.; Cabioch, L.; Moyon, T.; Billon-Crossouard, S.; Aguesse, A.; Bernardeau, K.; Le May, C.; et al. VLDL (Very-Low-Density Lipoprotein)-Apo E (Apolipoprotein E) May Influence Lp(a) (Lipoprotein [a]) Synthesis or Assembly. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 819–829. [Google Scholar] [CrossRef]
- Blanchard, V.; Ramin-Mangata, S.; Billon-Crossouard, S.; Aguesse, A.; Durand, M.; Chemello, K.; Nativel, B.; Flet, L.; Chetiveaux, M.; Jacobi, D.; et al. Kinetics of plasma apolipoprotein E isoforms by LC-MS/MS: A pilot study. J. Lipid Res. 2018, 59, 892–900. [Google Scholar] [CrossRef] [Green Version]
- Raal, F.J.; Giugliano, R.P.; Sabatine, M.S.; Koren, M.J.; Langslet, G.; Bays, H.; Blom, D.; Eriksson, M.; Dent, R.; Wasserman, S.M.; et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): A pooled analysis of more than 1300 patients in 4 phase II trials. J. Am. Coll. Cardiol. 2014, 63, 1278–1288. [Google Scholar] [CrossRef] [Green Version]
- Watts, G.F.; Chan, D.C.; Somaratne, R.; Wasserman, S.M.; Scott, R.; Marcovina, S.M.; Barrett, P.H.R. Controlled study of the effect of proprotein convertase subtilisin-kexin type 9 inhibition with evolocumab on lipoprotein(a) particle kinetics. Eur. Heart J. 2018, 39, 2577–2585. [Google Scholar] [CrossRef]
- Reyes-Soffer, G.; Pavlyha, M.; Ngai, C.; Thomas, T.; Holleran, S.; Ramakrishnan, R.; Karmally, W.; Nandakumar, R.; Fontanez, N.; Obunike, J.; et al. Effects of PCSK9 Inhibition With Alirocumab on Lipoprotein Metabolism in Healthy Humans. Circulation 2017, 135, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Watts, G.F.; Gidding, S.S.; Mata, P.; Pang, J.; Sullivan, D.R.; Yamashita, S.; Raal, F.J.; Santos, R.D.; Ray, K.K. Familial hypercholesterolaemia: Evolving knowledge for designing adaptive models of care. Nat. Rev. Cardiol. 2020. [Google Scholar] [CrossRef]
- Mefford, M.T.; Marcovina, S.M.; Bittner, V.; Cushman, M.; Brown, T.M.; Farkouh, M.E.; Tsimikas, S.; Monda, K.L.; Lopez, J.A.G.; Muntner, P.; et al. PCSK9 loss-of-function variants and Lp(a) phenotypes among black US adults. J. Lipid Res. 2019, 60, 1946–1952. [Google Scholar] [CrossRef]
- Villard, E.F.; Thedrez, A.; Blankenstein, J.; Croyal, M.; Tran, T.T.; Poirier, B.; Le Bail, J.C.; Illiano, S.; Nobecourt, E.; Krempf, M.; et al. PCSK9 Modulates the Secretion But Not the Cellular Uptake of Lipoprotein(a) Ex Vivo: An Effect Blunted by Alirocumab. JACC Basic Transl. Sci. 2016, 1, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Tavori, H.; Christian, D.; Minnier, J.; Plubell, D.; Shapiro, M.D.; Yeang, C.; Giunzioni, I.; Croyal, M.; Duell, P.B.; Lambert, G.; et al. PCSK9 Association With Lipoprotein(a). Circ. Res. 2016, 119, 29–35. [Google Scholar] [CrossRef]
- Romagnuolo, R.; Scipione, C.A.; Boffa, M.B.; Marcovina, S.M.; Seidah, N.G.; Koschinsky, M.L. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J. Biol. Chem. 2015, 290, 11649–11662. [Google Scholar] [CrossRef] [Green Version]
- Viney, N.J.; Yeang, C.; Yang, X.; Xia, S.; Witztum, J.L.; Tsimikas, S. Relationship between “LDL-C”, estimated true LDL-C, apolipoprotein B-100, and PCSK9 levels following lipoprotein(a) lowering with an antisense oligonucleotide. J. Clin. Lipidol. 2018, 12, 702–710. [Google Scholar] [CrossRef]
- Toth, P.P. PCSK9 and Lipoprotein(a): The Plot Thickens. Circ. Res. 2016, 119, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Ruscica, M.; Simonelli, S.; Botta, M.; Ossoli, A.; Lupo, M.G.; Magni, P.; Corsini, A.; Arca, M.; Pisciotta, L.; Veglia, F.; et al. Plasma PCSK9 levels and lipoprotein distribution are preserved in carriers of genetic HDL disorders. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 991–997. [Google Scholar] [CrossRef]
