Effects of Evolocumab on Carotid Intima-Media Thickness and Clinical Parameters in Patients Taking a Statin
Abstract
:1. Introduction
2. Patients and Methods
2.1. Ethical Approval
2.2. Patients
2.3. Study Design
2.4. Laboratory Methods
2.5. Ultrasonographic Measurement of Carotid IMT
2.6. Statistics
3. Results
3.1. Patient Characteristics
3.2. Effects of Evolocumab on Carotid Mean and Maximum IMT, Assessed Ultrasonographically
3.3. Factors Associated with the Change in Carotid Mean and Maximum IMT During the Administration of Evolocumab
3.4. Changes in Serum Lipid Concentrations
3.5. Changes in Other Laboratory Parameters and Adverse Effects
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
eGFR | estimated glomerular filtration rate |
HbA1c | serum hemoglobin A1c |
HDL | high-density lipoprotein |
IMT | intima-media thickness |
LDL | low-density lipoprotein |
Log | logarithm |
References
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Forouzanfar, M.H.; Moran, A.E.; Barber, R.; Nguyen, G.; Feigin, V.L.; Naghavi, M.; Mensah, G.A.; Murray, C.J. Demographic and epidemiologic drivers of global cardiovascular mortality. N. Engl. J. Med. 2015, 372, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, D.H.; Bots, M.L. Imaging of atherosclerosis: Carotid intima-media thickness. Eur. Hear. J. 2010, 31, 1682–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, M.; Nakamura, T.; Kitta, Y.; Takishima, I.; Deyama, J.; Kobayashi, T.; Fujioka, D.; Saito, Y.; Watanabe, K.; Watanabe, Y.; et al. Short-term progression of maximum intima-media thickness of carotid plaque is associated with future coronary events in patients with coronary artery disease. Atherosclerosis 2011, 215, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, Y.; Watanabe, M.; Higashiyama, A.; Nakao, Y.M.; Nakamura, F.; Miyamoto, Y. Impact of Intima-Media Thickness Progression in the Common Carotid Arteries on the Risk of Incident Cardiovascular Disease in the Suita Study. J. Am. Hear. Assoc. 2018, 7, e007720. [Google Scholar] [CrossRef] [Green Version]
- Katakami, N.; Mita, T.; Gosho, M.; Takahara, M.; Irie, Y.; Yasuda, T.; Matsuoka, T.-A.; Osonoi, T.; Watada, H.; Shimomura, I. Clinical Utility of Carotid Ultrasonography in the Prediction of Cardiovascular Events in Patients with Diabetes: A Combined Analysis of Data Obtained in Five Longitudinal Studies. J. Atheroscler. Thromb. 2018, 25, 1053–1066. [Google Scholar] [CrossRef] [Green Version]
- Sabatine, M.S.; Giugliano, R.P.; Wiviott, S.D.; Raal, F.J.; Blom, D.J.; Robinson, J. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 2015, 372, 1500–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyosue, A.; Honarpour, N.; Kurtz, C.; Xue, A.; Wasserman, S.M.; Hirayama, A.; Information, P.E.K.F.C. A Phase 3 Study of Evolocumab (AMG 145) in Statin-Treated Japanese Patients at High Cardiovascular Risk. Am. J. Cardiol. 2016, 117, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; et al. Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. Jpn. Med Assoc. J. 2016, 316, 2373–2384. [Google Scholar] [CrossRef]
