Impacts of High Intra- and Inter-Individual Variability in Tacrolimus Pharmacokinetics and Fast Tacrolimus Metabolism on Outcomes of Solid Organ Transplant Recipients
Abstract
:1. Introduction
2. Intra-Individual and Inter-Individual Tacrolimus PK Variability
3. Fast Tacrolimus Metabolizers at Risk
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Group KDIGOTW. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2009, 9 (Suppl. 3), S1–S155. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, D.; Poznański, P.; Kuriata-Kordek, M.; Zielińska, D.; Mazanowska, O.; Kościelska-Kasprzak, K.; Krajewska, M. Conversion From a Twice-Daily to a Once-Daily Tacrolimus Formulation in Kidney Transplant Recipients. Transplant. Proc. 2020. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Patel, T.; Miller, J.A.; Torrice, C.D.; Aggarwal, M.; Sketch, M.R.; Alexander, M.D.; Armistead, P.M.; Coghill, J.M.; Grgic, T.; et al. Influence of Germline Genetics on Tacrolimus Pharmacokinetics and Pharmacodynamics in Allogeneic Hematopoietic Stem Cell Transplant Patients. Int. J. Mol. Sci. 2020, 21, 858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abecassis, M.M.; Seifeldin, R.; Riordan, M. Patient outcomes and economics of once-daily tacrolimus in renal transplant patients: Results of a modeling analysis. Transplant. Proc. 2008, 40, 1443–1445. [Google Scholar] [CrossRef] [PubMed]
- Tinti, F.; Meçule, A.; Poli, L.; Bachetoni, A.; Umbro, I.; Brunini, F.; Barile, M.; Nofroni, I.; Berloco, P.; Mitterhofer, A. Improvement of graft function after conversion to once daily tacrolimus of stable kidney transplant patients. Transplant. Proc. 2010, 42, 4047–4048. [Google Scholar] [CrossRef] [PubMed]
- Uchida, J.; Kuwabara, N.; Machida, Y.; Iwai, T.; Naganuma, T.; Kumada, N.; Nakatani, T. Conversion of stable kidney transplant recipients from a twice-daily prograf to a once-daily tacrolimus formulation: A short-term study on its effects on glucose metabolism. Transplant. Proc. 2012, 44, 128–133. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Ishida, K.; Ito, S.; Deguchi, T. Effect of conversion from twice-daily to once-daily tacrolimus on glucose intolerance in stable kidney transplant recipients. Transplant. Proc. 2012, 44, 118–120. [Google Scholar] [CrossRef]
- Ruangkanchanasetr, P.; Sanohdontree, N.; Supaporn, T.; Sathavarodom, N.; Satirapoj, B. Beta cell function and insulin resistance after conversion from tacrolimus twice-daily to extended-release tacrolimus once-daily in stable renal transplant recipients. Med. Sci. Monit. 2016, 21, 765–774. [Google Scholar] [CrossRef]
- Cross, S.A.; Perry, C.M. Tacrolimus Once-Daily Formulation. Drugs 2007, 67, 1931–1943. [Google Scholar] [CrossRef]
- First, M.R. First clinical experience with the new once-daily formulation of tacrolimus. Ther. Drug Monit. 2008, 30, 159–166. [Google Scholar] [CrossRef]
- Hardinger, K.L.; Park, J.M.; Schnitzler, M.A.; Koch, M.J.; Miller, B.W.; Brennan, D.C. Pharmacokinetics of tacrolimus in kidney transplant recipients: Twice daily versus once daily dosing. Am. J. Transplant. 2004, 4, 621–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alloway, R.; Steinberg, S.; Khalil, K.; Gourishankar, S.; Miller, J.; Norman, D.; Hariharan, S.; Pirsch, J.; Matas, A.; Zaltzman, J. Conversion of stable kidney transplant recipients from a twice daily Prograf-based regimen to a once daily modified release tacrolimus-based regimen. Transplant. Proc. 2005, 37, 867–870. [Google Scholar] [CrossRef] [PubMed]
- Alloway, R.; Steinberg, S.; Khalil, K.; Gourishankar, S.; Miller, J.; Norman, D.; Hariharan, S.; Pirsch, J.; Matas, A.; Zaltzman, J. Two years postconversion from a prograf-based regimen to a once-daily tacrolimus extended-release formulation in stable kidney transplant recipients. Transplantation 2007, 83, 1648–1651. [Google Scholar] [CrossRef] [PubMed]
- Undre, N.A. Pharmacokinetics of tacrolimus-based combination therapies. Nephrol. Dial. Transplant. 2003, 18 (Suppl. 1), i12–i15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallemacq, P.E.; Verbeeck, R.K. Comparative clinical pharmacokinetics of tacrolimus in paediatric and adult patients. Clin. Pharmacokinet. 2001, 40, 283–295. [Google Scholar] [CrossRef]
