Lifestyle-Related Exposure to Cadmium and Lead is Associated with Diabetic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Inclusion
2.2. Data Collection
2.3. Measures of Diabetic Kidney Disease
2.4. Cd and Pb Measurements
2.5. Statistical Analyses
3. Results
3.1. Patient Characteristics, Cd and Pb Concentrations
3.2. Determinants of Cd and Pb Concentrations
3.3. Dietary Intake and Blood Cd and Pb Concentrations
3.4. Multivariate Analysis between Cd and Pb and Diabetic Kidney Disease
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BSA | Body surface area |
T2D | Type 2 diabetes |
Cd | Cadmium |
DIALECT | DIAbetes and LifEstyle Cohort Twente |
DKD | Diabetic kidney disease |
ESKD | End stage kidney disease |
ICP-MS | Inductively coupled plasma mass spectrometry |
MAP | Mean arterial pressure |
Pb | Lead |
References
- Atkins, R.C.; Zimmet, P. Diabetic kidney disease: Act now or pay later. J. Bras. Nefrol. 2010, 23, 7–10. [Google Scholar]
- Ruggenenti, P.; Fassi, A.; Llieva, A.P.; Bruno, S.; Iliev, I.P.; Brusegan, V.; Rubis, N.; Gherardi, G.; Arnoldi, F.; Ganeva, M.; et al. Preventing microalbuminuria in type 2 diabetes. N. Engl. J. Med. 2004, 351, 1941–1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remuzzi, G.; Macia, M.; Ruggenenti, P. Prevention and Treatment of Diabetic Renal Disease in Type 2 Diabetes: The BENEDICT Study. J. Am. Soc. Nephrol. 2006, 17, S90–S97. [Google Scholar] [CrossRef] [PubMed]
- Zoungas, S.; De Galan, B.E.; Ninomiya, T.; Grobbee, D.; Hamet, P.; Heller, S.R.; MacMahon, S.; Marre, M.; Neal, B.; Patel, A.; et al. Combined Effects of Routine Blood Pressure Lowering and Intensive Glucose Control on Macrovascular and Microvascular Outcomes in Patients With Type 2 Diabetes. Diabetes Care 2009, 32, 2068–2074. [Google Scholar] [CrossRef] [Green Version]
- Madden, E.F.; Fowler, B.A. Mechanisms of nephrotoxicity from metal combinations: A review. Drug Chem. Toxicol. 2000, 23, 1–12. [Google Scholar] [CrossRef]
- Johri, N.; Jacquillet, G.; Unwin, R. Heavy metal poisoning: The effects of cadmium on the kidney. Biometals 2010, 23, 783–792. [Google Scholar] [CrossRef]
- Jarup, L.; Bergulund, M. Health effects of cadmium exposure—A review of the literature and risk estimate. Scand. J. Work Environ. Health 1998, 24, 1–52. [Google Scholar]
- Åkesson, A.; Lundh, T.; Vahter, M.; Bjellerup, P.; Lidfeldt, J.; Nerbrand, C.; Samsioe, G.; Strömberg, U.; Skerfving, S. Tubular and Glomerular Kidney Effects in Swedish Women with Low Environmental Cadmium Exposure. Environ. Health Perspect. 2005, 113, 1627–1631. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Tellez-Plaza, M.; Guallar, E.; Muntner, P.; Silbergeld, E.; Jaar, B.; Weaver, V.M. Blood Cadmium and Lead and Chronic Kidney Disease in US Adults: A Joint Analysis. Am. J. Epidemiol. 