Assessment of Solitary Pulmonary Nodules Based on Virtual Monochrome Images and Iodine-Dependent Images Using a Single-Source Dual-Energy CT with Fast kVp Switching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. DECT Examination
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Radiation Dose
3.2. Pathological Results
3.3. DECT Imaging Results
3.4. Results of the VMS Analysis
3.5. Results of the IC Map Analyses
3.6. ROC Curves and AUC
3.7. Clinical Implications
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations and Acronyms
SSDECT | single source Dual Energy Computed Tomography |
DECT | Dual Energy Computed Tomography |
CCT | Conventional Computed Tomography |
VMI | Virtual monochromatic image |
VMS | Virtual Monochromatic Spectral |
IC | Iodine concentration |
SPN | Solitary pulmonary nodule |
ROI | Region of interest |
AP | Arterial phase enhancement |
VP | Venous phase enhancement |
Appendix A
Parameter keV (AP) | Malignant (n = 46) | Benign (n = 19) | p-Value | Thresholds | Sensitivity (%) | Specificity (%) | AUC | ||
---|---|---|---|---|---|---|---|---|---|
Mean * Median | SD * Range | Mean * Median | SD * Range | ||||||
40 | * 154.76 | * 77.17–399.58 | * 104.56 | * 70.07–178.5 | 0.001 | 134.10 | 72 | 74 | 0.761 |
45 | * 129.46 | * 63.48–317.39 | * 85.80 | * 59.65–142.52 | <0.001 | 106.08 | 74 | 74 | 0.783 |
50 | * 109.70 | * 52.36–251.17 | * 68.42 | * 51.26–113.57 | <0.001 | 84.19 | 76 | 74 | 0.800 |
55 | * 94.93 | * 43.86–200.01 | * 59.34 | * 44.54–92.55 | <0.001 | 93.99 | 54 | 100 | 0.827 |
60 | * 80.87 | * 35.33–151.58 | * 47.61 | * 35.25–75.57 | <0.001 | 52.32 | 84 | 79 | 0.849 |
65 | * 65.92 | * 28.62–116.34 | * 35.60 | * 26.69–65.39 | <0.001 | 53.99 | 70 | 95 | 0.852 |
70 | * 59.16 | * 25.78–95.00 | * 32.67 | * 21.19–57.62 | <0.001 | 48.32 | 67 | 94 | 0.855 |
75 | 50.27 | 14.46 | 30.96 | 10.14 | <0.001 | 43.38 | 67 | 94 | 0.851 |
80 | 45.83 | 12.87 | 28.03 | 10.30 | <0.001 | 40.02 | 70 | 89 | 0.849 |
85 | 42.10 | 12.16 | 25.08 | 10.45 | <0.001 | 38.51 | 67 | 95 | 0.854 |
90 | 38.13 | 11.47 | 22.04 | 10.58 | <0.001 | 36.66 | 65 | 95 | 0.846 |
95 | 34.64 | 11.14 | 19.61 | 10.84 | <0.001 | 32.32 | 65 | 89 | 0.824 |
100 | 32.23 | 11.00 | 17.66 | 11.10 | <0.001 | 28.70 | 67 | 84 | 0.823 |
105 | 30.08 | 10.98 | 16.05 | 11.34 | <0.001 | 27.83 | 60 | 89 | 0.811 |
110 | 28.06 | 11.04 | 14.54 | 11.59 | <0.001 | 26.76 | 59 | 89 | 0.800 |
115 | 26.56 | 11.13 | 13.42 | 11.78 | <0.001 | 23.31 | 63 | 84 | 0.791 |
120 | 25.14 | 11.25 | 12.37 | 11.97 | <0.001 | 26.29 | 52 | 94 | 0.776 |
125 | 23.91 | 11.38 | 11.79 | 11.82 | <0.001 | 26.25 | 50 | 95 | 0.768 |
130 | 22.89 | 11.52 | 10.69 | 12.30 | <0.001 | 25.14 | 50 | 95 | 0.761 |
135 | 21.91 | 11.65 | 9.96 | 12.45 | <0.001 | 23.39 | 52 | 95 | 0.757 |
140 | 21,3 | 11,98 | 9,45 | 12,47 | <0.001 | 22.95 | 52 | 95 | 0.752 |
Parameter keV (VP) | Malignant (n = 46) | Benign (n = 19) | p-Value | Thresholds | Sensitivity (%) | Specificity (%) | AUC | ||
---|---|---|---|---|---|---|---|---|---|
Mean * Median | SD * Range | Mean * Median | SD * Range | ||||||
