Minimal Residual Disease in Multiple Myeloma: State of the Art and Future Perspectives
Abstract
:1. Introduction
2. How Can Minimal Residual Disease Be Assessed?
2.1. MRD in the Bone Marrow
2.2. MRD Outside the Bone Marrow
3. Current Evidence on the Role of MRD Assessment in MM
4. Incorporation of MRD Results into Clinical Practice
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Facon, T.; Kumar, S.; Plesner, T.; Orlowski, R.Z.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma. N. Engl. J. Med. 2019, 380, 2104–2115. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Dimopoulos, M.A.; Cavo, M.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; Kaplan, P.; et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N. Engl. J. Med. 2018, 378, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.V.; Cavo, M.; Blade, J.; Dimopoulos, M.A.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; et al. Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed multiple myeloma (ALCYONE): A randomised, open-label, phase 3 trial. Lancet 2020, 395, 132–141. [Google Scholar] [CrossRef]
- Voorhees, P.M.; Kaufman, J.L.; Laubach, J.P.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.W.; Costa, L.J.; Anderson, L.D.; et al. Depth of Response to Daratumumab (DARA), Lenalidomide, Bortezomib, and Dexamethasone (RVd) Improves over Time in Patients (pts) with Transplant-Eligible Newly Diagnosed Multiple Myeloma (NDMM): Griffin Study Update. Blood 2019, 134, 691, [ASH 2019 61st Meeting]. [Google Scholar] [CrossRef]
- Voorhees, P.M.; Kaufman, J.L.; Laubach, J.P.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D.; et al. Daratumumab, Lenalidomide, Bortezomib, & Dexamethasone for Transplant-eligible Newly Diagnosed Multiple Myeloma: GRIFFIN. Blood 2020. [Google Scholar] [CrossRef]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): A randomised, open-label, phase 3 study. Lancet 2019, 394, 29–38. [Google Scholar] [CrossRef]
- Gay, F.; Larocca, A.; Wijermans, P.; Cavallo, F.; Rossi, D.; Schaafsma, R.; Genuardi, M.; Romano, A.; Liberati, A.M.; Siniscalchi, A.; et al. Complete response correlates with long-term progression-free and overall survival in elderly myeloma treated with novel agents: Analysis of 1175 patients. Blood 2011, 117, 3025–3031. [Google Scholar] [CrossRef]
- Lahuerta, J.J.; Mateos, M.V.; Martínez-López, J.; Rosiñol, L.; Sureda, A.; de la Rubia, J.; García-Laraña, J.; Martínez-Martínez, R.; Hernández-García, M.T.; Carrera, D.; et al. Influence of Pre- and Post-Transplantation Responses on Outcome of Patients With Multiple Myeloma: Sequential Improvement of Response and Achievement of Complete Response Are Associated With Longer Survival. J. Clin. Oncol. 2008, 26, 5775–5782. [Google Scholar] [CrossRef]
- Mina, R.; Petrucci, M.T.; Corradini, P.; Spada, S.; Patriarca, F.; Cerrato, C.; De Paoli, L.; Pescosta, N.; Ria, R.; Malfitano, A.; et al. Treatment Intensification With Autologous Stem Cell Transplantation and Lenalidomide Maintenance Improves Survival Outcomes of Patients With Newly Diagnosed Multiple Myeloma in Complete Response. Clin. Lymphoma Myeloma Leuk. 2018, 18, 533–540. [Google Scholar] [CrossRef]
- Cerrato, C.; Di Raimondo, F.; De Paoli, L.; Spada, S.; Patriarca, F.; Crippa, C.; Mina, R.; Guglielmelli, T.; Ben-Yehuda, D.; Oddolo, D.; et al. Maintenance in myeloma patients achieving complete response after upfront therapy: A pooled analysis. J. Cancer Res. Clin. Oncol. 2018, 144, 1357–1366. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Gay, F.; Schjesvold, F.; Beksac, M.; Hajek, R.; Weisel, K.C.; Goldschmidt, H.; Maisnar, V.; Moreau, P.; Min, C.K.; et al. Oral ixazomib maintenance following autologous stem cell transplantation (TOURMALINE-MM3): A double-blind, randomised, placebo-controlled phase 3 trial. Lancet 2019, 393, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.-V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Zamagni, E.; Nanni, C.; Dozza, L.; Carlier, T.; Tacchetti, P.; Versari, A.; Chauvie, S.; Gallamini, A.; Attal, M.; Gamberi, B.; et al. Standardization of 18F-FDG PET/CT According to Deauville Criteria for MRD Evaluation in Newly Diagnosed Transplant Eligible Multiple Myeloma Patients: Joined Analysis of Two Prospective Randomized Phase III Trials. Blood 2018, 132, 257, [ASH 2018 60th Meeting]. [Google Scholar] [CrossRef] [Green Version]