2009, 170, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, P.M.; Costanzi, S.; Naticchia, A.; Sturniolo, A.; Gambaro, G. Low level exposure to cadmium increases the risk of chronic kidney disease: Analysis of the NHANES 1999–2006. BMC Public Health 2010, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Buser, M.C.; Ingber, S.Z.; Raines, N.; Fowler, D.A.; Scinicariello, F. Urinary and blood cadmium and lead and kidney function: NHANES 2007–2012. Int. J. Hyg. Environ. Health 2016, 219, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Madrigal, J.M.; Ricardo, A.C.; Persky, V.; Turyk, M. Associations between blood cadmium concentration and kidney function in the U.S. population: Impact of sex, diabetes and hypertension. Environ. Res. 2019, 169, 180–188. [Google Scholar] [CrossRef]
- Buchet, J. Renal effects of cadmium body burden of the general population. Lancet 1990, 336, 699–702. [Google Scholar] [CrossRef]
- Satarug, S. Dietary Cadmium Intake and Its Effects on Kidneys. Toxics 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.R.; Prozialeck, W.C. Cadmium, diabetes and chronic kidney disease. Toxicol. Appl. Pharmacol. 2009, 238, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.H.; Hyun, Y.Y.; Lee, K.-B.; Chang, Y.; Rhu, S.; Oh, K.-H.; Ahn, C. Environmental Heavy Metal Exposure and Chronic Kidney Disease in the General Population. J. Korean Med. Sci. 2015, 30, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-L.; Lin-Tan, D.-T.; Yu, C.-C.; Li, Y.; Huang, Y.-Y.; Li, K.-L. Environmental exposure to lead and progressive diabetic nephropathy in patients with type II diabetes. Kidney Int. 2006, 69, 2049–2056. [Google Scholar] [CrossRef] [Green Version]
- Satarug, S.; Haswell-Elkins, M.R.; Moore, M.R. Safe levels of cadmium intake to prevent renal toxicity in human subjects. Br. J. Nutr. 2000, 84, 791–802. [Google Scholar] [CrossRef]
- Huang, W.-H.; Lin, J.-L.; Lin-Tan, D.-T.; Hsu, C.-W.; Chen, K.-H.; Yen, T.-H. Environmental Lead Exposure Accelerates Progressive Diabetic Nephropathy in Type II Diabetic Patients. BioMed Res. Int. 2013, 2013, 742545. [Google Scholar] [CrossRef]
- Gant, C.M.; Binnenmars, S.H.; Berg, E.V.D.; Bakker, S.J.; Navis, G.J.; Laverman, G.D. Integrated Assessment of Pharmacological and Nutritional Cardiovascular Risk Management: Blood Pressure Control in the DIAbetes and LifEstyle Cohort Twente (DIALECT). Nutrients 2017, 9, 709. [Google Scholar] [CrossRef]
- Feunekes, G.I.; Van Staveren, W.A.; De Vries, J.H.; Burema, J.; Hautvast, J.G. Relative and biomarker-based validity of a food-frequency questionnaire estimating intake of fats and cholesterol. Am. J. Clin. Nutr. 1993, 58, 489–496. [Google Scholar] [CrossRef]
- Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrients 1989, 5, 303–311. [Google Scholar]
- Coresh, J.; Astor, B.C.; McQuillan, G.; Kusek, J.; Greene, T.; Van Lente, F.; Levey, A.S. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am. J. Kidney Dis. 2002, 39, 920–929. [Google Scholar] [CrossRef]
- Inker, L.A.; Perrone, R.D. Calculation of the Creatinine Clearance. 2017. Available online: https://www-uptodate-com.proxy-ub.rug.nl/contents/calculation-of-the-creatinineclearance?search=Calculation%20of%20the%20creatinine%20clearance&source=search_result&selectedTitle=4~150&usage_type=default&display_rank=4 (accessed on 4 October 2019).