- Bittner, V.A.; Szarek, M.; Aylward, P.E.; Bhatt, D.L.; Diaz, R.; Edelberg, J.M.; Fras, Z.; Goodman, S.G.; Halvorsen, S.; Hanotin, C.; et al. Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2020, 75, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Mora, S. Lp(a)’s Odyssey: Should We Measure Lp(a) Post-ACS and What Should We Do With the Results? J. Am. Coll. Cardiol. 2020, 75, 145–147. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, M.L.; Fazio, S.; Giugliano, R.P.; Stroes, E.S.G.; Kanevsky, E.; Gouni-Berthold, I.; Im, K.; Lira Pineda, A.; Wasserman, S.M.; Ceska, R.; et al. Lipoprotein(a), PCSK9 Inhibition, and Cardiovascular Risk. Circulation 2019, 139, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Vallejo-Vaz, A.J.; Ginsberg, H.N.; Davidson, M.H.; Louie, M.J.; Bujas-Bobanovic, M.; Minini, P.; Eckel, R.H.; Cannon, C.P. Lipoprotein(a) reductions from PCSK9 inhibition and major adverse cardiovascular events: Pooled analysis of alirocumab phase 3 trials. Atherosclerosis 2019, 288, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Bergmark, B.A.; O’Donoghue, M.L.; Murphy, S.A.; Kuder, J.F.; Ezhov, M.V.; Ceska, R.; Gouni-Berthold, I.; Jensen, H.K.; Tokgozoglu, S.L.; Mach, F.; et al. An Exploratory Analysis of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition and Aortic Stenosis in the FOURIER Trial. JAMA Cardiol. 2020. [Google Scholar] [CrossRef]
- Langsted, A.; Nordestgaard, B.G.; Benn, M.; Tybjaerg-Hansen, A.; Kamstrup, P.R. PCSK9 R46L Loss-of-Function Mutation Reduces Lipoprotein(a), LDL Cholesterol, and Risk of Aortic Valve Stenosis. J. Clin. Endocrinol. Metab. 2016, 101, 3281–3287. [Google Scholar] [CrossRef] [PubMed]
- Stiekema, L.C.A.; Stroes, E.S.G.; Verweij, S.L.; Kassahun, H.; Chen, L.; Wasserman, S.M.; Sabatine, M.S.; Mani, V.; Fayad, Z.A. Persistent arterial wall inflammation in patients with elevated lipoprotein(a) despite strong low-density lipoprotein cholesterol reduction by proprotein convertase subtilisin/kexin type 9 antibody treatment. Eur. Heart J. 2019, 40, 2775–2781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, K.K.; Stoekenbroek, R.M.; Kallend, D.; Leiter, L.A.; Landmesser, U.; Wright, R.S.; Wijngaard, P.; Kastelein, J.J.P. Effect of an siRNA Therapeutic Targeting PCSK9 on Atherogenic Lipoproteins. Circulation 2018, 138, 1304–1316. [Google Scholar] [CrossRef]
- Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.J.; et al. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Raal, F.J.; Kallend, D.; Ray, K.K.; Turner, T.; Koenig, W.; Wright, R.S.; Wijngaard, P.L.J.; Curcio, D.; Jaros, M.J.; Leiter, L.A.; et al. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Tenenbaum, A.; Fisman, E.Z. Balanced pan-PPAR activator bezafibrate in combination with statin: Comprehensive lipids control and diabetes prevention? Cardiovasc. Diabetol. 2012, 11, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggi, F.M.; Biasi, G.M.; Catapano, A.L. Reduction of Lp(a) plasma levels by bezafibrate. Atherosclerosis 1993, 100, 127–128. [Google Scholar] [CrossRef]
- Fereshetian, A.G.; Davidson, M.; Haber, H.; Black, D.M. Gemfibrozil treatment in patients with elevated lipoprotein a: A pilot study. Clin. Drug Investig. 1998, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Eckardstein, A.V. Lipoprotein(a). Eur. Heart J. 2017, 38, 1530–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahebkar, A.; Simental-Mendia, L.E.; Watts, G.F.; Serban, M.C.; Banach, M. Lipid and Blood Pressure Meta-analysis Collaboration, G. Comparison of the effects of fibrates versus statins on plasma lipoprotein(a) concentrations: A systematic review and meta-analysis of head-to-head randomized controlled trials. BMC Med. 2017, 15, 22. [Google Scholar] [CrossRef] [Green Version]
- Rath, M.; Pauling, L. Hypothesis: Lipoprotein(a) is a surrogate for ascorbate. Proc. Natl. Acad. Sci. USA 1990, 87, 6204–6207. [Google Scholar] [CrossRef] [Green Version]
