Chronoradiation Therapy for Prostate Cancer: Morning Proton Beam Therapy Ameliorates Worsening Lower Urinary Tract Symptoms
Abstract
:1. Introduction
2. Patients and Methods
3. Statistical Analyses
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADT | androgen deprivation therapy; |
CTV | clinical target volume; |
IPSS | international prostate symptom score; |
LUTS | lower urinary tract symptoms; |
NCCN | National Comprehensive Cancer Network; |
QoL | Quality of Life; |
RT | radiation therapy. |
References
- Ishikawa, H.; Tsuji, H.; Murayama, S.; Sugimoto, M.; Shinohara, N.; Maruyama, S.; Murakami, M.; Shirato, H.; Sakurai, H. Particle therapy for prostate cancer: The past, present and future. Int. J. Urol. 2019, 26, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Zietman, A.L.; DeSilvio, M.L.; Slater, J.D.; Rossi, C.J.; Miller, D.W.; Adams, J.A.; Shipley, W.U. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: A randomized controlled trial. JAMA 2005, 294, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Budäus, L.; Bolla, M.; Bossi, A.; Cozzarini, C.; Crook, J.; Widmark, A.; Wiegel, T. Functional outcomes and complications following radiation therapy for prostate cancer: A critical analysis of the literature. Eur. Urol. 2012, 61, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Mascan, B.; Marignol, L. Aspirin in the Management of Patients with Prostate Cancer Undergoing Radiotherapy: Friend or Foe? Anticancer Res. 2018, 38, 1897–1902. [Google Scholar]
- Lobo, N.; Kulkarni, M.; Hughes, S.; Nair, R.; Khan, M.S.; Thurairaja, R. Urologic Complications Following Pelvic Radiotherapy. Urology 2018, 122, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shuboni-Mulligan, D.D.; Breton, G.; Smart, D.; Gilbert, M.; Armstrong, T.S. Radiation chronotherapy-clinical impact of treatment time-of-day: A systematic review. J. Neurooncol. 2019, 145, 415–427. [Google Scholar] [CrossRef]
- Kumar, P.V.; Dakup, P.P.; Sarkar, S.; Modasia, J.B.; Motzner, M.S.; Gaddameedhi, S. It’s About Time: Advances in Understanding the Circadian Regulation of DNA Damage and Repair in Carcinogenesis and Cancer Treatment Outcomes. Yale J. Biol. Med. 2019, 92, 305–316. [Google Scholar]
- Reinke, H.; Asher, G. Crosstalk between metabolism and circadian clocks. Nat. Rev. Mol. Cell Biol. 2019, 20, 227–241. [Google Scholar] [CrossRef]
- Negoro, H.; Kanematsu, A.; Yoshimura, K.; Ogawa, O. Chronobiology of micturition: Putative role of the circadian clock. J. Urol. 2013, 190, 843–849. [Google Scholar] [CrossRef] [Green Version]
- Bebas, P.; Goodall, C.P.; Majewska, M.; Neumann, A.; Giebultowicz, J.M.; Chappell, P.E. Circadian clock and output genes are rhythmically expressed in extratesticular ducts and accessory organs of mice. FASEB J. 2009, 23, 523–533. [Google Scholar] [CrossRef]
- Negoro, H.; Kanematsu, A.; Doi, M.; Suadicani, S.O.; Matsuo, M.; Imamura, M.; Okinami, T.; Nishikawa, N.; Oura, T.; Matsui, S.; et al. Involvement of urinary bladder Connexin43 and the circadian clock in coordination of diurnal micturition rhythm. Nat. Commun. 2012, 3, 809. [Google Scholar] [CrossRef] [PubMed]