- Moreau, T.; Lellouch, J.; Juguet, B.; Festy, B.; Orssaud, G.; Claude, J.R. Blood Cadmium Levels in a General Male Population with Special Reference to Smoking. Arch. Environ. Health Int. J. 1983, 38, 163–167. [Google Scholar] [CrossRef]
- Nader, R.; Horwath, A.R.; Wittwer, C.T. Chapter 42: Toxic Elements. In Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 6th ed.; Elsevier: St. Louis, MO, USA, 2017; pp. 907–910. [Google Scholar]
- Gonick, H.C. Nephrotoxicity of cadmium & lead. Indian J. Med. Res. 2008, 128, 335–352. [Google Scholar]
- Barregard, L.; Bergström, G.; Fagerberg, B. Cadmium, type 2 diabetes, and kidney damage in a cohort of middle-aged women. Environ. Res. 2014, 135, 311–316. [Google Scholar] [CrossRef]
- Chaumont, A.; Nickmilder, M.; Dumont, X.; Lundh, T.; Skerfving, S.; Bernard, A. Associations between proteins and heavy metals in urine at low environmental exposures: Evidence of reverse causality. Toxicol. Lett. 2012, 210, 345–352. [Google Scholar] [CrossRef]
- Lin, J.-L.; Lin-Tan, D.-T.; Li, Y.-J.; Chen, K.-H.; Huang, Y.-L. Low-level Environmental Exposure to Lead and Progressive Chronic Kidney Diseases. Am. J. Med. 2006, 119, 707.e1–707.e9. [Google Scholar] [CrossRef]
- Lin, J.-L.; Lin-Tan, D.-T.; Hsu, K.-H.; Yu, C.-C. Environmental Lead Exposure and Progression of Chronic Renal Diseases in Patients without Diabetes. N. Engl. J. Med. 2003, 348, 277–286. [Google Scholar] [CrossRef]
- Leff, T.; Stemmer, P.; Tyrrell, J.; Jog, R. Diabetes and Exposure to Environmental Lead (Pb). Toxics 2018, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Jin, T.; Nordberg, G.F.; Sehlin, J.; Leffler, P. The susceptibility of spontaneously diabetic mice cadmium-metallothionein nephrotoxicity. Toxicology 1994, 89, 81–90. [Google Scholar] [CrossRef]
- Kawakami, T.; Sugimoto, H.; Furuichi, R.; Kadota, Y. Cadmium reduces adipocyte size and expression levels of adiponectin and Peg1/Mest in adipose tissue. Toxicology 2010, 267, 20–62. [Google Scholar] [CrossRef]
- Anetor, J.I.; Uche, C.Z.; Ayita, E.B.; Adedapo, S.K.; Adeleye, J.O.; Anetor, G.O.; Akinlade, S.K. Cadmium Level, Glycemic Control, and Indices of Renal Function in Treated Type II Diabetics: Implications for Polluted Environments. Front. Public Health 2016, 4, 114. [Google Scholar] [CrossRef] [PubMed]