- Ahmadi, A.; Argulian, E.; Leipsic, J.; Newby, D.E.; Narula, J. From Subclinical Atherosclerosis to Plaque Progression and Acute Coronary Events: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 74, 1608–1617. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Revised Equations for Estimated GFR From Serum Creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Pignoli, P.; Tremoli, E.; Poli, A.; Oreste, P.; Paoletti, R. Intimal plus medial thickness of the arterial wall: A direct measurement with ultrasound imaging. Circulation 1986, 74, 1399–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, S.B.; Malik, R.; Khattar, R.S. Carotid intima–media thickness: Ultrasound measurement, prognostic value and role in clinical practice. Postgrad. Med J. 2012, 88, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.; Qu, T. Causes of changes in carotid intima-media thickness: A literature review. Cardiovasc. Ultrasound 2015, 13, 46. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.-C.; Lin, R.-T.; Chen, C.-F.; Chen, C.-H.; Juo, S.-H.H.; Lin, H.-F. Predictors of Carotid Intima-Media Thickness and Plaque Progression in a Chinese Population. J. Atheroscler. Thromb. 2016, 23, 940–949. [Google Scholar] [CrossRef] [Green Version]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Karagiannis, A.D.; Liu, M.; Toth, P.P.; Zhao, S.; Agrawal, D.K.; Libby, P.; Chatzizisis, Y.S. Pleiotropic Anti-atherosclerotic Effects of PCSK9 Inhibitors from Molecular Biology to Clinical Translation. Curr. Atheroscler. Rep. 2018, 20, 20. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.S.; Fong, L.G.; Young, S.G. PCSK9 function and physiology. J. Lipid Res. 2008, 49, 1152–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adorni, M.P.; Cipollari, E.; Favari, E.; Zanotti, I.; Zimetti, F.; Corsini, A.; Ricci, C.; Bernini, F.; Ferri, N. Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages. Atherosclerosis 2017, 256, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kasichayanula, S.; Grover, A.; Emery, M.G.; Gibbs, M.A.; Somaratne, R.; Wasserman, S.M.; Gibbs, J.P. Clinical Pharmacokinetics and Pharmacodynamics of Evolocumab, a PCSK9 Inhibitor. Clin. Pharmacokinet. 2018, 57, 769–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayturan, O.; Kapadia, S.; Nicholls, S.J.; Tuzcu, E.M.; Shao, M.; Uno, K.; Shreevatsa, A.; Lavoie, A.J.; Wolski, K.; Schoenhagen, P.; et al. Clinical Predictors of Plaque Progression Despite Very Low Levels of Low-Density Lipoprotein Cholesterol. J. Am. Coll. Cardiol. 2010, 55, 2736–2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardenas, G.; Lavie, C.J.; Cardenas, V.; Milani, R.V.; McCullough, P. The importance of recognizing and treating low levels of high-density lipoprotein cholesterol: A new era in atherosclerosis management. Rev. Cardiovasc. Med. 2008, 9, 239–258. [Google Scholar] [PubMed]
- Yamashita, S.; Tsubakio-Yamamoto, K.; Ohama, T.; Nakagawa-Toyama, Y.; Nishida, M. Molecular mechanisms of HDL-cholesterol elevation by statins and its effects on HDL functions. J. Atheroscler. Thromb. 2010, 17, 436–451. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Li, W.; Dong, L.; Li, R.; Wu, Y. Effect of statin therapy on the progression of common carotid artery intima-media thickness: An updated systematic review and meta-analysis of randomized controlled trials. J. Atheroscler. Thromb. 