Prevalence and Predictive Value of Anemia and Dysregulated Iron Homeostasis in Patients with COVID-19 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Outcome Analysis and Measurements
2.3. Classifications of Anemia and Alterations of Iron Homeostasis
2.4. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Anemia in Patients with COVID-19 Infection
3.3. Disturbances of Iron Homeostasis in Patients with COVID-19 Infection
3.4. Inflammation Is Related to Iron Metabolism Biomarkers and Hemoglobin
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Bi, Q.; Wu, Y.; Mei, S.; Ye, C.; Zou, X.; Zhang, Z.; Liu, X.; Wei, L.; Truelove, S.A.; Zhang, T.; et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: A retrospective cohort study. Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated levels of interleukin-6 and CRP predict the need for mechanical ventilation in COVID-19. J. Allergy Clin. Immunol. 2020, 146, 128–136. [Google Scholar] [CrossRef]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.A.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Henry, B.M.; De Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. (CCLM) 2020, 58, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Theurl, I.; Aigner, E.; Theurl, M.; Nairz, M.; Seifert, M.; Schroll, A.; Sonnweber, T.; Eberwein, L.; Witcher, D.R.; Murphy, A.T.; et al. Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: Diagnostic and therapeutic implications. Blood 2009, 113, 5277–5286. [Google Scholar] [CrossRef] [Green Version]
- Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappellini, M.D.; Comin-Colet, J.; de Francisco, A.; Dignass, A.; Doehner, W.; Lam, C.S.; Macdougall, I.C.; Rogler, G.; Camaschella, C.; Kadir, R.; et al. Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management. Am. J. Hematol. 2017, 92, 1068–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wouters, H.; van der Klauw, M.M.; de Witte, T.; Stauder, R.; Swinkels, D.W.; Wolffenbuttel, B.H.R.; Huls, G. Association of anemia with health-related quality of life and survival: A large population-based cohort study. Haematologica 2019, 104, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Schett, G. Anaemia in inflammatory rheumatic diseases. Nat. Rev. Rheumatol. 2013, 9, 205–215. [Google Scholar] [CrossRef]
- Kurz, K.; Lanser, L.; Seifert, M.; Kocher, F.; Pölzl, G.; Weiss, G. Anaemia, iron status, and gender predict the outcome in patients with chronic heart failure. ESC Heart Fail. 2020, 7, 1880–1890. [Google Scholar] [CrossRef]
- Wong, M.M.Y.; Tu, C.; Li, Y.; Perlman, R.L.; Pecoits-Filho, R.; Lopes, A.A.; Narita, I.; Reichel, H.; Port, F.K.; Sukul, N.; et al. Anemia and iron deficiency among chronic kidney disease Stages 3–5ND patients in the Chronic Kidney Disease Outcomes and Practice Patterns Study: Often unmeasured, variably treated. Clin. Kidney J. 2019, 1–12. [Google Scholar] [CrossRef]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Theurl, I.; Mattle, V.; Seifert, M.; Mariani, M.; Marth, C.; Weiss, G. Dysregulated monocyte iron homeostasis and erythropoietin formation in patients with anemia of chronic disease. Blood 2006, 107, 4142–4148. [Google Scholar] [CrossRef] [Green Version]
