Hybrid Polyetheretherketone (PEEK)–Acrylic Resin Prostheses and the All-on-4 Concept: A Full-Arch Implant-Supported Fixed Solution with 3 Years of Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Surgical and Prosthetic Protocols
2.3. Manufacture and CAD/CAM Guidelines
2.4. Definitive Prosthetic Protocol
2.5. Outcome Measures
2.6. Statistical Analysis
3. Results
3.1. Sample
3.2. Primary Outcome Measure
3.3. Secondary Outcome Measures
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jenkins, M.J. Relaxation behaviour in blends of PEEK and PEI. Polymer 2000, 41, 6803–6812. [Google Scholar] [CrossRef]
- Searle, O.B.; Pfeiffer, R.H. Victrex®poly(ethersulfone) (PES) and Victrex®poly(ether ether ketone) (PEEK). Polym. Eng. Sci. 1985, 25, 474–476. [Google Scholar] [CrossRef]
- Yurchenko, M.E.; Huang, J.; Robisson, A.; McKinley, G.H.; Hammond, P.T. Synthesis, mechanical properties and chemical/solvent resistance of cross-linked poly(aryl-ether-ether-ketones) at high temperatures. Polymer 2010, 51, 1914–1920. [Google Scholar] [CrossRef]
- Rivard, C.H.; Rhalmi, S.; Coillard, C. In vivo biocompatibility testing of peek polymer for a spinal implant system: A study in rabbits. J. Biomed. Mater. Res. 2002, 62, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M. Implantable PEEK polymers: A decade of progress in spine. Orthop. Des. Technol. 2010, 6, 54–58. [Google Scholar]
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef] [Green Version]
- Toth, J.M.; Wang, M.; Estes, B.T.; Scifert, J.L.; Seim, H.B., III; Turner, A.S. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 2006, 27, 324–334. [Google Scholar] [CrossRef] [Green Version]
- El Halabi, F.; Rodriguez, J.F.; Rebolledo, L.; Hurtós, E.; Doblaré, M. Mechanical characterization and numerical simulation of polyether-ether-ketone(PEEK) cranial implants. J. Mech. Behav. Biomed. Mater. 2011, 4, 1819–1832. [Google Scholar] [CrossRef]
- Jarman-Smith, M. Evolving uses for implantable PEEK and PEEK based compounds. Med. Device Technol. 2008, 19, 12–17. [Google Scholar]
- Stawarczyk, B.; Beuer, F.; Wimmer, T.; Jahn, D.; Sener, B.; Roos, M.; Schmidlin, P.R. Polyetheretherketone- A suitable material for fixed dental prostheses? J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 1209–1216. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Keul, C.; Beuer, F.; Roos, M.; Schmidlin, P.R. Tensile bond strength of veneering resins to PEEK: Impact of different adhesives. Dent. Mater. J. 2013, 32, 441–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwitalla, A.; Müller, W.D. PEEK dental implants: A review of the literature. J. Oral Implantol. 2013, 39, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Koutouzis, T.; Richardson, J.; Lundgren, T. Comparative soft and hard tissue responses to titanium and polymer healing abutments. J. Oral Implantol. 2011, 37, 174–182. [Google Scholar] [CrossRef]
- Sarot, J.R.; Contar, C.M.; Cruz, A.C.; de Souza Magini, R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J. Mater. Sci. Mater. Med. 2010, 21, 2079–2085. [Google Scholar] [CrossRef]
- Rosentritt, M.; Schneider-Feyrer, S.; Behr, M.; Preis, V. In vitro shock absorption tests on implant-supported crowns: Influence of crown materials and luting agents. Int. J. Oral Maxillofac. Implants 2018, 33, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Conserva, E.; Menini, M.; Tealdo, T.; Belivacqua, M.; Ravera, G.; Pera, F.; Pera, P. The use of a masticatory robot to analyze the shock absorption capacity of different restorative materials for prosthetic implants: A preliminary report. Int. J. Prosthodont. 2009, 22, 53–55. [Google Scholar] [PubMed]
- Menini, M.; Conserva, E.; Tealdo, T.; Belivacqua, M.; Pera, F.; Ravera, G.; Pera, P. The use of a masticatory robot to analyze the shock absorption capacity of different restorative materials for implant prosthesis. J. Biol. Res. 2011, 84, 118–119. [Google Scholar] [CrossRef]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef]