- Avet-Loiseau, H. Minimal Residual Disease by Next-Generation Sequencing: Pros and Cons. Am. Soc. Clin. Oncol. Educ. B 2016, 35, e425–e430. [Google Scholar] [CrossRef] [PubMed]
- Avet-Loiseau, H.; Ludwig, H.; Landgren, O.; Paiva, B.; Morris, C.; Yang, H.; Zhou, K.; Ro, S.; Mateos, M.V. Minimal Residual Disease Status as a Surrogate Endpoint for Progression-free Survival in Newly Diagnosed Multiple Myeloma Studies: A Meta-analysis. Clin. Lymphoma Myeloma Leuk. 2020, 20, e30–e37. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lopez, J.; Lahuerta, J.J.; Pepin, F.; Gonzalez, M.; Barrio, S.; Ayala, R.; Puig, N.; Montalban, M.A.; Paiva, B.; Weng, L.; et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 2014, 123, 3073–3079. [Google Scholar] [CrossRef]
- Perrot, A.; Lauwers-Cances, V.; Corre, J.; Robillard, N.; Hulin, C.; Chretien, M.L.; Dejoie, T.; Maheo, S.; Stoppa, A.M.; Pegourie, B.; et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood 2018, 132, 2456–2464. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lopez, J.; Sanchez-Vega, B.; Barrio, S.; Cuenca, I.; Ruiz-Heredia, Y.; Alonso, R.; Rapado, I.; Marin, C.; Cedena, M.T.; Paiva, B.; et al. Analytical and clinical validation of a novel in-house deep-sequencing method for minimal residual disease monitoring in a phase II trial for multiple myeloma. Leukemia 2017, 31, 1446–1449. [Google Scholar] [CrossRef]
- Brüggemann, M.; Kotrová, M.; Knecht, H.; Bartram, J.; Boudjogrha, M.; Bystry, V.; Fazio, G.; Froňková, E.; Giraud, M.; Grioni, A.; et al. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia 2019, 33, 2241–2253. [Google Scholar] [CrossRef] [Green Version]
- Flores-Montero, J.; de Tute, R.; Paiva, B.; Perez, J.J.; Böttcher, S.; Wind, H.; Sanoja, L.; Puig, N.; Lecrevisse, Q.; Vidriales, M.B.; et al. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. Cytom. B Clin. Cytom. 2016, 90, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Avet-Loiseau, H.; Rawstron, A.C.; Owen, R.G.; Child, J.A.; Thakurta, A.; Sherrington, P.; Samur, M.K.; Georgieva, A.; Anderson, K.C.; et al. Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma: A Meta-analysis. JAMA Oncol. 2017, 3, 28–35. [Google Scholar] [CrossRef]
- Flores-Montero, J.; Sanoja-Flores, L.; Paiva, B.; Puig, N.; García-Sánchez, O.; Böttcher, S.; van der Velden, V.H.J.; Pérez-Morán, J.-J.; Vidriales, M.-B.; García-Sanz, R.; et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017, 31, 2094–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paiva, B.; Puig, N.; Cedena, M.T.; Rosiñol, L.; Cordón, L.; Vidriales, M.B.; Burgos, L.; Flores-Montero, J.; Sanoja-Flores, L.; Lopez-Anglada, L.; et al. Measurable residual disease by next-generation flow cytometry in multiple myeloma. J. Clin. Oncol. 2020, 38, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Avet-Loiseau, H.; Bene, M.C.; Wuilleme, S.; Corre, J.; Attal, M.; Arnulf, B.; Garderet, L.; Macro, M.; Stoppa, A.-M.; Delforge, M.; et al. Concordance of Post-consolidation Minimal Residual Disease Rates by Multiparametric Flow Cytometry and Next-generation Sequencing in CASSIOPEIA. In 17th International Myeloma Workshop Abstract Book; International Myeloma Workshop: Boston, MA, USA, 2019; pp. 5–6, [Abstract #OAB–004]. [Google Scholar]
- Oliva, S.; Genuardi, E.; Belotti, A.; Frascione, P.M.M.; Galli, M.; Capra, A.; Offidani, M.; Vozella, F.; Zambello, R.; Auclair, D.; et al. Minimal Residual Disease Evaluation By Multiparameter Flow Cytometry and Next Generation Sequencing in the Forte Trial for Newly Diagnosed Multiple Myeloma Patients. Blood 2019, 134, 4322, [ASH 2019 61st Meeting]. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Chen, J.H.; Lin, W.Y.; Liang, J.A.; Wang, H.Y.; Tsai, S.C.; Kao, C.H. FDG PET or PET/CT for detecting intramedullary and extramedullary lesions in multiple myeloma: A systematic review and meta-analysis. Clin. Nucl. Med. 2012, 37, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Rasche, L.; Chavan, S.S.; Stephens, O.W.; Patel, P.H.; Tytarenko, R.; Ashby, C.; Bauer, M.; Stein, C.; Deshpande, S.; Wardell, C.; et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat. Commun. 2017, 8, 268. [Google Scholar] [CrossRef] [PubMed]