2012, 20, 108–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, A.; Feofanova, E.V.; Yu, B.; Sun, W.; Virani, S.S.; Nambi, V.; Coresh, J.; Guild, C.S.; Boerwinkle, E.; Ballantyne, C.M.; et al. Remnant-Like Particle Cholesterol, Low-Density Lipoprotein Triglycerides, and Incident Cardiovascular Disease. J. Am. Coll. Cardiol. 2018, 72, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, Y.; Ishikawa, Y. Remnant lipoproteins as strong key particles to atherogenesis. J. Atheroscler. Thromb. 2009, 16, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Yoshimura, S.; Kawasaki, M.; Enomoto, Y.; Asano, T.; Minatoguchi, S.; Iwama, T. Effects of Atorvastatin on Carotid Atherosclerotic Plaques: A Randomized Trial for Quantitative Tissue Characterization of Carotid Atherosclerotic Plaques with Integrated Backscatter Ultrasound. Cerebrovasc. Dis. 2009, 28, 417–424. [Google Scholar] [CrossRef]
- Schulz, R.; Schlüter, K.-D.; Laufs, U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res. Cardiol. 2015, 110, 4. [Google Scholar] [CrossRef] [Green Version]
- Blom, D.J.; Koren, M.J.; Roth, E.; Monsalvo, M.L.; Djedjos, C.S.; Nelson, P.; Elliott, M.; Wasserman, S.M.; Ballantyne, C.M.; Holman, R.R. Evaluation of the efficacy, safety and glycaemic effects of evolocumab (AMG 145) in hypercholesterolaemic patients stratified by glycaemic status and metabolic syndrome. Diabetes Obes. Metab. 2016, 19, 98–107. [Google Scholar] [CrossRef] [Green Version]
All Participants (n = 229) | |
---|---|
Age (years) | 72.6 ± 8.6 |
Male sex (number, %) | 148 (64.6) |
Body mass index (kg/m2) | 24.7 ± 3.7 |
Systolic blood pressure (mmHg) | 133.2 ± 16.9 |
Diastolic blood pressure (mmHg) | 76.5 ± 10.8 |
Hypertension (number, %) | 176 (76.9) |
Diabetes mellitus (number, %) | 128 (55.9) |
Familial hypercholesterolemia (number, %) | 2 (0.9) |
Coronary artery disease (number, %) | 46 (20.1) |
Previous myocardial infarction (number, %) | 21 (9.2) |
Past or current smoker (number, %) | 129 (56.3) |
Statin (number, %) | 229 (100.0) |
Ezetimibe (number, %) | 25 (10.9) |
Probucol (number, %) | 10 (4.4) |
Eicosapentaenoic acid (number, %) | 195 (85.2) |
Antiplatelet agent (number, %) | 102 (44.5) |
Renin-angiotensin system inhibitor (number, %) | 112 (48.9) |
β-blocker (number, %) | 28 (12.2) |
Calcium channel blocker (number, %) | 126 (55.0) |
Diuretic (number, %) | 7 (3.1) |
Anti-hyperuricemic drug (number, %) | 99 (43.2) |
Metformin (number, %) | 54 (23.6) |
Sodium glucose transporter-2 inhibitor (number, %) | 8 (3.5) |
Dipeptidyl peptidase 4 inhibitor (number, %) | 46 (20.1) |
Glucagon-like peptide-1 receptor agonist (number, %) | 52 (22.7) |
Insulin (number, %) | 43 (18.8) |
Mean IMT of carotid artery (mm) | 1.3 ± 0.3 |
Maximum IMT of carotid artery (mm) | 2.5 ± 0.7 |
Statin | Dose (mg/day) | Number of Patients (%) |
---|---|---|
Atorvastatin | 5 | 30 (13.1) |
10 | 24 (10.5) | |
15 | 1 (0.4) | |
20 | 5 (2.2) | |
Pitavastatin | 1 | 3 (1.3) |
2 | 2 (0.9) | |
Pravastatin | 2.5 | 1 (0.4) |
5 | 3 (1.3) | |
10 | 15 (6.6) | |
Rosuvastatin | 2.5 | 30 (13.1) |
5 | 63 (27.5) | |
7.5 | 7 (3.1) | |
10 | 24 (10.5) | |
12.5 | 1 (0.4) | |
15 | 7 (3.1) | |
20 | 11 (4.8) | |
Simvastatin | 5 | 2 (0.9) |
Variable | Simple Linear Regression Analysis | Multiple Linear Regression Analysis | ||
---|---|---|---|---|
Standard Coefficient | p-Value | Standard Coefficient | p-value | |