- Castel, R.; Tax, M.G.; Droogendijk, J.; Leers, M.P.; Beukers, R.; Levin, M.D.; Sonneveld, P.; Berendes, P.B. The transferrin/log(ferritin) ratio: A new tool for the diagnosis of iron deficiency anemia. Clin. Chem. Lab. Med. 2012, 50, 1343–1349. [Google Scholar] [CrossRef]
- Stauder, R.; Valent, P.; Theurl, I. Anemia at older age: Etiologies, clinical implications, and management. Blood 2018, 131, 505–514. [Google Scholar] [CrossRef]
- Roy, N.B.A.; Telfer, P.; Eleftheriou, P.; de la Fuente, J.; Drasar, E.; Shah, F.; Roberts, D.; Atoyebi, W.; Trompeter, S.; Layton, D.M.; et al. Protecting vulnerable patients with inherited anaemias from unnecessary death during the COVID-19 pandemic. Br. J. Haematol. 2020, 189, 635–639. [Google Scholar] [CrossRef]
- McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun. Rev. 2020, 19, 102537. [Google Scholar] [CrossRef] [PubMed]
- Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017, 39, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T.; Nemeth, E. Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 2015, 15, 500–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nairz, M.; Dichtl, S.; Schroll, A.; Haschka, D.; Tymoszuk, P.; Theurl, I.; Weiss, G. Iron and innate antimicrobial immunity-Depriving the pathogen, defending the host. J. Trace Elem. Med. Biol. 2018, 48, 118–133. [Google Scholar] [CrossRef]
- Nairz, M.; Weiss, G. Iron in infection and immunity. Mol. Asp. Med. 2020, 100864. [Google Scholar] [CrossRef]
- Koskenkorva-Frank, T.S.; Weiss, G.; Koppenol, W.H.; Burckhardt, S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: Insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic. Biol. Med. 2013, 65, 1174–1194. [Google Scholar] [CrossRef]
- Gorbunov, N.V.; McFaul, S.J.; Van Albert, S.; Morrissette, C.; Zaucha, G.M.; Nath, J. Assessment of inflammatory response and sequestration of blood iron transferrin complexes in a rat model of lung injury resulting from exposure to low-frequency shock waves. Crit. Care Med. 2004, 32, 1028–1034. [Google Scholar] [CrossRef]
- Wichmann, D.; Sperhake, J.P.; Lutgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schroder, A.S.; et al. Autopsy Findings and Venous Thromboembolism in Patients with COVID-19. Ann. Intern. Med. 2020. [Google Scholar] [CrossRef]
- Drakesmith, H.; Prentice, A. Viral infection and iron metabolism. Nat. Rev. Microbiol. 2008, 6, 541–552. [Google Scholar] [CrossRef]
- Petzer, V.; Theurl, I.; Weiss, G. Established and Emerging Concepts to Treat Imbalances of Iron Homeostasis in Inflammatory Diseases. Pharmaceuticals 2018, 11, 135. [Google Scholar] [CrossRef] [Green Version]