- Cavo, M.; Terpos, E.; Nanni, C.; Moreau, P.; Lentzsch, S.; Zweegman, S.; Hillengass, J.; Engelhardt, M.; Usmani, S.Z.; Vesole, D.H.; et al. Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: A consensus statement by the International Myeloma Working Group. Lancet Oncol. 2017, 18, e206–e217. [Google Scholar] [CrossRef]
- Hillengass, J.; Usmani, S.; Rajkumar, S.V.; Durie, B.G.M.; Mateos, M.-V.; Lonial, S.; Joao, C.; Anderson, K.C.; García-Sanz, R.; Riva, E.; et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 2019, 20, e302–e312. [Google Scholar] [CrossRef]
- Nanni, C.; Versari, A.; Chauvie, S.; Bertone, E.; Bianchi, A.; Rensi, M.; Bellò, M.; Gallamini, A.; Patriarca, F.; Gay, F.; et al. Interpretation criteria for FDG PET/CT in multiple myeloma (IMPeTUs): Final results. IMPeTUs (Italian myeloma criteria for PET USe). Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 712–719. [Google Scholar] [CrossRef]
- Rasche, L.; Angtuaco, E.; McDonald, J.E.; Buros, A.; Stein, C.; Pawlyn, C.; Thanendrarajan, S.; Schinke, C.; Samant, R.; Yaccoby, S.; et al. Low expression of hexokinase-2 is associated with false-negative FDG–positron emission tomography in multiple myeloma. Blood 2017, 130, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Pandit-Taskar, N. Functional Imaging Methods for Assessment of Minimal Residual Disease in Multiple Myeloma: Current Status and Novel ImmunoPET Based Methods. Semin. Hematol. 2018, 55, 22–32. [Google Scholar] [CrossRef]
- Ulaner, G.A.; Sobol, N.B.; O’Donoghue, J.A.; Kirov, A.S.; Riedl, C.C.; Min, R.; Smith, E.; Carter, L.M.; Lyashchenko, S.K.; Lewis, J.S.; et al. CD38-targeted Immuno-PET of Multiple Myeloma: From Xenograft Models to First-in-Human Imaging. Radiology 2020, 295, 192621. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Attal, M.; Caillot, D.; Macro, M.; Karlin, L.; Garderet, L.; Facon, T.; Benboubker, L.; Escoffre-Barbe, M.; Stoppa, A.-M.; et al. Prospective Evaluation of Magnetic Resonance Imaging and [18F]Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography at Diagnosis and Before Maintenance Therapy in Symptomatic Patients With Multiple Myeloma Included in the IFM/DFCI 2009 Trial. J. Clin. Oncol. 2017, 35, 2911–2918. [Google Scholar] [CrossRef] [PubMed]
- Rasche, L.; Alapat, D.; Kumar, M.; Gershner, G.; McDonald, J.; Wardell, C.P.; Samant, R.; Van Hemert, R.; Epstein, J.; Williams, A.F.; et al. Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma. Leukemia 2019, 33, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Hulin, C.; Zweegman, S.; Hu, Y.; Heeg, B.; Hashim, M.; de Boer, C.; Vanquickelberghe, V.; Kampfenkel, T.; Lam, A.; et al. Comparative Efficacy and Safety of Bortezomib, Thalidomide, and Dexamethasone (VTd) without and with Daratumumab (D-VTd) from Cassiopeia Versus Vtd from Pethema/GEM in Patients with Newly Diagnosed Multiple Myeloma Using Propensity Score Matching (PSM). Blood 2019, 134, 4740, [ASH 2019 61st Meeting]. [Google Scholar] [CrossRef]
- Zamagni, E.; Nanni, C.; Patriarca, F.; Englaro, E.; Castellucci, P.; Geatti, O.; Tosi, P.; Tacchetti, P.; Cangini, D.; Perrone, G.; et al. A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica 2007, 92, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Shortt, C.P.; Gleeson, T.G.; Breen, K.A.; McHugh, J.; O’Connell, M.J.; O’Gorman, P.J.; Eustace, S.J. Whole-Body MRI Versus PET in Assessment of Multiple Myeloma Disease Activity. Am. J. Roentgenol. 2009, 192, 980–986. [Google Scholar] [CrossRef]
- Giles, S.L.; Messiou, C.; Collins, D.J.; Morgan, V.A.; Simpkin, C.J.; West, S.; Davies, F.E.; Morgan, G.J.; DeSouza, N.M. Whole-Body diffusion-weighted MR imaging for assessment of Treatment response in Myeloma. Radiology 2014, 271, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Pawlyn, C.; Fowkes, L.; Otero, S.; Jones, J.R.; Boyd, K.D.; Davies, F.E.; Morgan, G.J.; Collins, D.J.; Sharma, B.; Riddell, A.; et al. Whole-body diffusion-weighted MRI: A new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia 2016, 30, 1446–1448. [Google Scholar] [CrossRef] [Green Version]