- Staatz, C.E.; Tett, S.E. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin. Pharmacokinet. 2004, 43, 623–653. [Google Scholar] [CrossRef]
- Hesselink, D.A.; Bouamar, R.; Elens, L.; van Schaik, R.H.; van Gelder, T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin. Pharmacokinet. 2014, 53, 123–139. [Google Scholar] [CrossRef]
- Shuker, N.; van Gelder, T.; Hesselink, D.A. Intra-patient variability in tacrolimus exposure: Causes, consequences for clinical management. Transplant. Rev. 2015, 29, 78–84. [Google Scholar] [CrossRef]
- Burkhard, J.; Ciurea, A.; Gabay, C.; Hasler, P.; Müller, R.; Niedrig, M.; Fehr, J.; Villiger, P.; Visser, L.G.; de Visser, A.W.; et al. Long-term immunogenicity after yellow fever vaccination in immunosuppressed and healthy individuals. Vaccine 2020, 38, 3610–3617. [Google Scholar] [CrossRef]
- Kaur, A.; Goggolidou, P. Ulcerative colitis: Understanding its cellular pathology could provide insights into novel therapies. J. Inflamm. 2020, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Abu-Sbeih, H.; Wang, Y. Management Considerations for Immune Checkpoint Inhibitor-Induced Enterocolitis Based on Management of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2020, 26, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Bozon, A.; Debourdeau, A.; Boivineau, L. Liver transplantation for fulminant herpes simplex hepatitis in a patient treated with adalimumab for chronic pouchitis. J. Crohn’s Colitis 2020. [Google Scholar] [CrossRef] [PubMed]
- Andrews, L.M.; Li, Y.; De Winter, B.C.M.; Shi, Y.Y.; Baan, C.C.; Van Gelder, T.; Hesselink, D.A. Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Brunet, M.; van Gelder, T.; Åsberg, A.; Haufroid, V.; Hesselink, D.A.; Langman, L.; Lemaitre, F.; Marquet, P.; Seger, C.; Shipkova, M.; et al. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther. Drug Monit. 2019, 41, 261–307. [Google Scholar] [CrossRef]
- Mendoza Rojas, A.; Hesselink, D.A.; van Besouw, N.M.; Baan, C.C.; van Gelder, T. Impact of low tacrolimus exposure and high tacrolimus intra-patient variability on the development of de novo anti-HLA donor-specific antibodies in kidney transplant recipients. Expert Rev. Clin. Immunol. 2019, 15, 1323–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebid, A.-H.; Mohamed, S.; Mira, A.; Saleh, A. Pharmacokinetics of Tacrolimus in Egyptian Liver Transplant Recipients: Role of the Classic Co-variables. J. Adv. Pharm. Res. 2019, 3, 182–193. [Google Scholar] [CrossRef]
- Andreu, F.; Colom, H.; Elens, L.; van Gelder, T.; van Schaik, R.H.N.; Hesselink, D.A.; Bestard, O.; Torras, J.; Cruzado, J.M.; Grinyó, J.M.; et al. A New CYP3A5*3 and CYP3A4*22 Cluster Influencing Tacrolimus Target Concentrations: A Population Approach. Clin. Pharmacokinet. 2017, 56, 963–975. [Google Scholar] [CrossRef]
- Andrews, L.M.; Hesselink, D.A.; van Gelder, T.; Koch, B.C.P.; Cornelissen, E.A.M.; Brüggemann, R.J.M.; van Schaik, R.H.N.; de Wildt, S.N.; Cransberg, K.; de Winter, B.C.M. A Population Pharmacokinetic Model to Predict the Individual Starting Dose of Tacrolimus Following Pediatric Renal Transplantation. Clin. Pharmacokinet. 2018, 57, 475–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Hebert, M.F.; Isoherranen, N.; Davis, C.L.; Marsh, C.; Shen, D.D.; Thummel, K.E. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab. Dispos. 2006, 34, 836–847. [Google Scholar] [CrossRef] [Green Version]
- Anglicheau, D.; Verstuyft, C.; Laurent-Puig, P.; Becquemont, L.; Schlageter, M.H.; Cassinat, B.; Beaune, P.; Legendre, C.; Thervet, E. Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J. Am. Soc. Nephrol. 2003, 14, 1889–1896. [Google Scholar] [CrossRef] [Green Version]
- Brooks, E.; Tett, S.E.; Isbel, N.M.; Staatz, C.E. Population Pharmacokinetic Modelling and Bayesian Estimation of Tacrolimus Exposure: Is this Clinically Useful for Dosage Prediction Yet? Clin. Pharmacokinet. 2016, 55, 1295–1335. [Google Scholar] [CrossRef] [PubMed]