40 | * 147.41 | * 84.96–249.13 | * 112.69 | * 69.41–196.97 | 0.004 | 121.89 | 76 | 69 | 0.728 |
45 | * 124.67 | * 73.38–200.04 | * 92.09 | * 60.62–154.43 | 0.002 | 98.32 | 76 | 69 | 0.743 |
50 | * 105.46 | * 64.09–157.44 | * 74.13 | * 53.52–121.20 | <0.001 | 74.50 | 87 | 58 | 0.770 |
55 | * 88.92 | * 54.87–142.44 | * 60.30 | * 44.56–97.28 | <0.001 | 61.86 | 91 | 58 | 0.800 |
60 | 73.38 | 18.88 | 51.34 | 10.79 | <0.001 | 69.68 | 59 | 100 | 0.839 |
65 | 61.62 | 16.37 | 40.88 | 8.85 | <0.001 | 49.65 | 74 | 90 | 0.858 |
70 | 54.90 | 14.57 | 36.03 | 8.38 | <0.001 | 48.64 | 65 | 95 | 0.857 |
75 | 49.49 | 13.37 | 32.14 | 8.28 | <0.001 | 40.27 | 74 | 89 | 0.855 |
80 | 45.49 | 12.62 | 29.45 | 8.14 | <0.001 | 39.42 | 70 | 95 | 0.855 |
85 | 41.91 | 12.26 | 26.73 | 8.10 | <0.001 | 37.29 | 70 | 95 | 0.850 |
90 | 38.45 | 12.17 | 23.86 | 8.15 | <0.001 | 32.48 | 74 | 89 | 0.848 |
95 | 35.43 | 12.12 | 21.36 | 8.51 | <0.001 | 32.59 | 63 | 95 | 0.833 |
100 | 32.99 | 12.14 | 19.35 | 8.86 | <0.001 | 32.14 | 56 | 100 | 0.823 |
105 | 31.02 | 12.22 | 17.68 | 9.19 | <0.001 | 30.06 | 56 | 100 | 0.822 |
110 | 29.16 | 12.32 | 16.12 | 9.53 | <0.001 | 28.55 | 59 | 100 | 0.814 |
115 | * 28.87 | * 1.80–71.22 | * 15.92 | * −4.31–27.66 | <0.001 | 27.77 | 59 | 100 | 0.807 |
120 | * 27.23 | * −0.24–70.49 | * 15.10 | * −6.37–27.28 | <0.001 | 26.72 | 56 | 95 | 0.793 |
125 | * 26.47 | * −1.92–69.87 | * 14.36 | * −8.14–26.88 | <0.001 | 25.77 | 54 | 95 | 0.793 |
130 | * 25.88 | * −3.29–69.35 | * 13.76 | * −9.60–26.59 | <0.001 | 26.98 | 48 | 100 | 0.789 |
135 | * 25.34 | * −4.71–68.88 | * 13.22 | * −11.03–26.25 | <0.001 | 22.06 | 63 | 84 | 0.785 |
140 | * 24.78 | * −5.82–68.49 | * 12.74 | * −12.30–26.03 | <0.001 | 24.70 | 53 | 95 | 0.780 |
References
- Stewart, B.W.; Wild, C.P. (Eds.) World Cancer Report 2014; IARC/WHO Press: Lyon, France, 2014; pp. 16–18. ISBN 978-92-832-0429-9. [Google Scholar]
- Bueno, J.; Landeras, L.; Chung, J.H. Updated Fleischner Society Guidelines for Managing Incidental Pulmonary Nodules: Common Questions and Challenging Scenarios. Radiographics 2018, 38, 1337–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Zhang, C.; Li, M.; Deng, K.; Li, W. Preliminary Application of High-Definition Computed Tomographic Gemstone Spectral Imaging in Lung Cancer. J. Comput. Assist. Tomogr. 2014, 38, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Truong, M.T.; Ko, J.P.; Rossi, S.E.; Rossi, I.; Viswanathan, C.; Bruzzi, J.F.; Marom, E.M.; Erasmus, J.J. Update in the evaluation of the solitary pulmonary nodule. Radiographics 2014, 34, 1658–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swensen, S.J.; Viggiano, R.W.; Midthun, D.E.; Müller, N.L.; Sherrick, A.; Yamashita, K.; Naidich, D.P.; Patz, E.F.; Hartman, T.E.; Muhm, J.R.; et al. Lung nodule enhancement at CT: Multicenter study. Radiology 2000, 214, 73–80. [Google Scholar] [CrossRef]
- Ohno, Y.; Nishio, M.; Koyama, H.; Miura, S.; Yoshikawa, T.; Matsumoto, S.; Sugimura, K. Dynamic Contrast-Enhanced CT and MRI for Pulmonary Nodule Assessment. Am. J. Roentgenol. 2014, 202, 515–529. [Google Scholar] [CrossRef]