- Sachpekidis, C.; Mosebach, J.; Freitag, M.T.; Wilhelm, T.; Mai, E.K.; Goldschmidt, H.; Haberkorn, U.; Schlemmer, H.-P.; Delorme, S.; Dimitrakopoulou-Strauss, A. Application of (18)F-FDG PET and diffusion weighted imaging (DWI) in multiple myeloma: Comparison of functional imaging modalities. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 479–492. [Google Scholar]
- Montefusco, V.; Gay, F.; Spada, S.; de Paoli, L.; Di Raimondo, F.; Ribolla, R.; Musolino, C.; Patriarca, F.; Musto, P.; Galieni, P.; et al. Outcome of paraosseous extra-medullary disease in newly diagnosed multiple myeloma patients treated with new drugs. Haematologica 2020, 105, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Rasche, L.; Angtuaco, E.J.; Alpe, T.L.; Gershner, G.H.; McDonald, J.E.; Samant, R.S.; Kumar, M.; Van Hemert, R.; Epstein, J.; Deshpande, S.; et al. The presence of large focal lesions is a strong independent prognostic factor in multiple myeloma. Blood 2018, 132, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Mishima, Y.; Paiva, B.; Shi, J.; Park, J.; Manier, S.; Takagi, S.; Massoud, M.; Perilla-Glen, A.; Aljawai, Y.; Huynh, D.; et al. The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma. Cell Rep. 2017, 19, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohr, J.G.; Kim, S.; Gould, J.; Knoechel, B.; Drier, Y.; Cotton, M.J.; Gray, D.; Birrer, N.; Wong, B.; Ha, G.; et al. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci. Transl. Med. 2016, 8, 363ra147. [Google Scholar] [CrossRef] [Green Version]
- Manier, S.; Park, J.; Capelletti, M.; Bustoros, M.; Freeman, S.S.; Ha, G.; Rhoades, J.; Liu, C.J.; Huynh, D.; Reed, S.C.; et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat. Commun. 2018, 9, 1691. [Google Scholar] [CrossRef]
- Sanoja-Flores, L.; Flores-Montero, J.; Puig, N.; Contreras-Sanfeliciano, T.; Pontes, R.; Corral-Mateos, A.; García-Sánchez, O.; Díez-Campelo, M.; de Magalhães, R.J.P.; García-Martín, L.; et al. Blood monitoring of circulating tumor plasma cells by next generation flow in multiple myeloma after therapy. Blood 2019, 134, 2218–2222. [Google Scholar] [CrossRef] [Green Version]
- Puig, N.; Mateos, M.-V.; Contreras, T.; Paiva, B.; Cedena, M.T.; Pérez, J.J.; Aires, I.; Agullo, C.; Martinez-Lopez, J.; Rodriguez Otero, P.; et al. Qip-Mass Spectrometry in High Risk Smoldering Multiple Myeloma Patients Included in the GEM-CESAR Trial: Comparison with Conventional and Minimal Residual Disease IMWG Response Assessment. Blood 2019, 134, 581, [ASH 2019 61st Meeting]. [Google Scholar] [CrossRef]
- Eveillard, M.; Rustad, E.; Roshal, M.; Zhang, Y.; Ciardiello, A.; Korde, N.; Hultcrantz, M.; Lu, S.; Shah, U.; Hassoun, H.; et al. Comparison of MALDI-TOF mass spectrometry analysis of peripheral blood and bone marrow-based flow cytometry for tracking measurable residual disease in patients with multiple myeloma. Br. J. Haematol. 2020, 189, 904–907. [Google Scholar] [CrossRef]
- Landgren, O.; Devlin, S.; Boulad, M.; Mailankody, S. Role of MRD status in relation to clinical outcomes in newly diagnosed multiple myeloma patients: A meta-analysis. Bone Marrow Transpl. 2016, 51, 1565–1568. [Google Scholar] [CrossRef] [Green Version]
- Paiva, B.; Cedena, M.T.; Puig, N.; Arana, P.; Vidriales, M.B.; Cordon, L.; Flores-Montero, J.; Gutierrez, N.C.; Martín-Ramos, M.L.; Martinez-Lopez, J.; et al. Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients. Blood 2016, 127, 3165–3174. [Google Scholar] [CrossRef]
- Oliva, S.; op Bruinink, D.H.; ŘÍhová, L.; Spada, S.; van der Holt, B.; Troia, R.; Gambella, M.; Pantani, L.; Grammatico, S.; Gilestro, M.; et al. Minimal residual disease (MRD) monitoring by multiparameter flow cytometry (MFC) in newly diagnosed transplant eligible multiple myeloma (MM) patients: Results from the EMN02/HO95 phase 3 trial. J. Clin. Oncol. 2017, 35, 8011, [ASCO 2017 Annual Meeting]. [Google Scholar] [CrossRef]