- Scheiermann, C.; Gibbs, J.; Ince, L.; Loudon, A. Clocking in to immunity. Nat. Rev. Immunol. 2018, 18, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Harper, E.; Talbot, C.J. Is it Time to Change Radiotherapy: The Dawning of Chronoradiotherapy? Clin. Oncol. 2019, 31, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Makishima, H.; Ishikawa, H.; Tanaka, K.; Mori, Y.; Mizumoto, M.; Ohnishi, K.; Aihara, T.; Fukumitsu, N.; Okumura, T.; Sakurai, H. A retrospective study of late adverse events in proton beam therapy for prostate cancer. Mol. Clin. Oncol. 2017, 7, 547–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, F.M.; Hou, W.H.; Huang, C.Y.; Wang, C.C.; Tsai, C.L.; Tsai, Y.C.; Yu, H.J.; Pu, Y.S.; Cheng, J.C. Differences in toxicity and outcome associated with circadian variations between patients undergoing daytime and evening radiotherapy for prostate adenocarcinoma. Chronobiol. Int. 2016, 33, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Griffin, F.; Marignol, L. Therapeutic potential of melatonin for breast cancer radiation therapy patients. Int. J. Radiat. Biol. 2018, 94, 472–477. [Google Scholar] [CrossRef]
- Farhood, B.; Goradel, N.H.; Mortezaee, K.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Mirtavoos-Mahyari, H.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; et al. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin. Transl. Oncol. 2019, 21, 268–279. [Google Scholar] [CrossRef]
- Kandaz, M.; Ertekin, M.V.; Karslıoğlu, İ.; Erdoğan, F.; Sezen, O.; Gepdiremen, A.; Gündoğdu, C. Zinc Sulfate and/or Growth Hormone Administration for the Prevention of Radiation-Induced Dermatitis: A Placebo-Controlled Rat Model Study. Biol. Trace Elem. Res. 2017, 179, 110–116. [Google Scholar] [CrossRef]
- Al-Turk, W.; Al-Dujaili, E.A. Effect of age, gender and exercise on salivary dehydroepiandrosterone circadian rhythm profile in human volunteers. Steroids 2016, 106, 19–25. [Google Scholar] [CrossRef]
- Cao, J.; Yu, L.; Zhao, J.; Ma, H. Effect of dehydroepiandrosterone on the immune function of mice in vivo and in vitro. Mol. Immunol. 2019, 112, 283–290. [Google Scholar] [CrossRef]
- Shafi, A.A.; Knudsen, K.E. Cancer and the Circadian Clock. Cancer Res. 2019, 79, 3806–3814. [Google Scholar] [CrossRef] [PubMed]
- Antoch, M.P.; Kondratov, R.V. Circadian proteins and genotoxic stress response. Circ. Res. 2010, 106, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schibler, U. Oxidation of CLOCK boosts circadian rhythms. Nat. Cell Biol. 2019, 21, 1464–1465. [Google Scholar] [CrossRef] [PubMed]
- Dakup, P.P.; Porter, K.I.; Gajula, R.P.; Goel, P.N.; Cheng, Z.; Gaddameedhi, S. The circadian clock protects against ionizing radiation-induced cardiotoxicity. FASEB J. 2020, 34, 3347–3358. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.; Chang-Claude, J.; Critchley, A.M.; Kyriacou, C.; Lavers, S.; Rattay, T.; Seibold, P.; Webb, A.; West, C.; Symonds, R.P.; et al. Genetic Variants Predict Optimal Timing of Radiotherapy to Reduce Side-effects in Breast Cancer Patients. Clin. Oncol. 2019, 31, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storch, K.F.; Lipan, O.; Leykin, I.; Viswanathan, N.; Davis, F.C.; Wong, W.H.; Weitz, C.J. Extensive and divergent circadian gene expression in liver and heart. Nature 2002, 417, 78–83. [Google Scholar] [CrossRef] [PubMed]
Time of Day for Proton Beam Therapy | |||||
---|---|---|---|---|---|
Morning | Around Noon | Late Afternoon | |||
(08:30–10:30) | (10:31–14:30) | (14:31–16:30) | Total | p Value | |
No. patients (%) | 52 (31.0) | 64 (38.1) | 52 (31.0) | 168 | |
Age at proton therapy (median [range], years) | 68 (57–80) | 67 (56–86) | 68.5 (53–86) | 68 (53–86) | 0.8 |
Initial PSA (median [range], ng/mL) | 10.3 (3.5–220) | 7.66 (3.5–143) | 8.3 (1.6–150) | 8.6 (1.6–220) | 0.39 |
Gleason score at prostate biopsy (n, %) | 0.37 | ||||
6 | 10 (19.2) | 13 (20.3) | 6 (11.5) | 29 (17.3) | |
7 | 20 (38.5) | 30 (46.9) | 21 (40.4) | 71 (42.3) | |
8 | 15 (28.9) | 15 (23.4) | 13 (25) | 43 (25.6) | |
9 | 6 (11.5) | 5 (7.8) | 12 (23.1) | 23 (13.7) | |
10 | 1 (1.9) | 1 (1.6) | 0 | 2 (1.2) | |