- Marin, D.; Boll, D.T.; Mileto, A.; Nelson, R.C. State of the art: Dual-energy CT of the abdomen. Radiology 2014, 271, 327–342. [Google Scholar] [CrossRef]
- Matsumoto, K.; Jinzaki, M.; Tanami, Y.; Ueno, A.; Yamada, M.; Kuribayashi, S. Virtual Monochromatic Spectral Imaging with Fast Kilovoltage Switching: Improved Image Quality as Compared with That Obtained with Conventional 120-kVp CT. Radiology 2011, 259, 257–262. [Google Scholar] [CrossRef]
- Genant, H.K.; Boyd, D. Quantitative bone mineral analysis using dual energy computed tomography. Investig. Radiol. 1977, 12, 545–551. [Google Scholar] [CrossRef]
- Wu, X.; Langan, D.; Xu, D.; Benson, T.; Pack, J.; Schmitz, A.M.; Tkaczyk, J.E.; Leverentz, J.; Licato, P. Monochromatic CT image representation via fast switching dual kVp. In Proceedings of the SPIE 7258, Medical Imaging 2009: Physics of Medical Imaging: Physics of Medical Imaging, Orlando, FL, USA, 26 March 2009. [Google Scholar] [CrossRef]
- Tkaczyk, J.E.; Langan, D.; Wu, X.; Xu, D.; Benson, T.; Pack, J.; Schmitz, A.; Hara, A.; Palicek, W.; Licato, P.; et al. Quantization of liver tissue in dual kVp computed tomography using linear discriminant analysis. In Proceedings of the SPIE 7258, Medical Imaging 2009: Physics of Medical Imaging: Physics of Medical Imaging, Orlando, FL, USA, 26 March 2009. [Google Scholar] [CrossRef]
- Dilmanian, F.A. Computed tomography with monochromatic X rays. Am. J. Physiol. Imaging 1992, 7, 175–193. [Google Scholar]
- Ohana, M.; Jeung, M.Y.; Labani, A.; El Ghannudi, S.; Roy, C. Thoracic dual energy CT: Acquisition protocols, current applications and future developments. Diagn. Interv. Imaging 2014, 95, 1017–1026. [Google Scholar] [CrossRef]
- Cramer, T.W.; Fletcher, J.G.; Paden, R.G.; Boltz, T.F.; Stiles, W.L.; Pavlicek, W.; Silva, A.C. A primer on the use of dual-energy CT in the evaluation of commonly encountered neoplasms. Abdom. Radiol. 2016, 41, 1618–1631. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.R.C.; Krauß, B.; Sedlmair, M.; Grasruck, M.; Bruder, H.; Morhard, D.; Fink, C.; Weckbach, S.; Lenhard, M.; Schmidt, B.; et al. Material differentiation by dual energy CT: Initial experience. Eur. Radiol. 2007, 17, 1510–1517. [Google Scholar] [CrossRef]
- Sudarski, S.; Hagelstein, C.; Weis, M.; Schoenberg, S.O.; Apfaltrer, P. Dual-energy snap-shot perfusion CT in suspect pulmonary nodules and masses and for lung cancer staging. Eur. J. Radiol. 2015, 84, 2393–2400. [Google Scholar] [CrossRef] [PubMed]
- Heidinger, B.H.; Anderson, K.R.; Moriarty, E.M.; Costa, D.B.; Gangadharan, S.P.; VanderLaan, P.A.; Bankier, A.A. Size Measurement and T-staging of Lung Adenocarcinomas Manifesting as Solid Nodules ≤30 mm on CT: Radiology-Pathology Correlation. Acad. Radiol. 2017, 24, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Radiation Safety. Available online: https://www.acr.org/Clinical-Resources/Radiology-Safety/Radiation-Safety (accessed on 10 August 2019).