- Wolf, M.S.; Serper, M.; Opsasnick, L.; O’Conor, R.M.; Curtis, L.M.; Benavente, J.Y.; Wismer, G.; Batio, S.; Eifler, M.; Zheng, P.; et al. Awareness, Attitudes, and Actions Related to COVID-19 Among Adults With Chronic Conditions at the Onset of the U.S. Outbreak: A Cross-sectional Survey. Ann. Intern. Med. 2020, 173, 100–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No Anemia | Anemia | ||
---|---|---|---|
n = 195 | n = 64 | ||
Median (IQR) or n (%) | Median (IQR) or n (%) | p-Value 1 | |
Demographic Characteristics | |||
Age (Years) | 63 (51–77) | 78 (65–86) | <0.001 |
BMI (kg/m2) | 26.12 (23.79–28.73) | 26.00 (22.10–28.03) | 0.233 |
Sex, Men | 119 (61.0%) | 38 (59.4%) | 0.815 |
Clinical Characteristics | |||
Temperature (°C) | 37.0 (36.2–37.9) | 36.9 (36.3–38.0) | 0.803 |
SpO2 (%) | 95 (92–96) | 94 (90–95) | 0.012 |
O2 Requirement (L) | 0 (0–1) | 0 (0–2) | 0.126 |
Hospitalization (Days) 2 | 9 (5–15) | 12 (7–20) | 0.062 |
ICU Admission | 41 (21.0 %) | 12 (18.8%) | 0.695 |
ICU Duration (Days) 2,3 | 18 (7–32) | 24 (20–41) | 0.309 |
Mechanical Ventilation | 25 (12.8%) | 10 (15.6%) | 0.569 |
Mechanical Ventilation Duration (Days) 2,3 | 16 (14–21) | 16 (12–24) | 0.882 |
Death During Hospital Stay | 16 (8.2%) | 16 (25.0%) | <0.001 |
Comorbidities and Risk Factors | |||
Cardiovascular Disease (CVD) | 104 (53.3%) | 48 (75.0%) | 0.002 |
Arterial Hypertension | 86 (44.1%) | 38 (59.4%) | 0.034 |
Coronary Artery Disease (CAD) | 23 (11.8%) | 12 (18.8%) | 0.158 |
Chronic Heart Failure (CHF) | 5 (2.6%) | 4 (6.3%) | 0.162 |
Diabetes Mellitus (DM) | 31 (15.9%) | 14 (21.9%) | 0.273 |
Chronic Kidney Disease (CKD) | 4 (2.1%) | 11 (17.2%) | <0.001 |
Malignancies | 14 (7.2%) | 7 (10.9%) | 0.339 |
Chronic Obstructive Pulmonary Disease | 21 (10.8%) | 2 (3.1%) | 0.062 |
Bronchial Asthma | 8 (4.1%) | 1 (1.6%) | 0.336 |
Nicotine Abuse, Actual or Former | 29 (16.6%) | 5 (8.5%) | 0.286 |
Laboratory Findings | |||
eGFR (mL/min) | 77.9 (56.5–93.8) | 64.1 (42.1–85.7) | 0.005 (n = 257) |
AST (U/L) | 34 (26–49) | 36 (23–49) | 0.727 (n = 253) |
ALT (U/L) | 25 (18–42) | 19 (14–34) | 0.006 (n = 245) |
AP (U/L) | 67 (51–89) | 69 (55–87) | 0.620 (n = 241) |
MCV (fl) | 88.2 (85.0–91.3) | 89.0 (85.5–93.6) | 0.313 (n = 252) |
MCH (pg) | 30.1 (29.0–31.2) | 30.3 (28.3–31.1) | 0.859 (n = 252) |
Hemoglobin (g/L) | 141 (134–153) | 113 (101–121) | <0.001 (n = 259) |
Hematocrit (L/L) | 0.420 (0.394–0.450) | 0.340 (0.307–0.360) | <0.001 (n = 256) |
Thrombocytes (G/L) | 191 (151–263) | 201 (157–265) | 0.834 (n = 256) |
Iron (μmol/L) | 5.0 (3.7–8.5) | 3.8 (3.0–6.3) | 0.001 (n = 226) |
Ferritin (μg/L) | 566 (233–1 243) | 545 (219–954) | 0.486 (n = 241) |
Transferrin (mg/dL) | 191 (162–230) | 154 (129–183) | <0.001 (n = 224) |
Ferritin/Transferrin ratio 4 | 2.88 (1.03–6.22) | 3.60 (1.33–9.03) | 0.263 (n = 222) |
TSAT (%) | 11 (8–16) | 12 (7–18) | 0.954 (n = 224) |
Leukocytes (G/L) | 6.00 (4.68–7.98) | 5.89 (4.00–8.00) | 0.605 (n = 256) |
CRP (mg/dL) | 3.42 (0.96–8.17) | 8.05 (3.47–15.46) | <0.001 (n = 255) |
IL-6 (ng/L) | 32.8 (15.3–76.3) | 79.0 (22.8–172.8) | 0.002 (n = 186) |
PCT (ng/mL) | 0.08 (0.06–0.22) | 0.18 (0.09–0.51) | 0.002 (n = 195) |