- Alexakou, E.; Damanaki, M.; Zoidis, P.; Bakiri, E.; Mouzis, N.; Smidt, G.; Kourtis, S. PEEK high performance polymers: A review of properties and clinical applications in prosthodontics and restorative dentistry. Eur. J. Prosthodont. Restor. Dent. 2019, 27, 113–121. [Google Scholar]
- Maló, P.; de Araújo Nobre, M.; Moura Guedes, C.; Almeida, R.; Silva, A.; Sereno, N.; Legatheaux, J. Short-term report of an ongoing prospective cohort study evaluating the outcome of full-arch implant-supported fixed hybrid polyetheretherketone-acrylic resin prostheses and the All-on-Four concept. Clin. Implant Dent. Relat. Res. 2018, 20, 692–702. [Google Scholar] [CrossRef]
- Han, X.; Sharma, N.; Xu, Z.; Scheideler, L.; Geis-Gerstorfer, J.; Rupp, F.; Thieringer, F.M.; Spintzyk, S. An in vitro study of osteoblast response on fused-filament fabrication 3D printed PEEK for dental and cranio-maxillofacial implants. J. Clin. Med. 2019, 31, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramenzoni, L.L.; Attin, T.; Schmidlin, P.R. In vitro effect of modified polyetheretherketone (PEEK) implant abutments on human gingival epithelial keratinocytes migration and proliferation. Materials 2019, 12, E1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.; Chowdhary, R. PEEK materials as an alternative to titanium in dental implants: A systematic review. Clin. Implant Dent. Relat. Res. 2019, 21, 208–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mounir, M.; Atef, M.; Abou-Elfetouh, A.; Hakam, M.M. Titanium and polyether ether ketone (PEEK) patient-specific sub-periosteal implants: Two novel approaches for rehabilitation of the severely atrophic anterior maxillary ridge. Int. J. Oral Maxillofac. Surg. 2018, 47, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Mounir, M.; Shalash, M.; Mounir, S.; Nassar, Y.; El Khatib, O. Assessment of three dimensional bone augmentation of severely atrophied maxillary alveolar ridges using prebent titanium mesh vs customized poly-ether-ether-ketone (PEEK) mesh: A randomized clinical trial. Clin. Implant Dent. Relat. Res. 2019, 21, 960–967. [Google Scholar] [CrossRef]
- Maló, P.; Rangert, B.; Dvärsäter, L. Immediate function of Brånemark implants in the esthetic zone: A retrospective clinical study with 6 months to 4 years of follow-up. Clin. Implant Dent. Relat. Res. 2000, 2, 138–146. [Google Scholar] [CrossRef]
- Meloni, S.M.; De Riu, G.; Pisano, M.; Cattina, G.; Tullio, A. Implant treatment software planning and guided flapless surgery with immediate provisional prosthesis delivery in the fully edentulous maxilla: A retrospective analysis of 15 consecutively treated patients. Eur. J. Oral Implantol. 2010, 3, 245–251. [Google Scholar]
- Malo, P.; de Araújo Nobre, M.; Lopes, A.; Moss, S.M.; Molina, G.J. A longitudinal study of the survival of All-on-4 implants in the mandible with up to 10 years of follow-up. J. Am. Dent. Assoc. 2011, 142, 310–320. [Google Scholar] [CrossRef]
- Maló, P.; de Araújo Nobre, M.; Lopes, A.; Francischone, C.; Rigolizzo, M. “All-on-4” immediate-function concept for completely edentulous maxillae: A clinical report on the medium (3 years) and long-term (5 years) outcomes. Clin. Implant Dent. Relat. Res. 2012, 14, e139–e150. [Google Scholar] [CrossRef]
- Maló, P.; Lopes, A.; de Araújo Nobre, M.; Ferro, A. Immediate function dental implants inserted with less than 30 N·cm of torque in full-arch maxillary rehabilitations using the All-on-4 concept: Retrospective study. Int. J. Oral Maxillofac. Surg. 2018, 47, 1079–1085. [Google Scholar] [CrossRef]
- Maló, P.; de Araújo Nobre, M.; Lopes, A.; Ferro, A.; Nunes, M. The All-on-4 concept for full-arch rehabilitation of the edentulous maxillae: A longitudinal study with 5-13 years of follow-up. Clin. Implant Dent. Relat. Res. 2019, 21, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Maló, P.; de Araújo Nobre, M.; Lopes, A.; Ferro, A.; Botto, J. The All-on-4 treatment concept for the rehabilitation of the completely edentulous mandible: A longitudinal study with 10 to 18 years of follow-up. Clin. Implant. Dent. Relat. Res. 2019, 21, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Maló, P.; Rangert, B.; Nobre, M. “All-on-Four” immediate-function concept with Brånemark System implants for completely edentulous mandibles: A retrospective clinical study. Clin. Implant Dent. Relat. Res. 2003, 5, S2–S9. [Google Scholar] [CrossRef] [PubMed]