- Johnson, T.R.C.; Kalender, W.A. Physical Background. In Dual Energy CT in Clinical Practice; Johnson, T., Fink, C., Schönberg, S.O., Reiser, M.F., Eds.; Medical Radiology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–9. ISBN 978-3-642-01740-7. [Google Scholar]
- Reiter, M.J.; Winkler, W.T.; Kagy, K.E.; Schwope, R.B.; Lisanti, C.J. Dual-energy Computed Tomography for the Evaluation of Enhancement of Pulmonary Nodules ≤3 cm in Size. J. Thorac. Imaging 2017, 32, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.E.; Macovski, A. Energy-selective reconstructions in X-ray computerized tomography. Phys. Med. Biol. 1976, 21, 733–744. [Google Scholar] [CrossRef]
- Pérez-Lara, A.; Forghani, R. Spectral Computed Tomography: Technique and Applications for Head and Neck Cancer. Magn. Reson. Imaging Clin. N. Am. 2018, 26, 1–17. [Google Scholar] [CrossRef]
- Zhang, M.; Kono, M. Solitary pulmonary nodules: Evaluation of blood flow patterns with dynamic CT. Radiology 1997, 205, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Milne, E.N.C. Circulation of primary and metastatic pulmonary neoplasms. Am. J. Roentgenol. 1967, 100, 603–619. [Google Scholar] [CrossRef] [PubMed]
- Swensen, S.J.; Brown, L.R.; Colby, T.V.; Weaver, A.L. Pulmonary nodules: CT evaluation of enhancement with iodinated contrast material. Radiology 1995, 194, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Swensen, S.J.; Morin, R.L.; Schueler, B.A.; Brown, L.R.; Cortese, D.A.; Pairolero, P.C.; Brutinel, W.M. Solitary pulmonary nodule: CT evaluation of enhancement with iodinated contrast material—A preliminary report. Radiology 1992, 182, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, J.; Hua, X.; Yu, M.; Xu, C.; Zhang, F.; Xu, J.; Wu, H. Can Spectral CT Imaging Improve the Differentiation between Malignant and Benign Solitary Pulmonary Nodules? PLoS ONE 2016, 11, e0147537. [Google Scholar] [CrossRef] [PubMed]
- Altenbernd, J.; Wetter, A.; Umutlu, L.; Hahn, S.; Ringelstein, A.; Forsting, M.; Lauenstein, T. Dual-energy computed tomography for evaluation of pulmonary nodules with emphasis on metastatic lesions. Acta Radiol. 2016, 57, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-Y.; Zhang, Y.; Suo, S.-T.; Zhang, F.; Cheng, J.-J.; Wu, H.-W. Correlation between dual-energy spectral CT imaging parameters and pathological grades of non-small cell lung cancer. Clin. Radiol. 2018, 73, 412.e1–412.e7. [Google Scholar] [CrossRef] [PubMed]
- Son, J.Y.; Lee, H.Y.; Kim, J.-H.; Han, J.; Jeong, J.Y.; Lee, K.S.; Kwon, O.J.; Shim, Y.M. Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma: The added value of using iodine mapping. Eur. Radiol. 2016, 26, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Li, G.J.; Gao, J.; Wang, G.L.; Zhang, C.Q.; Shi, H.; Deng, K. Correlation between vascular endothelial growth factor and quantitative dual-energy spectral CT in non-small-cell lung cancer. Clin. Radiol. 2016, 71, 363–368. [Google Scholar] [CrossRef]