Age (years) | −0.125 | 0.06 | 0.027 | 0.69 |
Male sex (yes vs. no) | 0.086 | 0.20 | ||
Body mass index (kg/m2) | 0.119 | 0.07 | 0.037 | 0.54 |
Systolic blood pressure (mmHg) | −0.076 | 0.26 | ||
Diastolic blood pressure (mmHg) | 0.065 | 0.33 | ||
HDL-cholesterol (mg/dL) | −0.074 | 0.27 | ||
Change in HDL-cholesterol | −0.128 | 0.05 | −0.120 | 0.04 |
LDL-cholesterol (mg/dL) | 0.048 | 0.47 | ||
Change in LDL-cholesterol (mg/dL) | −0.017 | 0.80 | ||
Log-triglyceride (mg/dL) | 0.100 | 0.13 | ||
Change in log-triglyceride (mg/dL) | −0.019 | 0.77 | ||
Log-lipoprotein (a) (mg/dL) | −0.053 | 0.44 | ||
Change in log-lipoprotein (a) (mg/dL) | −0.074 | 0.29 | ||
Eicosapentaenoic acid to arachidonic acid ratio | −0.130 | 0.05 | −0.039 | 0.52 |
Uric acid (mg/dL) | 0.013 | 0.85 | ||
Change in uric acid (mg/dL) | −0.080 | 0.23 | ||
HbA1c (%) | 0.116 | 0.08 | 0.056 | 0.38 |
Change in HbA1c (%) | 0.012 | 0.86 | ||
eGFR (mL/min/1.73 m2) | 0.151 | 0.02 | 0.055 | 0.38 |
Change in eGFR (mL/min/1.73 m2) | −0.081 | 0.22 | ||
Log-urine albumin/creatinine ratio (mg/gCr) | −0.065 | 0.35 | ||
Hypertension (yes vs. no) | −0.073 | 0.27 | ||
Diabetes mellitus (yes vs. no) | −0.046 | 0.49 | ||
Coronary artery disease (yes vs. no) | −0.013 | 0.85 | ||
Previous myocardial infarction (yes vs. no) | 0.076 | 0.26 | ||
Past or current smoking (yes vs. no) | 0.031 | 0.64 | ||
Statin (yes vs. no) | 0.000 | --- | ||
Ezetimibe (yes vs. no) | 0.019 | 0.77 | ||
Probucol (yes vs. no) | 0.014 | 0.84 | ||
Eicosapentaenoic acid (yes vs. no) | −0.019 | 0.77 | ||
Antiplatelet agent (yes vs. no) | −0.001 | 0.99 | ||
Renin–angiotensin system inhibitor (yes vs. no) | −0.024 | 0.72 | ||
β-blocker (yes vs. no) | 0.007 | 0.92 | ||
Calcium channel blocker (yes vs. no) | −0.039 | 0.56 | ||
Diuretic (yes vs. no) | 0.079 | 0.24 | ||
Antihyperuricemic drug (yes vs. no) | −0.078 | 0.24 | ||
Metformin (yes vs. no) | 0.127 | 0.06 | 0.108 | 0.09 |
Sodium glucose transporter-2 inhibitor (yes vs. no) | 0.037 | 0.58 | ||
Dipeptidyl peptidase 4 inhibitor (yes vs. no) | 0.054 | 0.42 | ||
Glucagon-like peptide-1 receptor agonist (yes vs. no) | −0.059 | 0.37 | ||
Insulin (yes vs. no) | 0.037 | 0.58 | ||
Mean-IMT of carotid artery (mm) | −0.481 | <0.001 | −0.467 | <0.001 |
Maximum-IMT of carotid artery (mm) | −0.067 | 0.32 |
Variable | Simple Linear Regression Analysis | Multiple Linear Regression Analysis | ||
---|---|---|---|---|
Standard Coefficient | p-Value | Standard Coefficient | p-Value | |
Age (years) | −0.046 | 0.49 | ||
Male sex (yes vs. no) | 0.075 | 0.26 | ||
Body mass index (kg/m2) | 0.053 | 0.43 | ||
Systolic blood pressure (mmHg) | 0.029 | 0.66 | ||
Diastolic blood pressure (mmHg) | −0.028 | 0.68 | ||
HDL-cholesterol (mg/dL) | −0.013 | 0.85 | ||
Change in HDL-cholesterol | −0.173 | 0.009 | −0.208 | 0.002 |
LDL-cholesterol (mg/dL) | −0.040 | 0.55 | ||
Change in LDL-cholesterol (mg/dL) | 0.041 | 0.53 | ||
Log-triglyceride (mg/dL) | 0.001 | 0.98 | ||
Change in log-triglyceride (mg/dL) | −0.123 | 0.06 | −0.167 | 0.01 |
Log-lipoprotein (a) (mg/dL) | −0.008 | 0.90 | ||
Change in log-lipoprotein (a) (mg/dL) | 0.001 | 0.99 | ||
Eicosapentaenoic acid to arachidonic acid ratio | −0.094 | 0.16 | ||
Uric acid (mg/dL) | −0.023 | 0.73 | ||
Change in uric acid (mg/dL) | 0.070 | 0.29 | ||
HbA1c (%) | −0.035 | 0.60 | ||