- Lamba, J.; Hebert, J.M.; Schuetz, E.G.; Klein, T.E.; Altman, R.B. PharmGKB summary: Very important pharmacogene information for CYP3A5. Pharm. Genom. 2012, 22, 555–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staatz, C.E.; Tett, S.E. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin. Pharmacokinet. 2007, 46, 13–58. [Google Scholar] [CrossRef] [PubMed]
- Picard, N.; Cresteil, T.; Prémaud, A.; Marquet, P. Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther. Drug Monit. 2004, 26, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.; Partovi, N.; Ting, L.S.; Ensom, M.H. Corticosteroid interactions with cyclosporine, tacrolimus, mycophenolate, and sirolimus: Fact or fiction? Ann. Pharmacother. 2008, 42, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- van Duijnhoven, E.M.; Boots, J.M.; Christiaans, M.H.; Stolk, L.M.; Undre, N.A.; van Hooff, J.P. Increase in tacrolimus trough levels after steroid withdrawal. Transpl. Int. 2003, 16, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Squifflet, J.-P.; Vanrenterghem, Y.; Van Hooff, J.; Salmela, K.; Rigotti, P. Safe withdrawal of corticosteroids or mycophenolate mofetil: Results of a large, prospective, multicenter, randomized study. Transplant. Proc. 2002, 34, 1584–1586. [Google Scholar] [CrossRef]
- Wallemacq, P.; Armstrong, V.W.; Brunet, M.; Haufroid, V.; Holt, D.W.; Johnston, A.; Kuypers, D.; Le Meur, Y.; Marquet, P.; Oellerich, M.; et al. Opportunities to optimize tacrolimus therapy in solid organ transplantation: Report of the European consensus conference. Ther. Drug Monit. 2009, 31, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Hesselink, D.A.; van Schaik, R.H.; van der Heiden, I.P.; van der Werf, M.; Gregoor, P.J.; Lindemans, J.; Weimar, W.; van Gelder, T. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther. 2003, 74, 245–254. [Google Scholar] [CrossRef]
- Gervasini, G.; Garcia, M.; Macias, R.M.; Cubero, J.J.; Caravaca, F.; Benitez, J. Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transpl. Int. 2012, 25, 471–480. [Google Scholar] [CrossRef]
- Provenzani, A.; Notarbartolo, M.; Labbozzetta, M.; Poma, P.; Biondi, F.; Sanguedolce, R.; Vizzini, G.; Palazzo, U.; Polidori, P.; Triolo, F.; et al. The effect of CYP3A5 and ABCB1 single nucleotide polymorphisms on tacrolimus dose requirements in Caucasian liver transplant patients. Ann. Transplant. 2009, 14, 23–31. [Google Scholar] [PubMed]
- Goto, M.; Masuda, S.; Kiuchi, T.; Ogura, Y.; Oike, F.; Okuda, M.; Tanaka, K.; Inui, K. CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics 2004, 14, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Uesugi, M.; Masuda, S.; Katsura, T.; Oike, F.; Takada, Y.; Inui, K. Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharm. Genom. 2006, 16, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Chakkera, H.A.; Chang, Y.H.; Bodner, J.K.; Behmen, S.; Heilman, R.L.; Reddy, K.S.; Mulligan, D.C.; Moss, A.A.; Khamash, H.; Katariya, N.; et al. Genetic differences in Native Americans and tacrolimus dosing after kidney transplantation. Transplant. Proc. 2013, 45, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Sanghavi, K.; Brundage, R.C.; Miller, M.B.; Schladt, D.P.; Israni, A.K.; Guan, W.; Oetting, W.S.; Mannon, R.B.; Remmel, R.P.; Matas, A.J.; et al. Genotype-guided tacrolimus dosing in African-American kidney transplant recipients. Pharm. J. 2017, 17, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, K. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab. Pharmacokinet. 2007, 22, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Elens, L.; Capron, A.; Kerckhove, V.V.; Lerut, J.; Mourad, M.; Lison, D.; Wallemacq, P.; Haufroid, V. 1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation. Pharm. Genom. 2007, 17, 873–883. [Google Scholar] [CrossRef]
- López-Montenegro Soria, M.A.; Kanter Berga, J.; Beltrán Catalán, S.; Milara Payá, J.; Pallardó Mateu, L.M.; Jiménez Torres, N.V. Genetic polymorphisms and individualized tacrolimus dosing. Transplant. Proc. 2010, 42, 3031–3033. [Google Scholar] [CrossRef]