- Yanagawa, M.; Morii, E.; Hata, A.; Fujiwara, M.; Gyobu, T.; Ueda, K.; Honda, O.; Tomiyama, N. Dual-energy dynamic CT of lung adenocarcinoma: Correlation of iodine uptake with tumor gene expression. Eur. J. Radiol. 2016, 85, 1407–1413. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Tang, W.; Jin, Y.-J.; Qi, L.-L.; Wu, N. Identification of epidermal growth factor receptor mutations in pulmonary adenocarcinoma using dual-energy spectral computed tomography. Eur. Radiol. 2019, 29, 2989–2997. [Google Scholar] [CrossRef]
- Ren, Y.; Jiao, Y.; Ge, W.; Zhang, L.; Hua, Y.; Li, C.; Zhai, W.; Tang, X.; He, W.; Fang, M.; et al. Dual-Energy Computed Tomography-Based Iodine Quantitation for Response Evaluation of Lung Cancers to Chemoradiotherapy/Radiotherapy: A Comparison With Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography-Based Positron Emission Tomography/Computed Tomography Response Evaluation Criterion in Solid Tumors. J. Comput. Assist. Tomogr. 2018, 42, 614–622. [Google Scholar] [CrossRef]
- Schmid-Bindert, G.; Henzler, T.; Chu, T.Q.; Meyer, M.; Nance, J.W.; Schoepf, U.J., Jr.; Dinter, D.J.; Apfaltrer, P.; Krissak, R.; Manegold, C.; et al. Functional imaging of lung cancer using dual energy CT: How does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur. Radiol. 2012, 22, 93–103. [Google Scholar] [CrossRef]
- Fehrenbach, U.; Feldhaus, F.; Kahn, J.; Böning, G.; Maurer, M.H.; Renz, D.; Frost, N.; Streitparth, F. Tumour response in non-small-cell lung cancer patients treated with chemoradiotherapy—Can spectral CT predict recurrence? J. Med. Imaging Radiat. Oncol. 2019, 63, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.R.; Hur, J.; Moon, Y.W.; Han, K.; Chang, S.; Kim, J.Y.; Im, D.J.; Suh, Y.J.; Hong, Y.J.; Lee, H.-J.; et al. Predictive factors for treatment response using dual-energy computed tomography in patients with advanced lung adenocarcinoma. Eur. J. Radiol. 2018, 101, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Choe, J.; Lee, S.M.; Do, K.-H.; Lee, J.B.; Lee, S.M.; Lee, J.-G.; Seo, J.B. Prognostic value of radiomic analysis of iodine overlay maps from dual-energy computed tomography in patients with resectable lung cancer. Eur. Radiol. 2019, 29, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.S.; Wu, H.W.; Yin, Y.; Cheng, J.J.; Zhang, Q.; Xu, J.R. Differentiation of lung cancers from inflammatory masses with dual-energy spectral CT imaging. Acad. Radiol. 2015, 22, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Aoki, M.; Takai, Y.; Narita, Y.; Hirose, K.; Sato, M.; Akimoto, H.; Kawaguchi, H.; Hatayama, Y.; Miura, H.; Ono, S. Correlation between tumor size and blood volume in lung tumors: A prospective study on dual-energy gemstone spectral CT imaging. J. Radiat. Res. 2014, 55, 917–923. [Google Scholar] [CrossRef] [Green Version]
- Gould, M.K.; Donington, J.; Lynch, W.R.; Mazzone, P.J.; Midthun, D.E.; Naidich, D.P.; Wiener, R.S. Evaluation of individuals with pulmonary nodules: When is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, e93S–e120S. [Google Scholar] [CrossRef] [Green Version]
Patients | Exclusion Criteria |
---|---|
98 patients with a high risk of lung cancer, hospitalized between January 2017 and June 2018. | Exclusion criteria for CT examination: |