- Weaver, V.M.; Kim, N.-S.; Lee, B.-K.; Parsons, P.J.; Spector, J.; Fadrowski, J.; Jaar, B.G.; Steuerwald, A.J.; Todd, A.C.; Simon, D.; et al. Differences in urine cadmium associations with kidney outcomes based on serum creatinine and cystatin C. Environ. Res. 2011, 111, 1236–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akerstrom, M.; Sallsten, G.; Lundh, T.; Barregard, L. Associations between Urinary Excretion of Cadmium and Proteins in a Nonsmoking Population: Renal Toxicity or Normal Physiology? Environ. Health Perspect. 2012, 121, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.Y.; Kim, S.; Lee, K.; Kim, J.-Y.; Bae, W.K.; Lee, K.; Han, J.-S.; Kim, S. Association between secondhand smoke exposure and blood lead and cadmium concentration in community dwelling women: The fifth Korea National Health and Nutrition Examination Survey (2010–2012). BMJ Open 2015, 5, e008218. [Google Scholar] [CrossRef] [Green Version]
- Sherlock, J.C.; Pickford, C.J.; White, G.F. Lead in alcoholic beverages. Food Addit. Contam. 1986, 3, 347–354. [Google Scholar] [CrossRef]
- Yen, T.-H.; Lin, J.-L.; Lin-Tan, D.-T.; Hsu, C.-W.; Chen, K.-H.; Hsu, H.-H.; Pirozzi, N.; Apponi, F.; Napoletano, A.M.; Luciani, R.; et al. Blood cadmium level’s association with 18-month mortality in diabetic patients with maintenance haemodialysis. Nephrol. Dial. Transpl. 2010, 26, 998–1005. [Google Scholar] [CrossRef] [Green Version]
Characteristics | n= | Total Population | Cadmium St. B. | p-Value | Lead St. B. | p-Value |
---|---|---|---|---|---|---|
Age, years | 231 | 64 ± 9 | −0.05 | 0.46 | 0.09 | 0.18 |
Women, n (%) | 231 | 93 (40) | 0.19 | 0.004 | −0.12 | 0.06 |
Body Mass Index, kg/m2 | 230 | 33 ± 6 | −0.06 | 0.38 | −0.04 | 0.57 |
Body surface area, m2 | 230 | 2.1 ± 0.2 | −0.14 | 0.03 | 0.06 | 0.37 |
Systolic blood pressure, mmHg | 230 | 141 ± 17 | −0.06 | 0.4 | 0.07 | 0.26 |
Diastolic blood pressure, mmHg | 230 | 76 ± 10 | 0.02 | 0.74 | 0.05 | 0.46 |
Pulse rate, beats/min | 229 | 75 ± 13 | 0.15 | 0.03 | 0.02 | 0.72 |
Diabetes duration, years | 231 | 12 (6–20) | −0.22 | 0.001 | −0.09 | 0.2 |
Treatment with insulin, n (%) | 231 | 140 (61) | −0.2 | 0.003 | −0.12 | 0.08 |
HbA1c, mmol/mol (%) | 230 | 55 ± 10 (7.2 ± 3.1) | −0.14 | 0.04 | −0.16 | 0.02 |
Smoking status | 231 | |||||
Current active smokers, n (%) | 35 (15) | 0.46 | <0.001 | 0.09 | 0.28 | |
Current passive smokers, n (%) | 46 (20) | 0.15 | 0.05 | 0.04 | 0.63 | |
Former active smokers, n (%) | 95 (41) | 0.15 | 0.05 | 0.18 | 0.03 | |
Never smoked, n (%) | 52 (23) | * | * | |||
Pack years, (years) | 227 | 12 (0–29) | 0.3 | <0.001 | 0.23 | <0.001 |
Alcohol, g/day | 229 | 2.0 (0–14) | −0.1 | 0.15 | 0.3 | <0.001 |
Creatinine clearance, mL/min/1.73 m2 | 230 | 95 ± 39 | −0.18 | 0.007 | −0.12 | 0.08 |
eGFR, mL/min/1.73 m2 | 231 | 75 ± 24 | −0.12 | 0.08 | −0.16 | 0.01 |
Urine albumin excretion, mg/24 h | 223 | 11 (3–91) | 0.12 | 0.08 | 0.13 | 0.05 |