- Wang, W.-L.; Jin, J.; Zheng, S.-S.; Wu, L.-H.; Liang, T.-B.; Yu, S.-F.; Yan, S. Tacrolimus dose requirement in relation to donor and recipient ABCB1 and CYP3A5 gene polymorphisms in Chinese liver transplant patients. Liver Transpl. 2006, 12, 775–780. [Google Scholar] [CrossRef]
- Asano, T.; Nishimoto, K.; Hayakawa, M. Increased tacrolimus trough levels in association with severe diarrhea, a case report. Transplant. Proc. 2004, 36, 2096–2097. [Google Scholar] [CrossRef]
- Leroy, S.; Isapof, A.; Fargue, S.; Fakhoury, M.; Bensman, A.; Deschênes, G.; Jacqz-Aigrain, E.; Ulinski, T. Tacrolimus nephrotoxicity: Beware of the association of diarrhea, drug interaction and pharmacogenetics. Pediatr. Nephrol. 2010, 25, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Amada, N.; Sato, T.; Miura, S.; Ohashi, Y.; Sekiguchi, S.; Satomi, S.; Okazaki, H. Severe elevations of FK506 blood concentration due to diarrhea in renal transplant recipients. Clin. Transplant. 2004, 18, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Bekersky, I.; Dressler, D.; Mekki, Q.A. Effect of low- and high-fat meals on tacrolimus absorption following 5 mg single oral doses to healthy human subjects. J. Clin. Pharmacol. 2001, 41, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.; Burke, M.T.; Johnson, D.W.; Francis, R.S.; Mudge, D.W. Tacrolimus Toxicity due to Biliary Obstruction in a Combined Kidney and Liver Transplant Recipient. Case Rep. Transplant. 2017, 2017, 9096435. [Google Scholar] [CrossRef]
- Shin, S.H.; Yahng, S.A.; Yoon, J.H.; Lee, S.E.; Cho, B.S.; Kim, Y.J. Hepatic veno-occlusive disease resulting in tacrolimus toxicity after allogeneic hematopoietic stem cell transplantation. Blood Res. 2013, 48, 55–57. [Google Scholar] [CrossRef] [Green Version]
- Tron, C.; Lemaitre, F.; Verstuyft, C.; Petitcollin, A.; Verdier, M.C.; Bellissant, E. Pharmacogenetics of Membrane Transporters of Tacrolimus in Solid Organ Transplantation. Clin. Pharmacokinet. 2019, 58, 593–613. [Google Scholar] [CrossRef]
- Borra, L.C.; Roodnat, J.I.; Kal, J.A.; Mathot, R.A.; Weimar, W.; van Gelder, T. High within-patient variability in the clearance of tacrolimus is a risk factor for poor long-term outcome after kidney transplantation. Nephrol. Dial. Transplant. 2010, 25, 2757–2763. [Google Scholar] [CrossRef] [Green Version]
- Kuypers, D.R.J. Intrapatient Variability of Tacrolimus Exposure in Solid Organ Transplantation: A Novel Marker for Clinical Outcome. Clin. Pharmacol. Ther. 2020, 107, 347–358. [Google Scholar] [CrossRef]
- Del Bello, A.; Congy-Jolivet, N.; Danjoux, M.; Muscari, F.; Lavayssière, L.; Esposito, L.; Hebral, A.L.; Bellière, J.; Kamar, N. High tacrolimus intra-patient variability is associated with graft rejection, and de novo donor-specific antibodies occurrence after liver transplantation. World J. Gastroenterol. 2018, 24, 1795–1802. [Google Scholar] [CrossRef]
- Vandevoorde, K.; Ducreux, S.; Bosch, A.; Guillaud, O.; Hervieu, V.; Chambon-Augoyard, C.; Poinsot, D.; André, P.; Scoazec, J.Y.; Robinson, P.; et al. Prevalence, Risk Factors, and Impact of Donor-Specific Alloantibodies After Adult Liver Transplantation. Liver Transpl. 2018, 24, 1091–1100. [Google Scholar] [CrossRef] [Green Version]
- van der Veer, M.A.A.; Nangrahary, N.; Hesselink, D.A.; Erler, N.S.; Metselaar, H.J.; van Gelder, T.; Darwish Murad, S. High Intrapatient Variability in Tacrolimus Exposure Is Not Associated With Immune-mediated Graft Injury After Liver Transplantation. Transplantation 2019, 103, 2329–2337. [Google Scholar] [CrossRef] [PubMed]