Clinical T stage (n, %) | 0.77 | ||||
T1 | 12 (23.1) | 16 (25) | 10 (19.2) | 33 (22.6) | |
T2 | 27 (51.9) | 35 (54.7) | 26 (50) | 88 (52.4) | |
T3 | 13 (25) | 13 (20.3) | 16 (30.8) | 42 (25.0) | |
NCCN risk classification (n, %) | 0.67 | ||||
Low | 7 (13.5) | 9 (14.1) | 4 (7.7) | 20 (11.9) | |
Intermediate | 20 (38.5) | 26 (40.6) | 18 (34.6) | 64 (38.1) | |
High | 25 (48.1) | 29 (45.3) | 30 (57.7) | 84 (50.0) | |
ADT (n, %) | 46 (88.5) | 52 (81.3) | 48 (92.3) | 146 (86.9) | 0.21 |
Fractional PBT dose (n, %) | 0.47 | ||||
2.0 Gy | 25 (48.1) | 24 (37.5) | 24 (46.2) | 73 (43.5) | |
2.5 Gy | 27 (51.9) | 40 (62.5) | 28 (53.9) | 95 (56.5) | |
CTV (median [range], mL) | 29.8 (15.1–61.9) | 29.5 (16.9–98.6) | 28 (16.4–87.1) | 29 (15–84) | 0.7 |
IPSS total score (median [range]) | 8 (0–18) | 8.5 (0–24) | 8 (0–20) | 8 (0–24) | 0.84 |
Severity of IPSS (n, %) | 0.44 | ||||
Mild | 24 (46.2) | 26 (40.6) | 25 (48.1) | 75 (44.6) | |
Moderate | 28 (53.9) | 34 (53.1) | 26 (50) | 88 (52.4) | |
Severe | 0 (0) | 4 (6.3) | 1 (1.9) | 5 (3.0) | |
IPSS-QoL score (median [range]) | 2 (0–5) | 2 (0–6) | 2 (0–6) | 2 (0–6) | 0.79 |
LUTS medication use before PBT (n, %) | 3 (5.8) | 8 (12.5) | 3 (5.8) | 14 (8.3) | 0.31 |
Diabetes (n, %) | 14 (26.9) | 11 (17.2) | 8 (15.4) | 33 (19.6) | 0.29 |
Anti-coagulant therapy (n, %) | 9 (17.3) | 8 (12.5) | 8 (13.4) | 25 (14.9) | 0.8 |
Time of Day for Proton Beam Therapy | |||||
---|---|---|---|---|---|
Morning | Around Noon | Late Afternoon | |||
(08:30–10:30) | (10:31–14:30) | (14:31–16:30) | β | p Value | |
IPSS total score | 5 ± 0.77 | 7,33 ± 0.86 | 7.92 ± 0.87 | −0.24 | 0.008 |
IPSS voiding subscore | 2.85 ± 0.55 | 4.12 ± 0.58 | 4.88 ± 0.66 | −0.21 | 0.02 |
IPSS storage subscore | 2.15 ± 0.39 | 3.14 ± 0.42 | 3.26 ± 0.43 | n.s. | |
IPSS subscore | |||||
1 | 0.56 ± 0.15 | 0.92 ± 0.17 | 0.87 ± 0.19 | n.s. | |
2 | 0.85 ± 0.22 | 1.03 ± 0.20 | 1.08 ± 0.22 | n.s. | |
3 | 0.81 ± 0.18 | 0.92 ± 0.19 | 1.27 ± 0.20 | n.s. | |
4 | 0.52 ± 0.15 | 1.13 ± 0.18 | 1.22 ± 0.22 | −0.28 | 0.002 |
5 | 0.98 ± 0.25 | 1.30 ± 0.21 | 1.73 ± 0.27 | n.s. | |
6 | 0.5 ± 0.17 | 1.05 ± 0.16 | 0.94 ± 0.21 | n.s. | |
7 | 0.79 ± 0.14 | 0.98 ± 0.18 | 0.96 ± 0.14 | n.s. | |
IPSS-QoL score | 0.52 ± 0.15 | 1.18 ± 0.16 | 1.24 ± 0.24 | −0.27 | 0.004 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negoro, H.; Iizumi, T.; Mori, Y.; Matsumoto, Y.; Chihara, I.; Hoshi, A.; Sakurai, H.; Nishiyama, H.; Ishikawa, H. Chronoradiation Therapy for Prostate Cancer: Morning Proton Beam Therapy Ameliorates Worsening Lower Urinary Tract Symptoms. J. Clin. Med. 2020, 9, 2263. https://doi.org/10.3390/jcm9072263
Negoro H, Iizumi T, Mori Y, Matsumoto Y, Chihara I, Hoshi A, Sakurai H, Nishiyama H, Ishikawa H. Chronoradiation Therapy for Prostate Cancer: Morning Proton Beam Therapy Ameliorates Worsening Lower Urinary Tract Symptoms. Journal of Clinical Medicine. 2020; 9(7):2263. https://doi.org/10.3390/jcm9072263
Chicago/Turabian StyleNegoro, Hiromitsu, Takashi Iizumi, Yutaro Mori, Yoshitaka Matsumoto, Ichiro Chihara, Akio Hoshi, Hideyuki Sakurai, Hiroyuki Nishiyama, and Hitoshi Ishikawa. 2020. "Chronoradiation Therapy for Prostate Cancer: Morning Proton Beam Therapy Ameliorates Worsening Lower Urinary Tract Symptoms" Journal of Clinical Medicine 9, no. 7: 2263. https://doi.org/10.3390/jcm9072263
APA StyleNegoro, H., Iizumi, T., Mori, Y., Matsumoto, Y., Chihara, I., Hoshi, A., Sakurai, H., Nishiyama, H., & Ishikawa, H. (2020). Chronoradiation Therapy for Prostate Cancer: Morning Proton Beam Therapy Ameliorates Worsening Lower Urinary Tract Symptoms. Journal of Clinical Medicine, 9(7), 2263. https://doi.org/10.3390/jcm9072263