Urine total protein excretion g/24 h | 231 | 0.2 (0.1–0.4) | 0.17 | 0.01 | 0.09 | 0.18 |
Blood cadmium, nmol/L | 231 | 2.94 (1.78–4.98) | 0.16 | 0.01 | ||
Blood lead, µmol/L | 231 | 0.07 (0.04–0.09) | 0.16 | 0.01 | ||
Microvascular complications, n (%) | 231 | 154 (67) | −0.03 | 0.67 | 0.19 | 0.003 |
Polyneuropathy, n (%) | 231 | 78 (34) | −0.03 | 0.66 | 0.12 | 0.07 |
Diabetic kidney disease, n (%) | 231 | 105 (46) | 0.1 | 0.14 | 0.2 | <0.001 |
Creatinine clearance <60 mL/min/1.73 m2, n (%) | 230 | 47 (20) | 0.1 | 0.01 | 0.15 | 0.02 |
Albuminuria, n (%) | 231 | 86 (37) | 0.04 | 0.52 | 0.24 | <0.001 |
Retinopathy, n (%) | 231 | 64 (28) | −0.11 | 0.11 | 0.08 | 0.25 |
Macrovascular complications, n (%) | 231 | 99 (43) | 0.2 | 0.002 | 0.01 | 0.85 |
Peripheral arterial disease, n (%) | 231 | 33 (14) | 0.13 | 0.06 | 0.12 | 0.08 |
Coronary artery diseases, n (%) | 231 | 66 (29) | 0.09 | 0.18 | 0.01 | 0.9 |
Cerebrovascular diseases, n (%) | 231 | 26 (11) | 0.1 | 0.13 | 0.01 | 0.88 |
Lifestyle-Related Exposures | Cadmium nmol/L | Lead umol/L | ||
---|---|---|---|---|
St. B. | p-Value | St. B. | p-Value | |
Active smoker | ||||
Model 1 (crude) | 0.46 | <0.001 | 0.08 | 0.27 |
Model 2 (adjusted) | 0.50 | <0.001 | 0.11 | 0.16 |
Model 3 (adjusted) | 0.48 | <0.001 | 0.02 | 0.86 |
Passive smoker | ||||
Model 1 (crude) | 0.16 | 0.04 | −0.003 | 0.97 |
Model 2 (adjusted) | 0.17 | 0.03 | −0.001 | 0.99 |
Model 3 (adjusted) | 0.17 | 0.03 | −0.03 | 0.69 |
Former smoker | ||||
Model 1 (crude) | 0.17 | 0.03 | 0.14 | 0.08 |
Model 2 (adjusted) | 0.25 | 0.002 | 0.17 | 0.05 |
Model 3 (adjusted) | 0.22 | 0.005 | 0.12 | 0.16 |
Alcohol intake | ||||
Model 1 (crude) | −0.09 | 0.17 | 0.29 | <0.001 |
Model 2 (adjusted) | 0.003 | 0.96 | 0.30 | <0.001 |
Model 3 (adjusted) | −0.05 | 0.49 | 0.30 | <0.001 |
Food Products | Cadmium (nmol/L) | Lead (µmol/L) | ||||||
---|---|---|---|---|---|---|---|---|
Crude | Adjusted * | Crude | Adjusted * | |||||
St. B. | p Value | St. B. | p Value | St. B. | p Value | St. B. | p Value | |
Vegetable | ||||||||
Tertile 2 | −0.15 | 0.06 | −0.13 | 0.06 | 0.06 | 0.47 | 0.09 | 0.21 |
Tertile 3 | −0.16 | 0.03 | −0.16 | 0.03 | −0.02 | 0.81 | 0.01 | 0.93 |
Rice | ||||||||
Tertile 2 | −0.01 | 0.95 | −0.02 | 0.81 | −0.08 | 0.32 | −0.06 | 0.42 |
Tertile 3 | −0.06 | 0.42 | −0.02 | 0.81 | −0.16 | 0.14 | −0.1 | 0.2 |
Potatoes | ||||||||
Tertile 2 | −0.12 | 0.13 | −0.12 | 0.11 | 0.14 | 0.08 | 0.11 | 0.14 |
Tertile 3 | −0.13 | 0.1 | −0.13 | 0.1 | 0.02 | 0.83 | 0.02 | 0.86 |
Bread | ||||||||
Tertile 2 | −0.07 | 0.34 | −0.05 | 0.48 | 0.07 | 0.36 | 0.1 | 0.18 |
Tertile 3 | −0.15 | 0.06 | −0.06 | 0.46 | 0.02 | 0.83 | 0.08 | 0.31 |