- Maló, P.; Rangert, B.; Nobre, M. All-on-4 immediate-function concept with Brånemark System implants for completely edentulous maxillae: A 1-year retrospective clinical study. Clin. Implant Dent. Relat. Res. 2005, 7, S88–S94. [Google Scholar] [CrossRef] [PubMed]
- Francetti, L.; Agliardi, E.; Testori, T.; Romeo, D.; Taschieri, S.; Del Fabbro, M. Immediate rehabilitation of the mandible with fixed full prosthesis supported by axial and tilted implants: Interim results of a single cohort prospective study. Clin. Implant Dent. Relat. Res. 2008, 10, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Agliardi, E.; Clericò, M.; Ciancio, P.; Massironi, D. Immediate loading of full-arch fixed prostheses supported by axial and tilted implants for the treatment of edentulous atrophic mandibles. Quintessence Int. 2010, 41, 285–293. [Google Scholar]
- Agliardi, E.L.; Pozzi, A.; Stappert, C.F.; Benzi, R.; Romeo, D.; Gherlone, E. Immediate fixed rehabilitation of the edentulous maxilla: A prospective clinical and radiological study after 3 years of loading. Clin. Implant Dent. Relat. Res. 2014, 16, 292–302. [Google Scholar] [CrossRef]
- Tallarico, M.; Meloni, S.M.; Canullo, L.; Caneva, M.; Polizzi, G. Five-Year Results of a Randomized Controlled Trial Comparing Patients Rehabilitated with Immediately Loaded Maxillary Cross-Arch Fixed Dental Prosthesis Supported by Four or Six Implants Placed Using Guided Surgery. Clin. Implant Dent. Relat. Res. 2016, 18, 965–972. [Google Scholar] [CrossRef]
- Hopp, M.; de Araújo Nobre, M.; Maló, P. Comparison of marginal bone loss and implant success between axial and tilted implants in maxillary All-on-4 treatment concept rehabilitations after 5 years of follow-up. Clin. Implant Dent. Relat. Res. 2017, 19, 849–859. [Google Scholar] [CrossRef]
- Lopes, A.; Maló, P.; de Araújo Nobre, M.; Sánchez-Fernández, E.; Gravito, I. The NobelGuide® All-on-4® Treatment Concept for Rehabilitation of Edentulous Jaws: A Retrospective Report on the 7-Years Clinical and 5-Years Radiographic Outcomes. Clin. Implant Dent. Relat. Res. 2017, 19, 233–244. [Google Scholar] [CrossRef]
- Tallarico, M.; Canullo, L.; Pisano, M.; Peñarrocha-Oltra, D.; Peñarrocha-Diago, M.; Meloni, S.M. An up to 7-year retrospective analysis of biologic and technical complication with the All-on-4 Concept. J. Oral Implantol. 2016, 42, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Ayub, K.V.; Ayub, E.A.; Lins do Valle, A.; Bonfante, G.; Pegoraro, T.; Fernando, L. Seven-Year Follow-up of Full-Arch Prostheses Supported by Four Implants: A Prospective Study. Int. J. Oral Maxillofac. Implants 2017, 32, 1351–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patzelt, S.B.; Bahat, O.; Reynolds, M.A.; Strub, J.R. The all-on-four treatment concept: A systematic review. Clin. Implant Dent. Relat. Res. 2014, 16, 836–855. [Google Scholar] [CrossRef] [PubMed]
- Soto-Penaloza, D.; Zaragozí-Alonso, R.; Penarrocha-Diago, M.; Penarrocha-Diago, M. The All-on-four treatment concept: Systematic review. J. Clin. Exp. Dent. 2017, 9, e474–e488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adell, R.; Lekholm, U.; Rockler, B.; Brånemark, P.I. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int. J. Oral Surg. 1981, 10, 387–416. [Google Scholar] [CrossRef]
- Maló, P.; Nobre, M.D.; Lopes, A. The rehabilitation of completely edentulous maxillae with different degrees of resorption with four or more immediately loaded implants: A 5-year retrospective study and a new classification. Eur. J. Oral Implantol. 2011, 4, 227–243. [Google Scholar]
- Silva, A.; Legatheaux, J.; de Araújo Nobre, M.; Guedes, C.M.; Almeida, R.; Maló, P.; Sereno, N. Input Device. International Patent no. WO 2019/008368 A1, 10 January 2019. Available online: https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=0E8C0612BBCE60755A24336CF91C0833.wapp2nA?docId=WO2019008368&recNum=8489&office=&queryString=&prevFilter=&sortOption=Pub+Date+Desc&maxRec=73389249 (accessed on 11 June 2020).