- Schütte-Nütgen, K.; Thölking, G.; Steinke, J.; Pavenstädt, H.; Schmidt, R.; Suwelack, B.; Reuter, S. Fast Tac Metabolizers at Risk ⁻ It is Time for a C/D Ratio Calculation. J. Clin. Med. 2019, 8, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaya Aksoy, G.; Comak, E.; Koyun, M.; Akbaş, H.; Akkaya, B.; Aydınlı, B.; Uçar, F.; Akman, S. Tacrolimus Variability: A Cause of Donor-Specific Anti-HLA Antibody Formation in Children. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Shuker, N.; Shuker, L.; van Rosmalen, J.; Roodnat, J.I.; Borra, L.C.; Weimar, W.; Hesselink, D.A.; van Gelder, T. A high intrapatient variability in tacrolimus exposure is associated with poor long-term outcome of kidney transplantation. Transpl. Int. 2016, 29, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Gatault, P.; Kamar, N.; Büchler, M.; Colosio, C.; Bertrand, D.; Durrbach, A.; Albano, L.; Rivalan, J.; Le Meur, Y.; Essig, M.; et al. Reduction of Extended-Release Tacrolimus Dose in Low-Immunological-Risk Kidney Transplant Recipients Increases Risk of Rejection and Appearance of Donor-Specific Antibodies: A Randomized Study. Am. J. Transplant. 2017, 17, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Pizzo, H.P.; Ettenger, R.B.; Gjertson, D.W.; Reed, E.F.; Zhang, J.; Gritsch, H.A.; Tsai, E.W. Sirolimus and tacrolimus coefficient of variation is associated with rejection, donor-specific antibodies, and nonadherence. Pediatr. Nephrol. 2016, 31, 2345–2352. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, E.; Segundo, D.S.; Fernández-Fresnedo, G.; López-Hoyos, M.; Benito, A.; Ruiz, J.C.; de Cos, M.A.; Arias, M. Within-Patient Variability in Tacrolimus Blood Levels Predicts Kidney Graft Loss and Donor-Specific Antibody Development. Transplantation 2016, 100, 2479–2485. [Google Scholar] [CrossRef]
- Wiebe, C.; Rush, D.N.; Nevins, T.E.; Birk, P.E.; Blydt-Hansen, T.; Gibson, I.W.; Goldberg, A.; Ho, J.; Karpinski, M.; Pochinco, D.; et al. Class II Eplet Mismatch Modulates Tacrolimus Trough Levels Required to Prevent Donor-Specific Antibody Development. J. Am. Soc. Nephrol. 2017, 28, 3353–3362. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.; Gralla, J.; Klem, P.; Tong, S.; Wedermyer, G.; Freed, B.; Wiseman, A.; Cooper, J.E. Lower tacrolimus exposure and time in therapeutic range increase the risk of de novo donor-specific antibodies in the first year of kidney transplantation. Am. J. Transplant. 2018, 18, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.Y.; Kim, S.H.; Seo, M.Y.; Cho, S.Y.; Yang, Y.; Choi, J.Y.; Cho, J.H.; Park, S.H.; Kim, Y.L.; Kim, H.K.; et al. Characteristics and Clinical Significance of De Novo Donor-Specific Anti-HLA Antibodies after Kidney Transplantation. J. Korean Med. Sci. 2018, 33, e217. [Google Scholar] [CrossRef]
- Girerd, S.; Schikowski, J.; Girerd, N.; Duarte, K.; Busby, H.; Gambier, N.; Ladrière, M.; Kessler, M.; Frimat, L.; Aarnink, A. Impact of reduced exposure to calcineurin inhibitors on the development of de novo DSA: A cohort of non-immunized first kidney graft recipients between 2007 and 2014. BMC Nephrol. 2018, 19, 232. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Kahaar, E.; Winter, S.; Tremmel, R.; Schaeffeler, E.; Olbricht, C.J.; Wieland, E.; Schwab, M.; Shipkova, M.; Jaeger, S.U. The Impact of CYP3A4*22 on Tacrolimus Pharmacokinetics and Outcome in Clinical Practice at a Single Kidney Transplant Center. Front. Genet. 2019, 10, 871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oetting, W.S.; Wu, B.; Schladt, D.P.; Guan, W.; Remmel, R.P.; Dorr, C.; Mannon, R.B.; Matas, A.J.; Israni, A.K.; Jacobson, P.A. Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients. Pharmacogenomics 2018, 19, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Birdwell, K.A.; Decker, B.; Barbarino, J.M.; Peterson, J.F.; Stein, C.M.; Sadee, W.; Wang, D.; Vinks, A.A.; He, Y.; Swen, J.J.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin. Pharmacol. Ther. 2015, 98, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Haufroid, V.; Mourad, M.; Van Kerckhove, V.; Wawrzyniak, J.; De Meyer, M.; Eddour, D.C.; Malaise, J.; Lison, D.; Squifflet, J.P.; Wallemacq, P. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 2004, 14, 147–154. [Google Scholar] [CrossRef]
- Press, R.R.; Ploeger, B.A.; den Hartigh, J.; van der Straaten, T.; van Pelt, J.; Danhof, M.; de Fijter, J.W.; Guchelaar, H.J. Explaining variability in tacrolimus pharmacokinetics to optimize early exposure in adult kidney transplant recipients. Ther. Drug Monit. 2009, 31, 187–197. [Google Scholar] [CrossRef]