- Ocio, E.M.; Otero, P.R.; Bringhen, S.; Oliva, S.; Nogai, A.; Attal, M.; Moreau, P.; Kanagavel, D.; Fitzmaurice, T.; Wu, J.; et al. Preliminary Results from a Phase I Study of Isatuximab (ISA) in Combination with Bortezomib, Lenalidomide, Dexamethasone (VRd) in Patients with Newly Diagnosed Multiple Myeloma (NDMM) Non-Eligible for Transplant. Blood 2018, 132, 595, [ASH 2018 60th Meeting]. [Google Scholar] [CrossRef]
- Zimmerman, T.; Raje, N.S.; Vij, R.; Reece, D.; Berdeja, J.G.; Stephens, L.A.; McDonnell, K.; Rosenbaum, C.A.; Jasielec, J.; Richardson, P.G.; et al. Final Results of a Phase 2 Trial of Extended Treatment (tx) with Carfilzomib (CFZ), Lenalidomide (LEN), and Dexamethasone (KRd) Plus Autologous Stem Cell Transplantation (ASCT) in Newly Diagnosed Multiple Myeloma (NDMM). Blood 2016, 128, 675, [ASH 2016 58th Meeting]. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Cavo, M.; Bladé, J.; Dimopoulos, M.A.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; et al. Daratumumab Plus Bortezomib, Melphalan, and Prednisone Versus Bortezomib, Melphalan, and Prednisone in Patients with Transplant-Ineligible Newly Diagnosed Multiple Myeloma: Overall Survival in Alcyone. Blood 2019, 134, 859, [ASH 2019 61st Meeting]. [Google Scholar] [CrossRef]
- Gay, F.; Cerrato, C.; Petrucci, M.T.; Zambello, R.; Gamberi, B.; Ballanti, S.; Omedè, P.; Palmieri, S.; Troia, R.; Spada, S.; et al. Efficacy of carfilzomib lenalidomide dexamethasone (KRd) with or without transplantation in newly diagnosed myeloma according to risk status: Results from the FORTE trial. J. Clin. Oncol. 2019, 37, 8002, [ASCO 2019 Annual Meeting]. [Google Scholar] [CrossRef]
- Avet-Loiseau, H.; Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Corre, J.; Garderet, L.; Karlin, L.; Lambert, J.; Macro, M.; et al. Efficacy of daratumumab (DARA) + bortezomib/thalidomide/dexamethasone (D-VTd) in transplant-eligible newly diagnosed multiple myeloma (TE NDMM) based on minimal residual disease (MRD) status: Analysis of the CASSIOPEIA trial. J. Clin. Oncol. 2019, 37, 8017, [ASCO 2019 International Meeting]. [Google Scholar] [CrossRef]
- Voorhees, P.; Kaufman, J.L.; Laubach, J.; Sborov, D.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.; Anderson, L.; et al. Daratumumab + Lenalidomide, Bortezomib & Dexamethasone Improves Depth of Response in Transplant-eligible Newly Diagnosed Multiple Myeloma: GRIFFIN. In 17th International Myeloma Workshop Abstract Book; International Myeloma Workshop: Boston, MA, USA, 2019; pp. 546–547, [Abstract #OAB–87]. [Google Scholar]
- Costa, L.J.; Chhabra, S.; Godby, K.N.; Medvedova, E.; Cornell, R.F.; Hall, A.C.; Silbermann, R.W.; Innis-Shelton, R.; Dhakal, B.; DeIdiaquez, D.; et al. Daratumumab, Carfilzomib, Lenalidomide and Dexamethasone (Dara-KRd) Induction, Autologous Transplantation and Post-Transplant, Response-Adapted, Measurable Residual Disease (MRD)-Based Dara-Krd Consolidation in Patients with Newly Diagnosed Multiple Myelo. Blood 2019, 134, 860, [ASH 2019 61st Meeting]. [Google Scholar] [CrossRef]
- Landgren, O.; Hultcrantz, M.; Lesokhin, A.M.; Mailankody, S.; Hassoun, H.; Smith, E.L.; Shah, U.A.; Lu, S.X.; Mastey, D.; Salcedo, M.; et al. Weekly Carfilzomib, Lenalidomide, Dexamethasone and Daratumumab (wKRd-D) Combination Therapy Provides Unprecedented MRD Negativity Rates in Newly Diagnosed Multiple Myeloma: A Clinical and Correlative Phase 2 Study. Blood 2019, 134, 862, [ASH 2019 61st Meeting]. [Google Scholar] [CrossRef]
- Lahuerta, J.-J.; Paiva, B.; Vidriales, M.-B.; Cordón, L.; Cedena, M.-T.; Puig, N.; Martinez-Lopez, J.; Rosiñol, L.; Gutierrez, N.C.; Martín-Ramos, M.-L.; et al. Depth of Response in Multiple Myeloma: A Pooled Analysis of Three PETHEMA/GEM Clinical Trials. J. Clin. Oncol. 2017, 35, 2900–2910. [Google Scholar] [CrossRef] [Green Version]
- Attal, M.; Lauwers-cances, V.; Hulin, C.; Leleu, X.; Caillot, D.; Escoffre, M.; Arnulf, B.; Macro, M.; Belhadj, K.; Garderet, L.; et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N. Engl. J. Med. 2017, 376, 1311–1320. [Google Scholar] [CrossRef]