- Jenner, J.L.; Jacques, P.F.; Seman, L.J.; Schaefer, E.J. Ascorbic acid supplementation does not lower plasma lipoprotein(a) concentrations. Atherosclerosis 2000, 151, 541–544. [Google Scholar] [CrossRef]
- Farish, E.; Rolton, H.A.; Barnes, J.F.; Hart, D.M. Lipoprotein (a) concentrations in postmenopausal women taking norethisterone. BMJ 1991, 303, 694. [Google Scholar] [CrossRef] [Green Version]
- Farish, E.; Rolton, H.A.; Barnes, J.F.; Fletcher, C.D.; Walsh, D.J.; Spowart, K.J.; Hart, D.M. Lipoprotein(a) and postmenopausal oestrogen. Acta Endocrinol. (Copenh) 1993, 129, 225–228. [Google Scholar] [CrossRef]
- Espeland, M.A.; Marcovina, S.M.; Miller, V.; Wood, P.D.; Wasilauskas, C.; Sherwin, R.; Schrott, H.; Bush, T.L. Effect of postmenopausal hormone therapy on lipoprotein(a) concentration. PEPI Investigators. Postmenopausal Estrogen/Progestin Interventions. Circulation 1998, 97, 979–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulley, S.; Grady, D.; Bush, T.; Furberg, C.; Herrington, D.; Riggs, B.; Vittinghoff, E. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 1998, 280, 605–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shewmon, D.A.; Stock, J.L.; Abusamra, L.C.; Kristan, M.A.; Baker, S.; Heiniluoma, K.M. Tamoxifen decreases lipoprotein (a) in patients with breast cancer. Metabolism 1994, 43, 531–532. [Google Scholar] [CrossRef]
- Albers, J.J.; Taggart, H.M.; Applebaum-Bowden, D.; Haffner, S.; Chesnut, C.H., III; Hazzard, W.R. Reduction of lecithin-cholesterol acyltransferase, apolipoprotein D and the Lp(a) lipoprotein with the anabolic steroid stanozolol. Biochim. Biophys. Acta 1984, 795, 293–296. [Google Scholar] [CrossRef]
- Crook, D.; Sidhu, M.; Seed, M.; O’Donnell, M.; Stevenson, J.C. Lipoprotein Lp(a) levels are reduced by danazol, an anabolic steroid. Atherosclerosis 1992, 92, 41–47. [Google Scholar] [CrossRef]
- Thompson, G.; Parhofer, K.G. Current Role of Lipoprotein Apheresis. Curr. Atheroscler. Rep. 2019, 21, 26. [Google Scholar] [CrossRef] [Green Version]
- Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; et al. Homozygous familial hypercholesterolaemia: New insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 2014, 35, 2146–2157. [Google Scholar] [CrossRef]
- Wang, A.; Richhariya, A.; Gandra, S.R.; Calimlim, B.; Kim, L.; Quek, R.G.; Nordyke, R.J.; Toth, P.P. Systematic Review of Low-Density Lipoprotein Cholesterol Apheresis for the Treatment of Familial Hypercholesterolemia. J. Am. Heart Assoc. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Leebmann, J.; Roeseler, E.; Julius, U.; Heigl, F.; Spitthoever, R.; Heutling, D.; Breitenberger, P.; Maerz, W.; Lehmacher, W.; Heibges, A.; et al. Lipoprotein apheresis in patients with maximally tolerated lipid-lowering therapy, lipoprotein(a)-hyperlipoproteinemia, and progressive cardiovascular disease: Prospective observational multicenter study. Circulation 2013, 128, 2567–2576. [Google Scholar] [CrossRef] [Green Version]
- Rosada, A.; Kassner, U.; Vogt, A.; Willhauck, M.; Parhofer, K.; Steinhagen-Thiessen, E. Does regular lipid apheresis in patients with isolated elevated lipoprotein(a) levels reduce the incidence of cardiovascular events? Artif. Organs 2014, 38, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Bigazzi, F.; Sbrana, F.; Berretti, D.; Maria Grazia, Z.; Zambon, S.; Fabris, A.; Fonda, M.; Vigna, G.B.; D’Alessandri, G.; Passalacqua, S.; et al. Reduced incidence of cardiovascular events in hyper-Lp(a) patients on lipoprotein apheresis. The G.I.L.A. (Gruppo Interdisciplinare Aferesi Lipoproteica) pilot study. Transfus. Apher. Sci. 2018, 57, 661–664. [Google Scholar] [CrossRef] [PubMed]