- Hodges, L.M.; Markova, S.M.; Chinn, L.W.; Gow, J.M.; Kroetz, D.L.; Klein, T.E.; Altman, R.B. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharm. Genom. 2011, 21, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Sapir-Pichhadze, R.; Wang, Y.; Famure, O.; Li, Y.; Kim, S.J. Time-dependent variability in tacrolimus trough blood levels is a risk factor for late kidney transplant failure. Kidney Int. 2014, 85, 1404–1411. [Google Scholar] [CrossRef] [Green Version]
- van Gelder, T. Within-patient variability in immunosuppressive drug exposure as a predictor for poor outcome after transplantation. Kidney Int. 2014, 85, 1267–1268. [Google Scholar] [CrossRef] [Green Version]
- Süsal, C.; Döhler, B. Late intra-patient tacrolimus trough level variability as a major problem in kidney transplantation: A Collaborative Transplant Study Report. Am. J. Transplant. 2019, 19, 2805–2813. [Google Scholar] [CrossRef]
- O’Regan, J.A.; Canney, M.; Connaughton, D.M.; O’Kelly, P.; Williams, Y.; Collier, G.; deFreitas, D.G.; O’Seaghdha, C.M.; Conlon, P.J. Tacrolimus trough-level variability predicts long-term allograft survival following kidney transplantation. J. Nephrol. 2016, 29, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Knight, S.R. Intrapatient variability in tacrolimus exposure—A useful tool for clinical practice? Transpl. Int. 2016, 29, 1155–1157. [Google Scholar] [CrossRef]
- Jouve, T.; Fonrose, X.; Noble, J.; Janbon, B.; Fiard, G.; Malvezzi, P.; Stanke-Labesque, F.; Rostaing, L. The TOMATO Study (Tacrolimus Metabolization in Kidney Transplantation): Impact of the Concentration–Dose Ratio on Death-censored Graft Survival. Transplantation 2020, 104, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Sablik, K.A.; Clahsen-van Groningen, M.C.; Hesselink, D.A.; van Gelder, T.; Betjes, M.G.H. Tacrolimus intra-patient variability is not associated with chronic active antibody mediated rejection. PLoS ONE 2018, 13, e0196552. [Google Scholar] [CrossRef] [Green Version]
- Egeland, E.J.; Robertsen, I.; Hermann, M.; Midtvedt, K.; Størset, E.; Gustavsen, M.T.; Reisæter, A.V.; Klaasen, R.; Bergan, S.; Holdaas, H.; et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. Transplantation 2017, 101, e273–e279. [Google Scholar] [CrossRef] [Green Version]
- Egeland, E.J.; Reisæter, A.V.; Robertsen, I.; Midtvedt, K.; Strøm, E.H.; Holdaas, H.; Hartmann, A.; Åsberg, A. High tacrolimus clearance—A risk factor for development of interstitial fibrosis and tubular atrophy in the transplanted kidney: A retrospective single-center cohort study. Transpl. Int. 2019, 32, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, M.; Górska, M.; Nowicka, Z.; Edyko, K.; Edyko, P.; Wiślicki, S.; Zawiasa-Bryszewska, A.; Strzelczyk, J.; Matych, J.; Kurnatowska, I. Tacrolimus: Influence of the Posttransplant Concentration/Dose Ratio on Kidney Graft Function in a Two-Year Follow-Up. Kidney Blood Press. Res. 2019, 44, 1075–1088. [Google Scholar] [CrossRef] [PubMed]
- Thölking, G.; Fortmann, C.; Koch, R.; Gerth, H.U.; Pabst, D.; Pavenstädt, H.; Kabar, I.; Hüsing, A.; Wolters, H.; Reuter, S.; et al. The tacrolimus metabolism rate influences renal function after kidney transplantation. PLoS ONE 2014, 9, e111128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thölking, G.; Schütte-Nütgen, K.; Schmitz, J.; Rovas, A.; Dahmen, M.; Bautz, J.; Jehn, U.; Pavenstädt, H.; Heitplatz, B.; Van Marck, V.; et al. A Low Tacrolimus Concentration/Dose Ratio Increases the Risk for the Development of Acute Calcineurin Inhibitor-Induced Nephrotoxicity. J. Clin. Med. 2019, 8, 1586. [Google Scholar] [CrossRef] [Green Version]
- Thölking, G.; Siats, L.; Fortmann, C.; Koch, R.; Hüsing, A.; Cicinnati, V.R.; Gerth, H.U.; Wolters, H.H.; Anthoni, C.; Pavenstädt, H.; et al. Tacrolimus Concentration/Dose Ratio is Associated with Renal Function After Liver Transplantation. Ann. Transplant. 2016, 21, 167–179. [Google Scholar] [CrossRef]