- Mina, R.; Lonial, S. Is there still a role for stem cell transplantation in multiple myeloma? Cancer 2019, 125, 2534–2543. [Google Scholar] [CrossRef] [PubMed]
- Gay, F.; Oliva, S.; Petrucci, M.T.; Conticello, C.; Catalano, L.; Corradini, P.; Siniscalchi, A.; Magarotto, V.; Pour, L.; Carella, A.; et al. Chemotherapy plus lenalidomide versus autologous transplantation, followed by lenalidomide plus prednisone versus lenalidomide maintenance, in patients with multiple myeloma: A randomised, multicentre, phase 3 trial. Lancet Oncol. 2015, 16, 1617–1629. [Google Scholar] [CrossRef]
- Palumbo, A.; Cavallo, F.; Gay, F.; Di Raimondo, F.; Ben Yehuda, D.; Petrucci, M.T.; Pezzatti, S.; Caravita, T.; Cerrato, C.; Ribakovsky, E.; et al. Autologous transplantation and maintenance therapy in multiple myeloma. N. Engl. J. Med. 2014, 371, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Cavo, M.; Gay, F.; Beksac, M.; Pantani, L.; Petrucci, M.T.; Dimopoulos, M.A.; Dozza, L.; van der Holt, B.; Zweegman, S.; Oliva, S.; et al. Autologous haematopoietic stem-cell transplantation versus bortezomib-melphalan-prednisone, with or without bortezomib-lenalidomide-dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): A multicentre, randomised, open-label, phase 3 study. Lancet Haematol. 2020, 7, e456–e468. [Google Scholar] [PubMed]
- Paiva, B.; Vidriales, M.-B.; Cerveró, J.; Mateo, G.; Pérez, J.J.; Montalbán, M.A.; Sureda, A.; Montejano, L.; Gutiérrez, N.C.; García de Coca, A.; et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 2008, 112, 4017–4023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Tute, R.M.; Cairns, D.; Rawstron, A.; Pawlyn, C.; Davies, F.E.; Jones, J.R.; Kaiser, M.F.; Hockaday, A.; Striha, A.; Henderson, R.; et al. Minimal Residual Disease in the Maintenance Setting in Myeloma: Prognostic Significance and Impact of Lenalidomide. Blood 2017, 130, 904, [ASH 2017 59th Meeting]. [Google Scholar]
- Oliva, S.; Gambella, M.; Gilestro, M.; Muccio, V.E.; Gay, F.; Drandi, D.; Ferrero, S.; Passera, R.; Pautasso, C.; Bernardini, A.; et al. Minimal residual disease after transplantation or lenalidomide-based consolidation in myeloma patients: A prospective analysis. Oncotarget 2017, 8, 5924–5935. [Google Scholar] [CrossRef]
- Mina, R.; Belotti, A.; Petrucci, M.T.; Zambello, R.; Capra, A.; Di Lullo, G.; Ronconi, S.; Pescosta, N.; Grasso, M.; Monaco, F.; et al. Bortezomib-dexamethasone as maintenance therapy or early retreatment at biochemical relapse versus observation in relapsed/refractory multiple myeloma patients: A randomized phase II study. Blood Cancer J. 2020, 10, 58. [Google Scholar] [CrossRef]
- Richardson, P.G.; Attal, M.; Rajkumar, S.V.; San Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; et al. A phase III randomized, open label, multicenter study comparing isatuximab, pomalidomide, and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2019, 37, 8004, [ASCO 2019 Annual Meeting]. [Google Scholar] [CrossRef]
- Bahlis, N.; Dimopoulos, M.A.; White, D.J.; Benboubker, L.; Cook, G.; Leiba, M.; Ho, P.J.; Kim, K.; Takezako, N.; Moreau, P.; et al. Three-Year Follow up of the Phase 3 Pollux Study of Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Lenalidomide and Dexamethasone (Rd) Alone in Relapsed or Refractory Multiple Myeloma (RRMM). Blood 2018, 132, 1996, [ASH 2018 60th Meeting]. [Google Scholar] [CrossRef]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef]
- Spencer, A.; Lentzsch, S.; Weisel, K.; Avet-Loiseau, H.; Mark, T.M.; Spicka, I.; Masszi, T.; Lauri, B.; Levin, M.-D.; Bosi, A.; et al. Daratumumab plus bortezomib and dexamethasone versus bortezomib and dexamethasone in relapsed or refractory multiple myeloma: Updated analysis of CASTOR. Haematologica 2018, 103, 2079–2087. [Google Scholar] [CrossRef] [Green Version]
- Usmani, S.Z.; Quach, H.; Mateos, M.-V.; Landgren, O.; Leleu, X.; Siegel, D.S.; Weisel, K.; Yang, H.; Klippel, Z.K.; Zahlten-Kumeli, A.; et al. Carfilzomib, Dexamethasone, and Daratumumab Versus Carfilzomib and Dexamethasone for the Treatment of Patients with Relapsed or Refractory Multiple Myeloma (RRMM): Primary Analysis Results from the Randomized, Open-Label, Phase 3 Study Candor (NCT03158688). Blood 2019, 134, LBA-6, [ASH 2019 61st Meeting]. [Google Scholar] [CrossRef]