- Von Dryander, M.; Fischer, S.; Passauer, J.; Muller, G.; Bornstein, S.R.; Julius, U. Differences in the atherogenic risk of patients treated by lipoprotein apheresis according to their lipid pattern. Atheroscler. Suppl. 2013, 14, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Emmrich, U.; Hohenstein, B.; Julius, U. Actual situation of lipoprotein apheresis in Saxony in 2013. Atheroscler. Suppl. 2015, 18, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Heigl, F.; Hettich, R.; Lotz, N.; Reeg, H.; Pflederer, T.; Osterkorn, D.; Osterkorn, K.; Klingel, R. Efficacy, safety, and tolerability of long-term lipoprotein apheresis in patients with LDL- or Lp(a) hyperlipoproteinemia: Findings gathered from more than 36,000 treatments at one center in Germany. Atheroscler. Suppl. 2015, 18, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Schatz, U.; Tselmin, S.; Muller, G.; Julius, U.; Hohenstein, B.; Fischer, S.; Bornstein, S.R. Most significant reduction of cardiovascular events in patients undergoing lipoproteinapheresis due to raised Lp(a) levels—A multicenter observational study. Atheroscler. Suppl. 2017, 30, 246–252. [Google Scholar] [CrossRef]
- Daida, H.; Yamaguchi, H. Clinical application and effectiveness of low-density lipoprotein apheresis in the treatment of coronary artery disease. Ther. Apher. 1997, 1, 253–254. [Google Scholar] [CrossRef]
- Cegla, J.; Neely, R.D.G.; France, M.; Ferns, G.; Byrne, C.D.; Halcox, J.; Datta, D.; Capps, N.; Shoulders, C.; Qureshi, N.; et al. HEART UK consensus statement on Lipoprotein(a): A call to action. Atherosclerosis 2019, 291, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, A.; Connelly-Smith, L.; Aqui, N.; Balogun, R.A.; Klingel, R.; Meyer, E.; Pham, H.P.; Schneiderman, J.; Witt, V.; Wu, Y.; et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice—Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue. J. Clin. Apher. 2019, 34, 171–354. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.D.; Gidding, S.S.; Hegele, R.A.; Cuchel, M.A.; Barter, P.J.; Watts, G.F.; Baum, S.J.; Catapano, A.L.; Chapman, M.J.; Defesche, J.C.; et al. Defining severe familial hypercholesterolaemia and the implications for clinical management: A consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Lancet Diabetes Endocrinol. 2016, 4, 850–861. [Google Scholar] [CrossRef]
- Raina, R.; Young, C.; Krishnappa, V.; Chanchlani, R. Role of Lipoprotein Apheresis in Cardiovascular Disease Risk Reduction. Blood Purif. 2019, 47, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Stefanutti, C.; Julius, U.; Watts, G.F.; Harada-Shiba, M.; Cossu, M.; Schettler, V.J.; De Silvestro, G.; Soran, H.; Van Lennep, J.R.; Pisciotta, L.; et al. Toward an international consensus-Integrating lipoprotein apheresis and new lipid-lowering drugs. J. Clin. Lipidol. 2017, 11, 858–871. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R. Lipoprotein apheresis. Curr. Opin. Lipidol. 2010, 21, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Julius, U. Lipoprotein apheresis in the management of severe hypercholesterolemia and of elevation of lipoprotein(a): Current perspectives and patient selection. Med. Devices (Auckl) 2016, 9, 349–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriarty, P.M. Low-density liporpotein apheresis. In Clinical Lipidology: A Companion to Braunwald’s Heart Disease, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2009; p. 363. [Google Scholar]
- Julius, U.; Fischer, S.; Schatz, U.; Hohenstein, B.; Bornstein, S.R. Lipoprotein apheresis: An update. Clin. Lipidol. 2013, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.R. LDL apheresis. Atherosclerosis 2003, 167, 1–13. [Google Scholar] [CrossRef]
- Stefanutti, C.; Thompson, G.R. Lipoprotein apheresis in the management of familial hypercholesterolaemia: Historical perspective and recent advances. Curr. Atheroscler. Rep. 2015, 17, 465. [Google Scholar] [CrossRef]