Logistic Regression Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|
Univariate Model | Multivariate Model I | Multivariate Model II | |||||||
OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95 % CI | p-Value | |
Demographic Characteristics | |||||||||
Age (years) | 1.083 | 1.046–1.122 | <0.001 | 1.045 | 0.974–1.123 | 0.221 | 1.049 | 0.976–1.128 | 0.193 |
BMI (kg/m2) 1 | 0.803 | 0.173–3.730 | 0.779 | ||||||
Sex, Women vs. Men | 0.564 | 0.250–1.273 | 0.168 | ||||||
Clinical Characteristics | |||||||||
Temperature (° C) | 1.091 | 0.736–1.619 | 0.664 | ||||||
SpO2 (%) | 0.952 | 0.884–1.025 | 0.190 | ||||||
O2 Requirement (L) 1 | 1.864 | 0.854–4.070 | 0.118 | ||||||
Comorbidities | |||||||||
CVD, yes vs. no | 5.815 | 1.975–17.117 | 0.001 | 2.127 | 0.309–14.647 | 0.443 | 2.532 | 0.341–18.798 | 0.364 |
DM, yes vs. no | 1.543 | 0.513–4.639 | 0.440 | ||||||
CKD, yes vs. no | 10.476 | 3.493–31.422 | <0.001 | ||||||
COPD, yes vs. no | 2.851 | 1.032–7.874 | 0.043 | 5.064 | 0.867–29.563 | 0.072 | 4.701 | 0.711–31.077 | 0.108 |
Laboratory Findings | |||||||||
eGFR (mL/min) | 0.958 | 0.943–0.974 | <0.001 | 0.965 | 0.935–0.996 | 0.026 | 0.965 | 0.934–0.996 | 0.027 |
Iron (μmol/L) 1 | 0.656 | 0.306–1.406 | 0.279 | ||||||
Ferritin (μg/L) 1 | 0.957 | 0.688–1.332 | 0.794 | ||||||
Transferrin (mg/dL) 1 | 0.223 | 0.054–0.924 | 0.039 | ||||||
Ferritin/Transferrin ratio 1,2 | 1.021 | 0.767–1.360 | 0.885 | ||||||
TSAT (%) 1 | 1.038 | 0.473–2.277 | 0.926 | ||||||
Leukocytes [G/L] 1 | 4.879 | 2.201–10.814 | <0.001 | 8.576 | 2.550–28.846 | 0.001 | 11.099 | 2.914–42.276 | <0.001 |
CRP (mg/dL) 1 | 1.374 | 1.041–1.814 | 0.025 | ||||||
IL-6 (ng/L) 1 | 1.415 | 1.046–1.915 | 0.024 | ||||||
PCT (ng/mL) 1 | 1.475 | 1.082–2.010 | 0.014 | 1.516 | 0.907–2.535 | 0.113 | 1.516 | 0.989–2.560 | 0.119 |
Classifications | |||||||||
Anemia | |||||||||
Anemia vs. no Anemia | 3.729 | 1.739–7.995 | 0.001 | 5.063 | 1.260–20.345 | 0.022 | |||
WHO Classification | |||||||||
Mild Anemia vs. no Anemia | 2.983 | 1.174–7.581 | 0.022 | 2.977 | 0.607–14–608 | 0.179 | |||
Moderate/Severe anemia vs. no Anemia | 4.972 | 1.871–13.213 | 0.001 | 13.323 | 2.139–82.999 | 0.006 | |||
Iron Deficiency | |||||||||
Absolute ID vs. no ID | 0.458 | 0.082–2.572 | 0.375 | ||||||
Functional ID vs. no ID | 0.418 | 0.150–1.165 | 0.095 |
Logistic Regression Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|
Univariate Model | Multivariate Model I | Multivariate Model II | |||||||
OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Demographic Characteristics | |||||||||
Age (Years) | 0.988 | 0.972–1.005 | 0.162 | ||||||
BMI (kg/m2) 2 | 1.243 | 0.267–5.791 | 0.781 | ||||||
Sex, Women vs. Men | 0.481 | 0.246–0.941 | 0.032 | 10.348 | 1.911–56.032 | 0.007 | 5.139 | 1.213–21.777 | 0.026 |
Clinical Characteristics | |||||||||
Temperature (° C) | 1.741 | 1.258–2.408 | 0.001 | 1.568 | 0.939–2.617 | 0.085 | 1.551 | 0.958–2.512 | 0.074 |
SpO2 (%) | 0.914 | 0.861–0.970 | 0.003 | 0.857 | 0.754–0.974 | 0.018 | 0.896 | 0.801–1.003 | 0.057 |