prior history of lung cancer (n = 5); | |
contrast media hypersensitivity (n = 3); | |
pregnancy (n = 0); | |
kidney failure (n = 5); | |
lack of patient’s consent (n = 1). | |
84 patients underwent DECT examinations to prospectively assess SPNs. | Exclusion criteria for analysis: lesion of a long-axis diameter larger than 30 mm (n = 8); “Ground-glass” lesion (n = 6); lack of histopathological confirmation of diagnosis (n = 4); coexistence of another cancer (n = 1). |
65 patients whom we included in the statistical analysis were later split into two groups based on histopathological results:
|
Malignant | 46 (71%) |
Adenocarcinoma | 23 (35%) |
Squamous cell carcinoma | 18 (28%) |
Large cell neuroendocrine carcinoma | 3 (4%) |
Squamous cell (95%) and neuroendocrine carcinoma | 1 (2%) |
Small cell carcinoma | 1 (2%) |
Benign | 19 (29%) |
Inflammatory infiltrations | 9 (14%) |
Sarcoidosis | 5 (8%) |
Fibroma | 2 (4%) |
Hamartoma | 1 (1%) |
Hematoma | 1 (1%) |
Tuberculoma | 1 (1%) |
Parameter | Malignant (n = 45) | Benign (n = 21) | T | p Value | Thresholds | Sensitivity (%) | Specificity (%) | AUC | ||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||||||
IC (AP) | 19.72 | 5.18 | 12.63 | 3.90 | 5.35 | <0.001 | 14.84 | 87 | 74 | 0.859 |
IC (VP) | 18.11 | 4.60 | 12.85 | 3.87 | 4.37 | <0.001 | 12.11 | 96 | 63 | 0.817 |
Results | True Positives | False Positives | False Negatives | True Negatives | PPV | NPV | Youden | |
---|---|---|---|---|---|---|---|---|
Parameters | ||||||||
65-keV VMI (AP) | 32 | 1 | 14 | 18 | 0.97 | 0.56 | 0.643 | |
65-keV VMI (VP) | 34 | 2 | 12 | 17 | 0.94 | 0.58 | 0.634 | |
IC (AP) | 40 | 5 | 6 | 14 | 0.89 | 0.70 | 0.606 | |
IC (VP) | 44 | 7 | 2 | 12 | 0.86 | 0.86 | 0.598 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zegadło, A.; Żabicka, M.; Kania-Pudło, M.; Maliborski, A.; Różyk, A.; Sośnicki, W. Assessment of Solitary Pulmonary Nodules Based on Virtual Monochrome Images and Iodine-Dependent Images Using a Single-Source Dual-Energy CT with Fast kVp Switching. J. Clin. Med. 2020, 9, 2514. https://doi.org/10.3390/jcm9082514
Zegadło A, Żabicka M, Kania-Pudło M, Maliborski A, Różyk A, Sośnicki W. Assessment of Solitary Pulmonary Nodules Based on Virtual Monochrome Images and Iodine-Dependent Images Using a Single-Source Dual-Energy CT with Fast kVp Switching. Journal of Clinical Medicine. 2020; 9(8):2514. https://doi.org/10.3390/jcm9082514
Chicago/Turabian StyleZegadło, Arkadiusz, Magdalena Żabicka, Marta Kania-Pudło, Artur Maliborski, Aleksandra Różyk, and Witold Sośnicki. 2020. "Assessment of Solitary Pulmonary Nodules Based on Virtual Monochrome Images and Iodine-Dependent Images Using a Single-Source Dual-Energy CT with Fast kVp Switching" Journal of Clinical Medicine 9, no. 8: 2514. https://doi.org/10.3390/jcm9082514
APA StyleZegadło, A., Żabicka, M., Kania-Pudło, M., Maliborski, A., Różyk, A., & Sośnicki, W. (2020). Assessment of Solitary Pulmonary Nodules Based on Virtual Monochrome Images and Iodine-Dependent Images Using a Single-Source Dual-Energy CT with Fast kVp Switching. Journal of Clinical Medicine, 9(8), 2514. https://doi.org/10.3390/jcm9082514