- Waldmann, E.; Parhofer, K.G. Lipoprotein apheresis to treat elevated lipoprotein (a). J. Lipid Res. 2016, 57, 1751–1757. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.R.; Maher, V.M.; Matthews, S.; Kitano, Y.; Neuwirth, C.; Shortt, M.B.; Davies, G.; Rees, A.; Mir, A.; Prescott, R.J.; et al. Familial Hypercholesterolaemia Regression Study: A randomised trial of low-density-lipoprotein apheresis. Lancet 1995, 345, 811–816. [Google Scholar] [CrossRef]
- Gross, E.; Hohenstein, B.; Julius, U. Effects of Lipoprotein apheresis on the Lipoprotein(a) levels in the long run. Atheroscler. Suppl. 2015, 18, 226–232. [Google Scholar] [CrossRef]
- Kassner, U.; Vogt, A.; Rosada, A.; Barz, F.; Giannakidou-Jordan, E.; Berthold, H.K.; Steinhagen-Thiessen, E. Designing a study to evaluate the effect of apheresis in patients with elevated lipoprotein(a). Atheroscler. Suppl. 2009, 10, 85–88. [Google Scholar] [CrossRef]
- Moriarty, P.M.; Parhofer, K.G.; Babirak, S.P.; de Goma, E.; Duell, P.B.; Hohenstein, B.; Ramlow, W.; Simha, V.; Steinhagen-Thiessen, E.; Thompson, P.D.; et al. Alirocumab in patients with heterozygous familial hypercholesterolemia undergoing lipoprotein apheresis: Rationale and design of the ODYSSEY ESCAPE trial. J. Clin. Lipidol. 2016, 10, 627–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriarty, P.M.; Parhofer, K.G.; Babirak, S.P.; Cornier, M.A.; Duell, P.B.; Hohenstein, B.; Leebmann, J.; Ramlow, W.; Schettler, V.; Simha, V.; et al. Alirocumab in patients with heterozygous familial hypercholesterolaemia undergoing lipoprotein apheresis: The ODYSSEY ESCAPE trial. Eur. Heart J. 2016, 37, 3588–3595. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.D.; Stein, E.A.; Hovingh, G.K.; Blom, D.J.; Soran, H.; Watts, G.F.; Lopez, J.A.G.; Bray, S.; Kurtz, C.E.; Hamer, A.W.; et al. Long-Term Evolocumab in Patients With Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 2020, 75, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Baum, S.J.; Sampietro, T.; Datta, D.; Moriarty, P.M.; Knusel, B.; Schneider, J.; Somaratne, R.; Kurtz, C.; Hohenstein, B. Effect of evolocumab on lipoprotein apheresis requirement and lipid levels: Results of the randomized, controlled, open-label DE LAVAL study. J. Clin. Lipidol. 2019, 13, 901–909. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.; Goicoechea, M.; Hernandez, A.; Rodriguez Ferrero, M.L.; Garcia, A.; Macias, N.; Anaya, F. Efficacy of Evolocumab vs low-density lipoprotein cholesterol apheresis in patients with familial hypercholesterolemia and high cardiovascular risk (EVOLAFER01). J. Clin. Apher. 2020, 35, 9–17. [Google Scholar] [CrossRef]
- Tselmin, S.; Julius, U.; Weinert, N.; Bornstein, S.R.; Schatz, U. Experience with proprotein convertase subtilisin/kexine type 9 inhibitors (PCSK9i) in patients undergoing lipoprotein apheresis. Atheroscler. Suppl. 2019, 40, 38–43. [Google Scholar] [CrossRef]
- Empen, K.; Otto, C.; Brodl, U.C.; Parhofer, K.G. The effects of three different LDL-apheresis methods on the plasma concentrations of E-selectin, VCAM-1, and ICAM-1. J. Clin. Apher. 2002, 17, 38–43. [Google Scholar] [CrossRef]
- Kobayashi, S.; Moriya, H.; Maesato, K.; Okamoto, K.; Ohtake, T. LDL-apheresis improves peripheral arterial occlusive disease with an implication for anti-inflammatory effects. J. Clin. Apher. 2005, 20, 239–243. [Google Scholar] [CrossRef]
- Moriarty, P.M.; Gibson, C.A. Effect of low-density lipoprotein apheresis on lipoprotein-associated phospholipase A2. Am. J. Cardiol. 2005, 95, 1246–1247. [Google Scholar] [CrossRef]
- Wang, Y.; Blessing, F.; Walli, A.K.; Uberfuhr, P.; Fraunberger, P.; Seidel, D. Effects of heparin-mediated extracorporeal low-density lipoprotein precipitation beyond lowering proatherogenic lipoproteins--reduction of circulating proinflammatory and procoagulatory markers. Atherosclerosis 2004, 175, 145–150. [Google Scholar] [CrossRef]