O2 Requirement (L) 1 | 3.699 | 1.870–7.318 | <0.001 | ||||||
Comorbidities | |||||||||
CVD, yes vs. no | 1.643 | 0.867–3.113 | 0.128 | ||||||
DM, yes vs. no | 2.639 | 1.303–5.346 | 0.007 | 2.602 | 0.726–9.319 | 0.142 | 3.105 | 0.913–10.555 | 0.070 |
CKD, yes vs. no | 1.447 | 0.442–4.740 | 0.542 | ||||||
COPD, yes vs. no | 2.805 | 1.141–6.894 | 0.025 | 11.685 | 2.078–65.703 | 0.005 | 6.734 | 1.406–32.260 | 0.017 |
Laboratory Findings | |||||||||
eGFR (mL/min) | 1.003 | 0.992–1.015 | 0.563 | ||||||
Iron (μmol/L) 1 | 0.406 | 0.203–0.812 | 0.011 | ||||||
Ferritin (μg/L) 1 | 2.780 | 1.874–4.124 | <0.001 | 4.084 | 1.599–10.431 | 0.003 | |||
Transferrin (mg/dL) 1 | 0.059 | 0.015–0.226 | <0.001 | 3.424 | 0.339–34.535 | 0.297 | |||
Ferritin/Transferrin Ratio 1,2 | 2.265 | 1.598–3.210 | <0.001 | 2.081 | 1.089–3.976 | 0.026 | |||
TSAT (%) 1 | 0.955 | 0.499–1.829 | 0.889 | ||||||
Leukocytes (G/L) 1 | 3.393 | 1.762–6.535 | <0.001 | 3.518 | 0.930–13.314 | 0.064 | 3.927 | 1.210–12.743 | 0.023 |
CRP (mg/dL) 1 | 1.798 | 1.373–2.353 | <0.001 | ||||||
IL-6 (ng/L) 1 | 2.224 | 1.632–3.031 | <0.001 | 1.961 | 1.088–3.535 | 0.025 | 1.646 | 0.968–2.800 | 0.066 |
PCT (ng/mL) 1 | 1.111 | 0.869–1.421 | 0.400 | ||||||
Classifications | |||||||||
Anemia | |||||||||
Anemia vs. no Anemia | 0.867 | 0.424–1.774 | 0.696 | ||||||
WHO Classification | |||||||||
Mild Anemia vs. no anemia | 1.166 | 0.512–2.656 | 0.715 | ||||||
Moderate/Severe Anemia vs. no Anemia | 0.490 | 0.140–1.713 | 0.264 | ||||||
Iron Deficiency | |||||||||
Absolute ID vs. no ID | 0.147 | 0.017–1.297 | 0.084 | ||||||
Functional ID vs. no ID | 0.556 | 0.225–1.373 | 0.203 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellmann-Weiler, R.; Lanser, L.; Barket, R.; Rangger, L.; Schapfl, A.; Schaber, M.; Fritsche, G.; Wöll, E.; Weiss, G. Prevalence and Predictive Value of Anemia and Dysregulated Iron Homeostasis in Patients with COVID-19 Infection. J. Clin. Med. 2020, 9, 2429. https://doi.org/10.3390/jcm9082429
Bellmann-Weiler R, Lanser L, Barket R, Rangger L, Schapfl A, Schaber M, Fritsche G, Wöll E, Weiss G. Prevalence and Predictive Value of Anemia and Dysregulated Iron Homeostasis in Patients with COVID-19 Infection. Journal of Clinical Medicine. 2020; 9(8):2429. https://doi.org/10.3390/jcm9082429
Chicago/Turabian StyleBellmann-Weiler, Rosa, Lukas Lanser, Robert Barket, Lukas Rangger, Anna Schapfl, Marc Schaber, Gernot Fritsche, Ewald Wöll, and Günter Weiss. 2020. "Prevalence and Predictive Value of Anemia and Dysregulated Iron Homeostasis in Patients with COVID-19 Infection" Journal of Clinical Medicine 9, no. 8: 2429. https://doi.org/10.3390/jcm9082429
APA StyleBellmann-Weiler, R., Lanser, L., Barket, R., Rangger, L., Schapfl, A., Schaber, M., Fritsche, G., Wöll, E., & Weiss, G. (2020). Prevalence and Predictive Value of Anemia and Dysregulated Iron Homeostasis in Patients with COVID-19 Infection. Journal of Clinical Medicine, 9(8), 2429. https://doi.org/10.3390/jcm9082429