- Rančić, N.; Dragojević-Simić, V.; Vavić, N.; Kovačević, A.; Šegrt, Z.; Drašković-Pavlović, B.; Mikov, M. Tacrolimus concentration/dose ratio as a therapeutic drug monitoring strategy: The influence of gender and comedication. Vojnosanit. Pregl. 2015, 72, 813–822. [Google Scholar] [CrossRef]
- von Einsiedel, J.; Thölking, G.; Wilms, C.; Vorona, E.; Bokemeyer, A.; Schmidt, H.H.; Kabar, I.; Hüsing-Kabar, A. Conversion from Standard-Release Tacrolimus to MeltDose(®) Tacrolimus (LCPT) Improves Renal Function after Liver Transplantation. J. Clin. Med. 2020, 9, 1654. [Google Scholar] [CrossRef] [PubMed]
- Schutte-Nutgen, K.; Tholking, G.; Suwelack, B.; Reuter, S. Tacrolimus—Pharmacokinetic Considerations for Clinicians. Curr. Drug Metab. 2018, 19, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Rojas, L.; Neumann, I.; Herrero, M.J.; Bosó, V.; Reig, J.; Poveda, J.L.; Megías, J.; Bea, S.; Aliño, S.F. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: A systematic review and meta-analysis of observational studies. Pharm. J. 2015, 15, 38–48. [Google Scholar] [CrossRef]
- Picard, N.; Bergan, S.; Marquet, P.; van Gelder, T.; Wallemacq, P.; Hesselink, D.A.; Haufroid, V. Pharmacogenetic Biomarkers Predictive of the Pharmacokinetics and Pharmacodynamics of Immunosuppressive Drugs. Ther. Drug Monit. 2016, 38 (Suppl. 1), S57–S69. [Google Scholar] [CrossRef]
- Passey, C.; Birnbaum, A.K.; Brundage, R.C.; Oetting, W.S.; Israni, A.K.; Jacobson, P.A. Dosing equation for tacrolimus using genetic variants and clinical factors. Br. J. Clin. Pharmacol. 2011, 72, 948–957. [Google Scholar] [CrossRef]
- Bartmann, I.; Schütte-Nütgen, K.; Suwelack, B.; Reuter, S. Early postoperative calculation of the tacrolimus concentration-to-dose ratio does not predict outcomes after kidney transplantation. Transpl. Int. 2020, 33, 689–691. [Google Scholar] [CrossRef]
- Bardou, F.N.; Guillaud, O.; Erard-Poinsot, D.; Chambon-Augoyard, C.; Thimonier, E.; Vallin, M.; Boillot, O.; Dumortier, J. Tacrolimus exposure after liver transplantation for alcohol-related liver disease: Impact on complications. Transpl. Immunol. 2019, 56, 101227. [Google Scholar] [CrossRef] [PubMed]
- Gonschior, A.K.; Christians, U.; Winkler, M.; Linck, A.; Baumann, J.; Sewing, K.F. Tacrolimus (FK506) metabolite patterns in blood from liver and kidney transplant patients. Clin. Chem. 1996, 42, 1426–1432. [Google Scholar] [CrossRef] [Green Version]
- Zegarska, J.; Hryniewiecka, E.; Zochowska, D.; Samborowska, E.; Jazwiec, R.; Borowiec, A.; Tszyrsznic, W.; Chmura, A.; Nazarewski, S.; Dadlez, M.; et al. Tacrolimus Metabolite M-III May Have Nephrotoxic and Myelotoxic Effects and Increase the Incidence of Infections in Kidney Transplant Recipients. Transplant. Proc. 2016, 48, 1539–1542. [Google Scholar] [CrossRef]
- Zegarska, J.; Hryniewiecka, E.; Zochowska, D.; Samborowska, E.; Jazwiec, R.; Maciej, K.; Nazarewski, S.; Dadlez, M.; Paczek, L. Evaluation of the Relationship Between Concentrations of Tacrolimus Metabolites, 13-O-Demethyl Tacrolimus and 15-O-Demethyl Tacrolimus, and Clinical and Biochemical Parameters in Kidney Transplant Recipients. Transplant. Proc. 2018, 50, 2235–2239. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, T.; de Jonge, H.; de Loor, H.; Oorts, M.; de Hoon, J.; Pohanka, A.; Annaert, P.; Kuypers, D.R.J. Relationship between In Vivo CYP3A4 Activity, CYP3A5 Genotype, and Systemic Tacrolimus Metabolite/Parent Drug Ratio in Renal Transplant Recipients and Healthy Volunteers. Drug Metab. Dispos. 2018, 46, 1507–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trofe-Clark, J.; Brennan, D.C.; West-Thielke, P.; Milone, M.C.; Lim, M.A.; Neubauer, R.; Nigro, V.; Bloom, R.D. Results of ASERTAA, a Randomized Prospective Crossover Pharmacogenetic Study of Immediate-Release Versus Extended-Release Tacrolimus in African American Kidney Transplant Recipients. Am. J. Kidney Dis. 2018, 71, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Thölking, G.; Gillhaus, N.H.; Schütte-Nütgen, K.; Pavenstädt, H.; Koch, R.; Suwelack, B.; Reuter, S. Conversion to Everolimus was Beneficial and Safe for Fast and Slow Tacrolimus Metabolizers After Renal Transplantation. J. Clin. Med. 2020, 9, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trade Name | Active Ingredient | Oral Dose * | Pharmacokinetic Parameters | Half-Life (h) †,§ | Metabolism | References | ||