- Aengevaeren, W.R.; Kroon, A.A.; Stalenhoef, A.F.; Uijen, G.J.; van der Werf, T. Low density lipoprotein apheresis improves regional myocardial perfusion in patients with hypercholesterolemia and extensive coronary artery disease. LDL-Apheresis Atherosclerosis Regression Study (LAARS). J. Am. Coll. Cardiol. 1996, 28, 1696–1704. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.Z.; Hsu, L.Y.; Arai, A.E.; Rhodes, S.; Pottle, A.; Wage, R.; Banya, W.; Gatehouse, P.D.; Giri, S.; Collins, P.; et al. Apheresis as novel treatment for refractory angina with raised lipoprotein(a): A randomized controlled cross-over trial. Eur. Heart J. 2017, 38, 1561–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampietro, T.; Sbrana, F.; Pasanisi, E.M.; Bigazzi, F.; Petersen, C.; Coceani, M.; Dal Pino, B.; Ripoli, A.; Pianelli, M.; Luciani, R. LDL apheresis improves coronary flow reserve on the left anterior descending artery in patients with familial hypercholesterolemia and chronic ischemic heart disease. Atheroscler. Suppl. 2017, 30, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Bohl, S.; Kassner, U.; Eckardt, R.; Utz, W.; Mueller-Nordhorn, J.; Busjahn, A.; Thomas, H.P.; Abdel-Aty, H.; Klingel, R.; Marcovina, S.; et al. Single lipoprotein apheresis session improves cardiac microvascular function in patients with elevated lipoprotein(a): Detection by stress/rest perfusion magnetic resonance imaging. Ther. Apher. Dial. 2009, 13, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Pokrovsky, S.N.; Afanasieva, O.I.; Ezhov, M.V. Lipoprotein(a) apheresis. Curr. Opin. Lipidol. 2016, 27, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Ezhov, M.V.; Afanasieva, O.I.; Il’ina, L.N.; Safarova, M.S.; Adamova, I.Y.; Matchin, Y.G.; Konovalov, G.A.; Akchurin, R.S.; Pokrovsky, S.N. Association of lipoprotein(a) level with short- and long-term outcomes after CABG: The role of lipoprotein apheresis. Atheroscler. Suppl. 2017, 30, 187–192. [Google Scholar] [CrossRef]
- Tsimikas, S.; Mallat, Z.; Talmud, P.J.; Kastelein, J.J.; Wareham, N.J.; Sandhu, M.S.; Miller, E.R.; Benessiano, J.; Tedgui, A.; Witztum, J.L.; et al. Oxidation-specific biomarkers, lipoprotein(a), and risk of fatal and nonfatal coronary events. J. Am. Coll. Cardiol. 2010, 56, 946–955. [Google Scholar] [CrossRef] [Green Version]
- Tellis, C.C.; Tselepis, A.D. The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its lipoprotein carrier in plasma. Biochim. Biophys. Acta 2009, 1791, 327–338. [Google Scholar] [CrossRef]
- Macchi, C.; Sirtori, C.R.; Corsini, A.; Santos, R.D.; Watts, G.F.; Ruscica, M. A new dawn for managing dyslipidemias: The era of rna-based therapies. Pharmacol. Res. 2019, 150, 104413. [Google Scholar] [CrossRef]
- Viney, N.J.; van Capelleveen, J.C.; Geary, R.S.; Xia, S.; Tami, J.A.; Yu, R.Z.; Marcovina, S.M.; Hughes, S.G.; Graham, M.J.; Crooke, R.M.; et al. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): Two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 2016, 388, 2239–2253. [Google Scholar] [CrossRef]
- Tsimikas, S.; Karwatowska-Prokopczuk, E.; Gouni-Berthold, I.; Tardif, J.C.; Baum, S.J.; Steinhagen-Thiessen, E.; Shapiro, M.D.; Stroes, E.S.; Moriarty, P.M.; Nordestgaard, B.G.; et al. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. N. Engl. J. Med. 2020, 382, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Stiekema, L.C.A.; Prange, K.H.M.; Hoogeveen, R.M.; Verweij, S.L.; Kroon, J.; Schnitzler, J.G.; Dzobo, K.E.; Cupido, A.J.; Tsimikas, S.; Stroes, E.S.G.; et al. Potent lipoprotein(a) lowering following apolipoprotein(a) antisense treatment reduces the pro-inflammatory activation of circulating monocytes in patients with elevated lipoprotein(a). Eur. Heart J. 2020. [Google Scholar] [CrossRef]