- Topp, M.S.; Duell, J.; Zugmaier, G.; Attal, M.; Moreau, P.; Langer, C.; Krönke, J.; Facon, T.; Salnikov, A.V.; Lesley, R.; et al. Anti-B-Cell Maturation Antigen BiTE Molecule AMG 420 Induces Responses in Multiple Myeloma. J. Clin. Oncol. 2020, 38, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-Y.; Zhao, W.-H.; Liu, J.; Chen, Y.-X.; Cao, X.-M.; Yang, Y.; Zhang, Y.-L.; Wang, F.-X.; Zhang, P.-Y.; Lei, B.; et al. Long-Term Follow-up of a Phase 1, First-in-Human Open-Label Study of LCAR-B38M, a Structurally Differentiated Chimeric Antigen Receptor T (CAR-T) Cell Therapy Targeting B-Cell Maturation Antigen (BCMA), in Patients (pts) with Relapsed/Refractory Multiple. Blood 2019, 134, 579, [ASH 2019 61st Meeting]. [Google Scholar] [CrossRef]
- Madduri, D.; Usmani, S.Z.; Jagannath, S.; Singh, I.; Zudaire, E.; Yeh, T.-M.; Allred, A.J.; Banerjee, A.; Goldberg, J.D.; Schecter, J.M.; et al. Results from CARTITUDE-1: A Phase 1b/2 Study of JNJ-4528, a CAR-T Cell Therapy Directed Against B-Cell Maturation Antigen (BCMA), in Patients with Relapsed and/or Refractory Multiple Myeloma (R/R MM). Blood 2019, 134, 577, [ASH 2019 61st Meeting]. [Google Scholar] [CrossRef]
Next-Generation Sequencing (NGS) | Next-Generation Flow (NGF) | Imaging (PET/CT) | |
---|---|---|---|
Availability | Adaptive Biotechnologies (Seattle, US-WA); commercial service; FDA approved; academic platforms ongoing | Worldwide | Almost all hematological centers |
Applicability | 90–92% | Roughly 100% | 85–90% |
Baseline assessment | Required for identification of dominant clonotype | Not required | Required for identification of focal lesions or extramedullary disease |
Processing requirements | Fresh sample is not required; both fresh and stored samples | Fresh samples are required; assessment within 24–36 h | NA |
Standardization | Yes; Adaptive Biotechnologies (Seattle, US-WA) | Yes; EuroFlow Consortium | Ongoing [13] |
Sample quality control | Evaluable by global bone marrow cell analysis | Not possible | NA |
Quantitative | Yes | Yes | Yes |
Sensitivity | 1 in 10−5–10−6 | 1 in 10−5–10−6 | Spatial resolution limit of 5 mm for focal lesions |
Turnaround and complexity | 1–2 weeks; bioinformatic support required | 3–4 h; flow cytometry skills required; automated software available | 80–90 min for the procedure; 30 min for analysis. Requires nuclear medicine support |
Clonal evolution | Evaluable by tracking minor clonotypes | Not evaluable | Evaluable by focal lesion biopsies |
Patchy disease evaluation | No | No | Yes |
Costs | Roughly 1500 USD/sample | Roughly 300 USD/sample | Roughly 1350 USD/patient |
Reference | MRD Technique (Sensitivity) | Study Population and Treatment | Time Point Assessment | MRD Rate | Survival Outcomes |
---|---|---|---|---|---|
Paiva B. et al. 2016 [51] | MFC (10−5) | NTE NDMM pts (N = 162) Sequential or alternating VMP/Rd cycles | With response ≥VGPR after 9 or 18 sequential or alternating VMP/Rd cycles | Sequential arm: 9-cycles: 20%; 18-cycles: 46% Alternating arm: 9-cycles: 19%; 18-cycles: 33% | Median TTP: NR vs. 15 mo |
Oliva S. et al. 2017 [52] | MFC (10−5) | TE NDMM pts (N = 316) VCd induction, VMP vs. ASCT intensification, VRd vs. no consolidation followed by lenalidomide maintenance | With response ≥VGPR; pre and during maintenance | Post consolidation: 76% | 3-year PFS: 77% vs. 50% |
Ocio E.M. et al. 2018 [53] | NGF (10−5) and NGS (10−5) | NTE NDMM pts (N = 16) Isa-VRd induction followed by Isa-Rd maintenance | Longitudinal | NGF 44% (18% at 10−6) NGS 50% (33% at 10−6) | NA |
Zimmerman T. et al. 2018 [54] | MFC (10−4−10−5) and NGS (10−6) | TE NDMM pts (N = 76) 4 cycles of KRd induction-ASCT-4 cycles of KRd consolidation and 10 cycles of KRd extended consolidation | Longitudinal | MFC: post consolidation (cycle 8): 82%; post extended consolidation (cycle 18): 90% NGS: post consolidation (cycle 8): 66%; post extended consolidation (cycle 18): 71% | According to cycle 8, MRD status by MFC and/or NGS: 2-year PFS 100% vs. 93% |