Change in HbA1c (%) | −0.081 | 0.23 | ||
eGFR (mL/min/1.73 m2) | −0.019 | 0.77 | ||
Change in eGFR (mL/min/1.73 m2) | −0.078 | 0.24 | ||
Log-urine albumin/creatinine ratio (mg/gCr) | 0.086 | 0.21 | ||
Hypertension (yes vs. no) | 0.110 | 0.10 | ||
Diabetes mellitus (yes vs. no) | 0.060 | 0.37 | ||
Coronary artery disease (yes vs. no) | −0.002 | 0.98 | ||
Previous myocardial infarction (yes vs. no) | −0.024 | 0.72 | ||
Past or current smoking (yes vs. no) | 0.025 | 0.71 | ||
Statin (yes vs. no) | 0.000 | --- | ||
Ezetimibe (yes vs. no) | −0.068 | 0.31 | ||
Probucol (yes vs. no) | 0.033 | 0.62 | ||
Eicosapentaenoic acid (yes vs. no) | 0.069 | 0.30 | ||
Antiplatelet agent (yes vs. no) | 0.146 | 0.03 | 0.121 | 0.06 |
Renin–angiotensin system inhibitor (yes vs. no) | 0.133 | 0.04 | 0.095 | 0.15 |
β-blocker (yes vs. no) | 0.097 | 0.14 | ||
Calcium channel blocker (yes vs. no) | 0.019 | 0.78 | ||
Diuretic (yes vs. no) | 0.104 | 0.12 | ||
Antihyperuricemic drug (yes vs. no) | 0.010 | 0.89 | ||
Metformin (yes vs. no) | −0.024 | 0.72 | ||
Sodium glucose transporter-2 inhibitor (yes vs. no) | 0.005 | 0.94 | ||
Dipeptidyl peptidase 4 inhibitor (yes vs. no) | −0.087 | 0.19 | ||
Glucagon-like peptide-1 receptor agonist (yes vs. no) | 0.134 | 0.04 | 0.104 | 0.11 |
Insulin (yes vs. no) | 0.075 | 0.26 | ||
Mean-IMT of carotid artery (mm) | 0.091 | 0.17 | ||
Maximum-IMT of carotid artery (mm) | −0.009 | 0.89 |
Baseline (n = 229) | 12 Months (n = 229) | p-Value | |
---|---|---|---|
Total cholesterol (mg/dL) | 149.1 ± 31.7 | 94.3 ± 25.5 | <0.001 |
LDL-cholesterol (mg/dL) | 69.4 ± 24.1 | 20.8 ± 16.8 | <0.001 |
HDL-cholesterol (mg/dL) | 53.9 ± 14.0 | 55.4 ± 15.0 | 0.01 |
Triglyceride (mg/dL) | 107 (83–151) | 90 (63–125) | <0.001 |
Lipoprotein (a) (mg/dL) | 15 (4–30) | 6 (2–17) | <0.001 |
Uric acid (mg/dL) | 4.8 ± 1.0 | 4.7 ± 1.0 | 0.05 |
HbA1c (%) | 6.3 ± 0.9 | 6.5 ± 1.1 | 0.007 |
eGFR (mL/min/1.73 m2) | 68.1 ± 17.1 | 66.1 ± 16.6 | <0.001 |
Urine albumin/creatinine ratio (mg/gCr) | 11.3 (5.5-37.6) | 11.8 (6.5–34.0) | 0.08 |
Alanine aminotransferase (IU/L) | 21 (15–31) | 21 (15–28) | 0.97 |
Creatine phosphokinase (IU/L) | 104 (77–167) | 112 (76–162) | 0.23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirai, K.; Imamura, S.; Hirai, A.; Ookawara, S.; Morishita, Y. Effects of Evolocumab on Carotid Intima-Media Thickness and Clinical Parameters in Patients Taking a Statin. J. Clin. Med. 2020, 9, 2256. https://doi.org/10.3390/jcm9072256
Hirai K, Imamura S, Hirai A, Ookawara S, Morishita Y. Effects of Evolocumab on Carotid Intima-Media Thickness and Clinical Parameters in Patients Taking a Statin. Journal of Clinical Medicine. 2020; 9(7):2256. https://doi.org/10.3390/jcm9072256
Chicago/Turabian StyleHirai, Keiji, Shigeki Imamura, Aizan Hirai, Susumu Ookawara, and Yoshiyuki Morishita. 2020. "Effects of Evolocumab on Carotid Intima-Media Thickness and Clinical Parameters in Patients Taking a Statin" Journal of Clinical Medicine 9, no. 7: 2256. https://doi.org/10.3390/jcm9072256
APA StyleHirai, K., Imamura, S., Hirai, A., Ookawara, S., & Morishita, Y. (2020). Effects of Evolocumab on Carotid Intima-Media Thickness and Clinical Parameters in Patients Taking a Statin. Journal of Clinical Medicine, 9(7), 2256. https://doi.org/10.3390/jcm9072256