- Julius, U.; Tselmin, S.; Schatz, U.; Fischer, S.; Bornstein, S.R. Lipoprotein(a)-an interdisciplinary challenge. Clin. Res. Cardiol. Suppl. 2019, 14, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, K.; Mikhailidis, D.P.; Katsiki, N.; Muntner, P.; Banach, M.; Lipid and Blood Pressure Meta-Analysis Collaboration Group. Effect of Ezetimibe Monotherapy on Plasma Lipoprotein(a) Concentrations in Patients with Primary Hypercholesterolemia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Drugs 2018, 78, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Gencer, B.; Mach, F. Potential of Lipoprotein(a)-Lowering Strategies in Treating Coronary Artery Disease. Drugs 2020, 80, 229–239. [Google Scholar] [CrossRef]
- Ferri, N.; Corsini, A.; Sirtori, C.R.; Ruscica, M. Present therapeutic role of cholesteryl ester transfer protein inhibitors. Pharmacol. Res. 2018, 128, 29–41. [Google Scholar] [CrossRef]
- Schrock, C.G. Lipoprotein(a): It is not the cholesterol content: It is the apolipoprotein(a)! Eur. Heart J. 2019, 40, 3576. [Google Scholar] [CrossRef]
- Yeang, C.; Witztum, J.L.; Tsimikas, S. ‘LDL-C’ = LDL-C + Lp(a)-C: Implications of achieved ultra-low LDL-C levels in the proprotein convertase subtilisin/kexin type 9 era of potent LDL-C lowering. Curr. Opin. Lipidol. 2015, 26, 169–178. [Google Scholar] [CrossRef]
- Langlois, M.R.; Nordestgaard, B.G.; Langsted, A.; Chapman, M.J.; Aakre, K.M.; Baum, H.; Boren, J.; Bruckert, E.; Catapano, A.; Cobbaert, C.; et al. Quantifying atherogenic lipoproteins for lipid-lowering strategies: Consensus-based recommendations from EAS and EFLM. Clin. Chem. Lab. Med. 2020, 58, 496–517. [Google Scholar] [CrossRef] [Green Version]
- Nordestgaard, B.G.; Langlois, M.R.; Langsted, A.; Chapman, M.J.; Aakre, K.M.; Baum, H.; Boren, J.; Bruckert, E.; Catapano, A.; Cobbaert, C.; et al. Quantifying atherogenic lipoproteins for lipid-lowering strategies: Consensus-based recommendations from EAS and EFLM. Atherosclerosis 2020, 294, 46–61. [Google Scholar] [CrossRef] [Green Version]
Drug | Study | Lp(a) 1 Changes |
---|---|---|
Statin | 5256 patients (1271 on placebo and 3885 on different statins) from six randomized trials [52] | from +11.6% to +20.4% (pravastatin group) from +18.7% to +24.2% (atorvastatin group) mean absolute increase was 18.1 mg/dL in the group with Lp(a) ≥ 30–50 mg/dL mean absolute increase was 10.3 mg/dL in the group with Lp(a) ≥ 50 mg/dL |
JUPITER2(rosuvastatin 20 mg/d) [57] | The median change in Lp(a) with rosuvastatin and placebo was zero Placebo arm: median (25th and 75th) was 23 nmol/L (10–48) Rosuvastatin arm: median (25th and 75th) was 24 nmol/L (10–51) | |
Nicotinic acid | Hyperlipidemic patients [58] | −38% (95% CI 28–47%) |
Hyperlipidemic patients with Lp(a) concentrations ⩾ 18 mg/dL [59] | from −27.0 ± 5.4 to −20.6 ± 4.1 | |
Normolipidemic patients with coronary artery disease [60] | −21% | |
Patients with type II hyperlipidaemia and plasma Lp(a) concentration ≥ 30 mg/dL [61] | −36.4% | |
HPS2-THRIVE3 [62] | Lp(a) mean reduction of 12.2 nmol/L, which became 33.8 nmol/L in the group with Lp(a) baseline levels ≥ 128 nmol/L | |
Patients with different baseline Lp(a) concentrations [63] | −19.2% ± 3.7% if Lp(a) was < 50 mg/dL −20.7% ± 5.4% if Lp(a) was between 50 and 120 mg/dL −29.5% ± 2.2% if Lp(a was >120 mg/dL) |
Drug | Study | Lp(a) 2 Changes |
---|---|---|
PCSK9 mAbs 4 | Pooled analysis from four phase II studies with evolocumab [71] | Baseline Lp(a) levels ≤ 125 nmol/L −16.1% (70 mg Q2W)3 −27.6% (105 mg Q2W) −33.2% (140 mg Q2W) −21.0% (280 mg Q4W) 3 −25.3% (350 mg Q4W) −28.7% (420 mg Q4W) Baseline Lp(a) levels > 125 nmol/L −7.5% (70 mg Q2W) −17.4% (105 mg Q2W) −20.0% (140 mg Q2W) −11.8% (280 mg Q4W) −11.1% (350 mg Q4W) −16.1% (420 mg Q4W) |
Healthy patients (alirocumab) [73] | −18.7% (from −30.6% to −11.2%) | |
ODISSEY OUTCOMES trial (alirocumab) [82] | Baseline Lp(a) levels = 21.2 mg/dL (median) −5.0 mg/dL (overall) −1.6 mg/dL (Q1, < 6.7 mg/dL) 5 −4.8 mg/dL (Q2, 6.7 to < 21.2 mg/dL) −13.4 mg/dL (Q3, 21.2 to < 59.6 mg/dL) −20.2 mg/dL (Q4, > 59.6 mg/dL) | |