- Mombelli, A.; van Oosten, M.A.; Schurch, E., Jr.; Lang, N.P. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol. Immunol. 1987, 2, 145–151. [Google Scholar] [CrossRef]
- Tallarico, M.; Cervino, G.; Scrascia, R.; Uccioli, U.; Lumbau, A.; Meloni, S.M. Minimally invasive treatment of edentulous maxillae with overdenture fully supported by a Cad/Cam titanium bar with a low-profile attachment screwed on four or six implants: A case series. Prosthesis 2020, 2, 53–64. [Google Scholar] [CrossRef]
- Hsu, Y.T.; Fu, J.H.; Al-Hezaimi, K.; Wang, H.L. Biomechanical implant treatment complications: A systematic review of clinical studies of implants with at least 1 year of functional loading. Int. J. Oral Maxillofac. Implants 2012, 27, 894–904. [Google Scholar]
- Nishigawa, K.; Bando, E.; Nakano, M. Quantitative study of bite force during sleep associated bruxism. J. Oral Rehabil. 2001, 28, 485–491. [Google Scholar] [CrossRef]
- Calderon, P.D.S.; Kogawa, E.M.; Lauris, J.R.; Conti, P.C. The influence of gender and bruxism on the human maximum bite force. J. Appl. Oral Sci. 2006, 14, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Maló, P.; Nobre, M.D.; Lopes, A. Immediate loading of ‘All-on-4’ maxillary prostheses using trans-sinus tilted implants without sinus bone grafting: A retrospective study reporting the 3-year outcome. Eur. J. Oral Implantol. 2013, 6, 273–283. [Google Scholar] [PubMed]
- Del Fabbro, M.; Ceresoli, V. The fate of marginal bone around axial vs. tilted implants: A systematic review. Eur. J. Oral Implantol 2014, 7, S171–S189. [Google Scholar] [PubMed]
- Pontoriero, R.; Tonelli, M.P.; Carnevale, G.; Mombelli, A.; Nyman, S.R.; Lang, N.P. Experimentally induced peri-implant mucositis. A clinical study in humans. Clin. Oral Implant. Res. 1994, 5, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Salvi, G.E.; Aglietta, M.; Eick, S.; Sculean, A.; Lang, N.P.; Ramseier, C.A. Reversibility of experimental peri-implant mucositis compared with experimental gingivitis in humans. Clin. Oral Implant. Res. 2012, 23, 182–190. [Google Scholar] [CrossRef]
- Rothman, K.J.; Greenland, M.A. Causation and causal inference in epidemiology. Am. J. Public Health 2005, 95, S144–S150. [Google Scholar] [CrossRef] [Green Version]
- De Araújo Nobre, M.; Mano Azul, A.; Rocha, E.; Maló, P. Risk factors of peri-implant pathology. Eur. J. Oral Sci. 2015, 123, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Albrektsson, T.; Dahlin, C.; Jemt, T.; Sennerby, L.; Turri, A.; Wennerberg, A. Is marginal bone loss around oral implants the result of a provoked foreign body reaction? Clin. Implant. Dent. Relat. Res. 2014, 16, 155–165. [Google Scholar] [CrossRef]
- Keul, C.; Liebermann, A.; Schmidlin, P.R.; Roos, M.; Sener, B.; Stawarczyk, B. Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites. J. Adhes. Dent. 2014, 16, 383–392. [Google Scholar]