Perrot A. et al. 2018 [17] | NGS (10−6) | TE NDMM pts (N = 509) 8 VRd cycles or 3 VRd + ASCT + 2 VRd cycles followed by lenalidomide maintenance | Pre or post maintenance | VRd alone arm: 20% ASCT arm: 30% | Median PFS: NR vs. 29 months |
Mateos M.V. et al. 2019 [2,3,55] | NGS (10−5) | NTE NDMM pts (N = 706) - Dara-VMp vs.- VMp arm | Longitudinal | Dara-VMp arm: 28% VMp arm: 7% | NA |
Facon T. et al. 2019 [1]. | NGS (10−5) | NTE NDMM pts (N = 737) - Dara-Rd arm - Rd arm | Longitudinal | Dara-Rd arm: 24.2% Rd arm: 7.3% | NA |
Gay F. et al. 2019 [56] | MFC (10−5) | TE NDMM pts (N = 474) - KCd-ASCT-KCd (arm A, 159); - KRd-ASCT-KRd (arm B, 158); - 12 cycles of KRd (arm C, 157). | Longitudinal | Arm A: 42% Arm B: 58% Arm C: 54% | NA |
Avet-Loiseau H. et al. 2019 [57] | MFC (10−5) and NGS (10−6) | TE NDMM pts (N = 1085) - Dara-VTd-ASCT-Dara-VTd - or VTd-ASCT-VTd | Post induction and post consolidation | Post induction MFC: Dara-VTd arm: 35%; VTd arm: 23% Post consolidation MFC: Dara-VTd arm: 64%; VTd arm: 44% Post consolidation NGS in evaluable patients: Dara-VTd arm: 39%; VTd arm 23% | NA |
Voorhees P.M. et al. 2019 [4,5,58] | NGS (10−5) | TE NDMM pts (N = 104) Dara-VRd induction, ASCT and Dara-VRd consolidation | Longitudinal | Post induction: 15% Post consolidation: 44% | NA |
Paiva B. et al. 2020 [23] | MFC (10−4, 10−6) | TE NDMM pts (N = 458) 6 VRd induction cycles, ASCT and 2 VRd consolidation cycles | CR patients, after induction, + 100 after ASCT, after consolidation | Post induction: 28% Post ASCT: 42% Post consolidation: 45% | PFS: 82% MRD neg vs. 50% MRD pos; 36 mo OS: 96% MRD neg vs. 88% MRD pos |
Costa L.J. et al. 2019 [59] | NGS (<10−5) | TE NDMM pts (N = 81) Dara-KRd induction, ASCT, Dara-KRd consolidation | Longitudinal | Post induction: 40% Post ASCT: 73% Post consolidation: 82% | NA |
Landgren O. et al. 2019 [60] | NGS (10−5) | TE and NTE NDMM pts (N = 24) 8 Dara-KRd cycles | After 8 cycles | 75% | NA |
Reference | MRD Technique (Sensitivity) | Study Population and Treatment | Time Point Assessment | MRD Rate | Outcome (mo) |
---|---|---|---|---|---|
Bahlis N. et al. 2018 [72] | NGS (10−5) | RRMM pts (N = 569) Dara-Rd vs. Rd | Longitudinal | 30% vs. 5% | Median PFS, MRD neg: NR vs. 42; MRD pos: 30 vs. 16 |
Spencer A. et al. 2018 [74] | NGS (10−5) | RRMM pts (N = 498) Dara-Vd vs. Vd | Longitudinal | 12% vs. 2% | Median PFS, MRD neg: NR vs. NR; MRD pos: NR vs. 16 |
Richardson P.G. et al. 2019 [71] | NGS (10−5) | RRMM pts (N = 307) Isa-Pd vs. Pd | Longitudinal | 5% vs. 0% | NA |
Usmani S. et al. 2019 [75] | NGS (10−5) | RRMM pts (N = 466) Dara-Kd vs. Kd | At 12 mo in pts in CR | 13% vs. 1% | NA |
Topp M.S. et. al. 2020 [76] | MFC (10−4) | RRMM pts (N = 42) AMG420 | In ≥CR | 50% of pts who received the MTD | NA |
Raje N. et al. 2019 [73] | NGS (10−4) NGS (10−5) NGS (10−6) | RRMM pts (N = 33) Anti-BCMA CAR T bb2121 | Post 1–3 mo after CAR T cell infusion | NGS (10−4): 100%; NGS (10−5): 94%; NGS (10−6): 19% | NA |
Wang B.-Y. et al. 2019 [77] | MFC, 8 colors | RRMM pts (N = 5) | Longitudinal | 68% | NA |
Madduri D. et al. 2019 [78] | NGS (10−4) NGS (10−5) NGS (10−6) | RRMM pts (N = 29) Anti-BCMA CAR T JNJ-4528 | Day +28 | NGS (10−4): 18%; NGS (10−5): 29%; NGS (10−6): 53% | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mina, R.; Oliva, S.; Boccadoro, M. Minimal Residual Disease in Multiple Myeloma: State of the Art and Future Perspectives. J. Clin. Med. 2020, 9, 2142. https://doi.org/10.3390/jcm9072142
Mina R, Oliva S, Boccadoro M. Minimal Residual Disease in Multiple Myeloma: State of the Art and Future Perspectives. Journal of Clinical Medicine. 2020; 9(7):2142. https://doi.org/10.3390/jcm9072142
Chicago/Turabian StyleMina, Roberto, Stefania Oliva, and Mario Boccadoro. 2020. "Minimal Residual Disease in Multiple Myeloma: State of the Art and Future Perspectives" Journal of Clinical Medicine 9, no. 7: 2142. https://doi.org/10.3390/jcm9072142
APA StyleMina, R., Oliva, S., & Boccadoro, M. (2020). Minimal Residual Disease in Multiple Myeloma: State of the Art and Future Perspectives. Journal of Clinical Medicine, 9(7), 2142. https://doi.org/10.3390/jcm9072142