Fish | ||||||||
Tertile 2 | 0.01 | 0.9 | −0.01 | 0.9 | 0.05 | 0.53 | 0.07 | 0.32 |
Tertile 3 | −0.02 | 0.77 | 0.2 | 0.78 | 0.05 | 0.56 | 0.02 | 0.84 |
Fruit | ||||||||
Tertile 2 | −0.18 | 0.02 | −0.08 | 0.24 | −0.03 | 0.66 | −0.02 | 0.8 |
Tertile 3 | −0.15 | 0.05 | −0.14 | 0.05 | 0.03 | 0.69 | 0 | 0.99 |
Liver and kidney | ||||||||
Tertile 2 | −0.12 | 0.09 | −0.8 | 0.25 | −0.15 | 0.03 | −0.11 | 0.1 |
Tertile 3 | −0.16 | 0.02 | −0.12 | 0.07 | −0.01 | 0.88 | 0.02 | 0.8 |
Cacao | ||||||||
Tertile 2 | −0.11 | 0.18 | −0.07 | 0.32 | −0.05 | 0.53 | −0.01 | 0.1 |
Tertile 3 | −0.08 | 0.3 | −0.03 | 0.66 | −0.1 | 0.22 | −0.02 | 0.76 |
Independent Variables | Creatinine Clearance <60 mL/min/1.73 m2 | Albuminuria >30 mg/24 h | ||
---|---|---|---|---|
OR | 95% CI | OR | 95% CI | |
Cadmium nmol/L | ||||
Model 1 (crude) | 1.57 | 1.14–2.16 | 1.08 | 0.85–1.37 |
Model 2 | 1.65 | 1.18–2.31 | 1.22 | 0.95–1.58 |
Model 3 | 1.53 | 1.08–2.17 | 1.24 | 0.95–1.62 |
Model 4 | 1.52 | 1.07–2.16 | 1.24 | 0.95–1.63 |
Model 5 | 1.57 | 1.07–2.30 | 1.06 | 0.80–1.41 |
Model 6 * | 1.50 | 1.02–2.21 | 1.01 | 0.75–1.36 |
Lead µmol/L | ||||
Model 1 (crude) | 1.65 | 1.07–2.55 | 2.15 | 1.44–3.19 |
Model 2 | 1.68 | 1.06–2.66 | 1.98 | 1.31–2.98 |
Model 3 | 1.63 | 1.01–2.66 | 1.97 | 1.29–3.01 |
Model 4 | 1.94 | 1.16–3.24 | 1.93 | 1.25–3.00 |
Model 5 | 1.94 | 1.15–3.27 | 1.75 | 1.12–2.74 |
Model 6 ** | 1.83 | 1.07–3.15 | 1.75 | 1.11–2.74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagedoorn, I.J.M.; Gant, C.M.; Huizen, S.v.; Maatman, R.G.H.J.; Navis, G.; Bakker, S.J.L.; Laverman, G.D. Lifestyle-Related Exposure to Cadmium and Lead is Associated with Diabetic Kidney Disease. J. Clin. Med. 2020, 9, 2432. https://doi.org/10.3390/jcm9082432
Hagedoorn IJM, Gant CM, Huizen Sv, Maatman RGHJ, Navis G, Bakker SJL, Laverman GD. Lifestyle-Related Exposure to Cadmium and Lead is Associated with Diabetic Kidney Disease. Journal of Clinical Medicine. 2020; 9(8):2432. https://doi.org/10.3390/jcm9082432
Chicago/Turabian StyleHagedoorn, Ilse J. M., Christina M. Gant, Sanne v. Huizen, Ronald G. H. J. Maatman, Gerjan Navis, Stephan J. L. Bakker, and Gozewijn D. Laverman. 2020. "Lifestyle-Related Exposure to Cadmium and Lead is Associated with Diabetic Kidney Disease" Journal of Clinical Medicine 9, no. 8: 2432. https://doi.org/10.3390/jcm9082432
APA StyleHagedoorn, I. J. M., Gant, C. M., Huizen, S. v., Maatman, R. G. H. J., Navis, G., Bakker, S. J. L., & Laverman, G. D. (2020). Lifestyle-Related Exposure to Cadmium and Lead is Associated with Diabetic Kidney Disease. Journal of Clinical Medicine, 9(8), 2432. https://doi.org/10.3390/jcm9082432