- Maló, P.; Araújo Nobre, M.D.; Lopes, A.; Rodrigues, R. Double full-arch versus single full-arch, four implant-supported rehabilitations: A retrospective, 5-year cohort study. J. Prosthodont. 2015, 24, 263–270. [Google Scholar] [CrossRef]
- Aglietta, M.; Siciliano, V.I.; Zwahlen, M.; Bragger, U.; Pjetursson, B.E.; Lang, N.P.; Salvi, G.E. A systematic review of the survival and complication rates of implant supported fixed dental prostheses with cantilever extensions after an observation period of at least 5 years. Clin. Oral. Implant. Res. 2009, 20, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, K.; Chacon, G.; McGlumphy, E.; Johnston, W.; Yilmaz, B.; Kennedy, P. Evaluation of patient experience and satisfaction with immediately loaded metal-acrylic resin implant-supported fixed complete prosthesis. Int. J. Oral Maxillofac. Implants 2012, 27, 1191–1198. [Google Scholar] [PubMed]
Time | Total Number of Patients | Prostheses | ||||
---|---|---|---|---|---|---|
Total Number of Prostheses | Prosthetic Failures | Lost to Follow-Up | Withdrawn | CSR | ||
Prosthesis connection–1 year | 37 | 49 | 1 | 2 a | 0 | 98.0 |
1 year–2 years | 35 | 46 | 0 | 0 | 0 | 98.0 |
2 years–3 years | 35 | 46 | 0 | 0 | 1 b | 98.0 |
Site | All Implants | Medial Implants | Distal Implants | ||||
---|---|---|---|---|---|---|---|
1 Year | 3 Years | 1 Year | 3 Years | 1 Year | 3 Years | ||
Maxilla Single arch | Average (mm) [95% CI]: | 0.38 [0.21–0.54] | 0.50 [0.22–0.77] | 0.51 [0.23–0.78] | 0.68 [0.41–0.94] | 0.24 [0.04–0.45] | 0.32 [0.00–0.82] |
St. dev. (mm): | ±0.83 | ±0.81 | ±0.13 | ±0.54 | ±0.10 | ±1.01 | |
Mandible Single arch | Average (mm) [95% CI]: | 0.49 [0.28–0.70] | 0.48 [0.26–0.70] | 0.57 [0.25–0.90] | 0.55 [0.23–0.86] | 0.41 [0.11–0.71] | 0.41 [0.09–0.74] |
St. dev. (mm): | ±0.11 | ±0.77 | ±0.16 | ±0.76 | ±0.14 | ±0.79 | |
Bimaxillary (Total) | Average (mm) [95% CI]: | 0.29 [0.17–0.41] | 0.32 [0.18–0.46] | 0.31 [0.15–0.47] | 0.26 [0.10–0.42] | 0.27 [0.08–0.46] | 0.38 [0.14–0.62] |
St. dev. (mm): | ±0.61 | ±0.67 | ±0.08 | ±0.53 | ±0.09 | ±0.79 | |
Bimaxillary (Maxilla) | Average (mm) [95% CI]: | 0.29 [0.10–0.47] | 0.29 [0.06–0.51] | 0.21 [0.04–0.37] | 0.22 [0.00–0.48] | 0.38 [0.00–0.77] | 0.36 [0.00–0.74] |
St. dev. (mm): | ±0.09 | ±0.73 | ±0.08 | ±0.58 | ±0.18 | ±0.86 | |
Bimaxillary (Mandible) | Average (mm) [95% CI]: | 0.51 [0.16–0.86] | 0.35 [0.17–0.54] | 0.50 [0.00–1.21] | 0.31 [0.09–0.52] | 0.53 [0.05–1.00] | 0.40 [0.07–0.73] |
St. dev. (mm): | ±0.16 | ±0.61 | ±0.28 | ±0.48 | ±0.19 | ±0.73 |
Patient | Gender | Follow Up (Months) | Position (FDI) | Type Rehabilitation | Opposing Dentition | Resolution |
---|---|---|---|---|---|---|
1 | Male | 5 | #12, #22, #25, #35 | Bimaxillary | Implant-supported prosthesis | New prostheses due to fracture of PEEK infrastructure |