---|---|---|---|---|---|---|---|---|
Cmax (ng/mL) † | Tmax (h) ‡ | AUC24 (ng h/mL) † | ||||||
Astagraf XL | Extended-release tacrolimus; once daily | 0.20 mg/kg | 26.0 ± 13.7 | 3.0 (2–24) | 372 ± 202 | 31.9 ± 10.5 | CYP3A4, 3A5 | [19] |
Envarsus XR | Extended-release tacrolimus; once daily | 0.14 mg/kg | 11.8 ± 7.2 | 8.0 (4–24) | 138 ± 80 | 31.9 ± 10.5 | CYP3A4, 3A5 | [20] |
Hecoria | Tacrolimus; twice daily | 0.20 mg/kg | 19.2 ± 10.3 | 3.0 (N/A) | 203 ± 42 | 31.9 ± 10.5 | CYP3A4, 3A5 | [21] |
Prograf | Tacrolimus; twice daily | 0.20 mg/kg | 19.2 ± 10.3 | 3.0 (N/A) | 203 ± 42 | 31.9 ± 10.5 | CYP3A4, 3A5 | [22] |
Factor(s) Reducing Tacrolimus Trough Level | Factor(s) Increasing Tacrolimus Trough Level | ||||||
---|---|---|---|---|---|---|---|
Factor(s) | Example | Description | References | Factor(s) | Example | Description | References |
CYP3A4*1B allele | - | Results in the hyperactivity of CYP3A4, involved in tacrolimus metabolism | [39,40] | CYP3A5*3 allele | Native Americans | Results in hypoactivity of CYP3A5, involved in tacrolimus metabolism | [41,42,43,44] |
CYP3A5*3, CYP3A5*6, CYP3A5*7 variants | African Americans | Results in the hyperactivity of CYP3A5, involved in tacrolimus metabolism | [45] | CYP3A4 inhibitors | Ketoconazole (>90% inhibition); Cyclosporin A, nifedipine (>40% inhibition); Diltiazem, erythromycin, fluconazole, rifampicin (>10% inhibition) | [46] | |
ABCB1 genotype | Chinese | Encodes for p-glycoprotein, a protein responsible for the intestinal excretion of tacrolimus | [47,48,49] | Diarrhea | Case reports | Intestinal epithelial cells may be destroyed, abrogating excretion via P-glycoproteins | [50,51,52] |
High fat meals | - | Reduces tacrolimus absorption | [53] | Biliary obstruction | Case reports | 99% of tacrolimus is excreted via bile. Liver dysfunction or bile secretion defects could result in tacrolimus toxicity | [54] |
There are insufficient data to determine whether celiac disease, gastroparesis, or inflammatory bowel disease would alter tacrolimus bioavailability | Hepatic dysfunction | Cirrhosis, hepatic veno-occlusive disease | [55] |
Reported Poor Outcomes Associated with Fast Tacrolimus Metabolism (Low C/D Ratio) |
---|
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongprayoon, C.; Hansrivijit, P.; Kovvuru, K.; Kanduri, S.R.; Bathini, T.; Pivovarova, A.; Smith, J.R.; Cheungpasitporn, W. Impacts of High Intra- and Inter-Individual Variability in Tacrolimus Pharmacokinetics and Fast Tacrolimus Metabolism on Outcomes of Solid Organ Transplant Recipients. J. Clin. Med. 2020, 9, 2193. https://doi.org/10.3390/jcm9072193
Thongprayoon C, Hansrivijit P, Kovvuru K, Kanduri SR, Bathini T, Pivovarova A, Smith JR, Cheungpasitporn W. Impacts of High Intra- and Inter-Individual Variability in Tacrolimus Pharmacokinetics and Fast Tacrolimus Metabolism on Outcomes of Solid Organ Transplant Recipients. Journal of Clinical Medicine. 2020; 9(7):2193. https://doi.org/10.3390/jcm9072193
Chicago/Turabian StyleThongprayoon, Charat, Panupong Hansrivijit, Karthik Kovvuru, Swetha R. Kanduri, Tarun Bathini, Aleksandra Pivovarova, Justin R. Smith, and Wisit Cheungpasitporn. 2020. "Impacts of High Intra- and Inter-Individual Variability in Tacrolimus Pharmacokinetics and Fast Tacrolimus Metabolism on Outcomes of Solid Organ Transplant Recipients" Journal of Clinical Medicine 9, no. 7: 2193. https://doi.org/10.3390/jcm9072193
APA StyleThongprayoon, C., Hansrivijit, P., Kovvuru, K., Kanduri, S. R., Bathini, T., Pivovarova, A., Smith, J. R., & Cheungpasitporn, W. (2020). Impacts of High Intra- and Inter-Individual Variability in Tacrolimus Pharmacokinetics and Fast Tacrolimus Metabolism on Outcomes of Solid Organ Transplant Recipients. Journal of Clinical Medicine, 9(7), 2193. https://doi.org/10.3390/jcm9072193