FOURIER trial (evolocumab) [84] | Baseline Lp(a) 37 nmol/L (from 13 nmol/L to 165 nmol/L; median) −26.9% (from −6.2% to −46.7%) | |
PCSK9 antisense | ORION-1 (inclisiran) [89] | from −14% to −18% (single dose group) from −15% to −26% (double dose group) |
ORION-9 (inclisiran) | Lp(a): −17.2% vs. baseline | |
ORION-10 and ORION 11 (inclisiran) [90] | ORION 10 Lp(a): −25.6% (placebo adjusted) ORION 11 Lp(a): −18.6% (placebo adjusted) |
Lipoprotein Apheresis | Description | Reduction |
---|---|---|
Adsorption | DALI (direct adsorption of lipoproteins). Electrostatic interaction of negatively charged polyacrylate anions with positively charged apoB | LDL-C 1: 53–76% Lp(a) 2: 28–74% |
DSA (Dextran sulfate-cellulose-based-adsorption). Electrostatic interaction of negatively dextransulfate with positively charged apoB | LDL-C: 49–75% Lp(a): 19–70% | |
IMA (immunoadsorption). Plasma is passed through columns containing polyclonal anti-apoB100 antibodies | LDL-C: 62–69% Lp(a): 51–71% | |
Lipopac (Lp(a) specific). Plasma is passed through columns containing polyclonal anti-apo(a) antibodies | LDL-C: 7% Lp(a): 59–88% | |
Filtration | MONET (Membrane Filtration Optimized Novel Extracorporeal Treatment). Series of filters eliminate LDL and Lp(a) from plasma based on size properties | LDL-C: 52–62% Lp(a): 53–59% |
Lipid filtration. Series of filters eliminate LDL and Lp(a) from plasma based on size properties | LDL-C: 61% Lp(a): 61% | |
Precipitation | HELP (Heparin-induced extracorporeal LDL precipitation). Precipitation of a complex consisting of heparin, LDL, Lp(a), and fibrinogen at pH = 5.2 | LDL-C: 55–61% Lp(a): 55–68% |
Plasma Exchange | Although plasma exchange is still used in some centers, it is increasingly being replaced by selective LA, except when treating patients with severe hypertriglyceridemia [122] |
Drug | Study | Lp(a) 1 Changes |
---|---|---|
Antisense antinucleotide | APO(a)Rx [151] | Lp(a) 125–437 nmol/L: −66.8% Lp(a) concentration ≥ 438 nmol/L: −71.6 |
APO(a)LRx [151] | Single-ascending-dose group: −24.8% (95% CI 3.1–67.1) at day 30 (10 mg group) −35.1% (2.2–78.8) at day 30 (20 mg group) −48.2% (10.9–78.4) at day 30 (40 mg group) −82.5% (50.5–109.2) at day 30 (80 mg group) −84.5% (65.2–112.6) at day 30 (120 mg group) Multiple-ascending dose group: −59.4% (95% CI 33.5–79.1) at day 36 (10 mg group) −72.3% (51.6–87.7) at day 36 (20 mg group) −82.4% (67.6–99.8) at day 36 (40 mg group) | |
APO(a)LRx [152] | Lp(a) > 60 mg/dl (150 nmol/L) −35% (20 mg of AKCEA-APO(a)LRx Q4W) −56% (40 mg of AKCEA-APO(a)LRx Q4W) −58% (20 mg of AKCEA-APO(a)LRx Q2W) −72% (60 mg of AKCEA-APO(a)LRx Q4W) −80% (20 mg of AKCEA-APO(a)Lrx QW) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, M.F.; Sirtori, C.R.; Corsini, A.; Ezhov, M.; Sampietro, T.; Ruscica, M. Lipoprotein(a) Lowering—From Lipoprotein Apheresis to Antisense Oligonucleotide Approach. J. Clin. Med. 2020, 9, 2103. https://doi.org/10.3390/jcm9072103
Greco MF, Sirtori CR, Corsini A, Ezhov M, Sampietro T, Ruscica M. Lipoprotein(a) Lowering—From Lipoprotein Apheresis to Antisense Oligonucleotide Approach. Journal of Clinical Medicine. 2020; 9(7):2103. https://doi.org/10.3390/jcm9072103
Chicago/Turabian StyleGreco, Maria Francesca, Cesare R. Sirtori, Alberto Corsini, Marat Ezhov, Tiziana Sampietro, and Massimiliano Ruscica. 2020. "Lipoprotein(a) Lowering—From Lipoprotein Apheresis to Antisense Oligonucleotide Approach" Journal of Clinical Medicine 9, no. 7: 2103. https://doi.org/10.3390/jcm9072103
APA StyleGreco, M. F., Sirtori, C. R., Corsini, A., Ezhov, M., Sampietro, T., & Ruscica, M. (2020). Lipoprotein(a) Lowering—From Lipoprotein Apheresis to Antisense Oligonucleotide Approach. Journal of Clinical Medicine, 9(7), 2103. https://doi.org/10.3390/jcm9072103