2 | Male | 2 | #35 | Mandibular | Mucosal-retained full-arch prosthesis | To increase flexion resistance, the cylinder areas were left with increased amounts of exposed PEEK; to increase mechanical retention in PEEK infrastructure, a tungsten bur was used; to increase tensile bond strength, the bonding primer was replaced |
3 | Female | 4 | #46 | Mandibular | Natural teeth and implant-supported prosthesis | |
4 | Female | 10 | #45 | Mandibular | Mucosal-retained full-arch prosthesis | |
5 | Female | 12 | #35 | Mandibular | Mucosal-retained full-arch prosthesis | |
6 | Female | 12 | #15, #22 | Bimaxillary | Implant-supported prosthesis | |
7 | Female | 16 | #26 | Maxillary | Natural teeth | |
8 | Female | 30 | #35 | Mandibular | Implant-supported prosthesis | |
9 | Male | 32 | #12 | Maxillary | Implant-supported prosthesis |
Patient | Gender | Opposing Dentition | Cantilever Units (Left/Right) in mm | Follow Up in Months | Acrylic Resin Crown Fracture (Position FDI) | Abutment Wearing (Position FDI) | Abutment Loosening (Position FDI) | Prosthetic Screw Loosening (Position FDI) | Resolution |
---|---|---|---|---|---|---|---|---|---|
1 | Male | ISP | 0/0 (maxilla); 10/10 (mandible) | 5 | #12,22,#35 | 1; Patient fractured PEEK infrastructure | |||
2 | Male | ISP | 13.25/5 | 16 | #32 | #42 | 1 | ||
3 | Male | ISP | 13.25/16.5 | 22 | #41 | 1 | |||
4 | Female | NT | 10/10 | 15 | #45 | 2 | |||
5 | Female | ISP | 10/5 | 16 | #45 | #42 | 3 | ||
6 | Female | ISP | 16.5/16.5 | 16 | #42 | 3 | |||
7 | Female | ISP | 10/10 (maxilla); 0/0 (mandible) | 8 | #25,#35, #45 | 3 | |||
8 | Female | ISP | 0/0 | 4 | #15 | 3 | |||
9 | Male | NT | 11/11 | 20 | #16, #26 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araújo Nobre, M.; Moura Guedes, C.; Almeida, R.; Silva, A.; Sereno, N. Hybrid Polyetheretherketone (PEEK)–Acrylic Resin Prostheses and the All-on-4 Concept: A Full-Arch Implant-Supported Fixed Solution with 3 Years of Follow-Up. J. Clin. Med. 2020, 9, 2187. https://doi.org/10.3390/jcm9072187
de Araújo Nobre M, Moura Guedes C, Almeida R, Silva A, Sereno N. Hybrid Polyetheretherketone (PEEK)–Acrylic Resin Prostheses and the All-on-4 Concept: A Full-Arch Implant-Supported Fixed Solution with 3 Years of Follow-Up. Journal of Clinical Medicine. 2020; 9(7):2187. https://doi.org/10.3390/jcm9072187
Chicago/Turabian Stylede Araújo Nobre, Miguel, Carlos Moura Guedes, Ricardo Almeida, António Silva, and Nuno Sereno. 2020. "Hybrid Polyetheretherketone (PEEK)–Acrylic Resin Prostheses and the All-on-4 Concept: A Full-Arch Implant-Supported Fixed Solution with 3 Years of Follow-Up" Journal of Clinical Medicine 9, no. 7: 2187. https://doi.org/10.3390/jcm9072187
APA Stylede Araújo Nobre, M., Moura Guedes, C., Almeida, R., Silva, A., & Sereno, N. (2020). Hybrid Polyetheretherketone (PEEK)–Acrylic Resin Prostheses and the All-on-4 Concept: A Full-Arch Implant-Supported Fixed Solution with 3 Years of Follow-Up. Journal of Clinical Medicine, 9(7), 2187. https://doi.org/10.3390/jcm9072187