Role of Immune Checkpoint Inhibitors in Gastrointestinal Malignancies
Abstract
:1. Introduction
2. Esophageal & Gastric Cancer
3. Role of ICIs in First Line Setting
4. Role of ICIs in Second Line Setting
5. Role of ICIs in Third Line Setting
6. Ongoing Trials
7. Pancreatic Adenocarcinoma
8. Ongoing Trials
9. Hepatocellular Carcinoma
10. Role of ICIs in First Line Setting
11. Role of ICIs in Second Line Setting and Beyond
12. Ongoing Trials
13. Biliary Tract Cancers
14. Ongoing Trials
15. Colorectal Cancer
16. Role of ICIs in First Line Setting
17. Role of ICIs in Second Line Setting
18. Role of ICIs in Third Line Setting
19. Ongoing Trials
20. Anal Squamous Cell Cancer
21. Ongoing Trials
22. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gong, J.; Chehrazi-Raffle, A.; Reddi, S.; Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J. Immunother. Cancer 2018, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Dougan, M.; Dranoff, G.; Dougan, S.K. Cancer Immunotherapy: Beyond Checkpoint Blockade. Annu. Rev. Cancer Biol. 2019, 3, 55–75. [Google Scholar] [CrossRef]
- Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 2018, 62, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 155. [Google Scholar] [CrossRef]
- Watanabe, N.; Gavrieli, M.; Sedy, J.R.; Yang, J.; Fallarino, F.; Loftin, S.K.; Hurchla, M.A.; Zimmerman, N.; Sim, J.; Zang, X.; et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat. Immunol. 2003, 4, 670–679. [Google Scholar] [CrossRef]
- Zhu, C.; Anderson, A.C.; Schubart, A.; Xiong, H.; Imitola, J.; Khoury, S.J.; Zheng, X.X.; Strom, T.B.; Kuchroo, V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 2005, 6, 1245–1252. [Google Scholar] [CrossRef]
- Le Mercier, I.; Chen, W.; Lines, J.L.; Day, M.; Li, J.; Sergent, P.; Noelle, R.J.; Wang, L. VISTA Regulates the Development of Protective Antitumor Immunity. Cancer Res. 2014, 74, 1933–1944. [Google Scholar] [CrossRef] [Green Version]
- Kisielow, M.; Kisielow, J.; Capoferri-Sollami, G.; Karjalainen, K. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur. J. Immunol. 2005, 35, 2081–2088. [Google Scholar] [CrossRef]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [Green Version]
- Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.R.; Wang, J.; Silk, A.W.; Ganesan, S.; Kaufman, H.L.; Mehnert, J.M. Biomarkers for Immunotherapy: Current Developments and Challenges. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, e493–e503. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Latif, M.; Townsend, K.; Dearman, C.; Shiu, K.K.; Khan, K. Immunotherapy in gastrointestinal cancer: The current scenario and future perspectives. Cancer Treat. Rev. 2020, 88, 102030. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Pentheroudakis, G.; Mishima, S.; Overman, M.J.; Yeh, K.H.; Baba, E.; Naito, Y.; Calvo, F.; Saxena, A.; Chen, L.T.; et al. JSCO-ESMO-ASCO-JSMO-TOS: International expert consensus recommendations for tumour-agnostic treatments in patients with solid tumours with microsatellite instability or NTRK fusions. Ann. Oncol. 2020, 31, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Baraibar, I.; Melero, I.; Ponz-Sarvise, M.; Castanon, E. Safety and Tolerability of Immune Checkpoint Inhibitors (PD-1 and PD-L1) in Cancer. Drug Saf. 2019, 42, 281–2943. [Google Scholar] [CrossRef]
- Khan, U.; Ali, F.; Khurram, M.S.; Zaka, A.; Hadid, T. Immunotherapy-associated autoimmune hemolytic anemia. J. Immunother. Cancer 2017, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Khan, U.; Rizvi, H.; Sano, D.; Chiu, J.; Hadid, T. Nivolumab induced myxedema crisis. J. Immunother. Cancer 2017, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Asplund, J.; Kauppila, J.H.; Mattsson, F.; Lagergren, J. Survival Trends in Gastric Adenocarcinoma: A Population-Based Study in Sweden. Ann. Surg. Oncol. 2018, 25, 2693–2702. [Google Scholar] [CrossRef] [PubMed]
- Minsky, B.D.; Pajak, T.F.; Ginsberg, R.J.; Pisansky, T.M.; Martenson, J.; Komaki, R.; Okawara, G.; Rosenthal, S.A.; Kelsen, D.P. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: High-dose versus standard-dose radiation therapy. J. Clin. Oncol. 2002, 20, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Cutsem, E.V.; Bang, Y.-J.; Fuchs, C.S.; Wyrwicz, L.; Lee, K.W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Salguero, H.R.C.; et al. Pembrolizumab with or without chemotherapy versus chemotherapy for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: The phase III KEYNOTE-062 study. J. Clin. Oncol. 2019, 37, LBA4007. [Google Scholar] [CrossRef]
- al-Sarraf, M.; Martz, K.; Herskovic, A.; Leichman, L.; Brindle, J.S.; Vaitkevicius, V.K.; Cooper, J.; Byhardt, R.; Davis, L.; Emami, B. Progress report of combined chemoradiotherapy versus radiotherapy alone in patients with esophageal cancer: An intergroup study. J. Clin. Oncol. 1997, 15, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Ohtsu, A.; Tabernero, J.; Bang, Y.-J.; Fuchs, C.S.; Sun, L.; Wang, Z.; Csiki, I.; Koshiji, M.; Cutsem, E.V. Pembrolizumab (MK-3475) versus paclitaxel as second-line therapy for advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma: Phase 3 KEYNOTE-061 study. J. Clin. Oncol. 2016, 34, TPS183. [Google Scholar] [CrossRef]
- Kojima, T.; Muro, K.; Francois, E.; Hsu, C.-H.; Moriwaki, T.; Kim, S.-B.; Lee, S.-H.; Bennouna, J.; Kato, K.; Lin, S.; et al. Pembrolizumab versus chemotherapy as second-line therapy for advanced esophageal cancer: Phase III KEYNOTE-181 study. J. Clin. Oncol. 2019, 37, 2. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Satoh, T.; Ryu, M.-H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.K.; Yoshikawa, T.; et al. Nivolumab (ONO-4538/BMS-936558) as salvage treatment after second or later-line chemotherapy for advanced gastric or gastro-esophageal junction cancer (AGC): A double-blinded, randomized, phase III trial. J. Clin. Oncol. 2017, 35, 2. [Google Scholar] [CrossRef]
- Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C.Y.; Chin, K.; Kadowaki, S.; Ahn, M.J.; Hamamoto, Y.; Doki, Y.; et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 1506–1517. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.-P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Adenis, A.; Aucoin, J.-S.; Barone, C.; Boku, N.; Chau, I.; Cleary, J.M.; Feeney, K.; Franke, F.A.; Moehler, M.; et al. Checkmate 649: A randomized, multicenter, open-label, phase 3 study of nivolumab (Nivo) plus ipilimumab (Ipi) versus oxaliplatin plus fluoropyrimidine in patients (Pts) with previously untreated advanced or metastatic gastric (G) or gastroesophageal junction (GEJ) cancer. J. Clin. Oncol. 2017, 35, TPS213. [Google Scholar]
- Khan, U.; Biran, T.; Ocean, A.J.; Popa, E.C.; Ruggiero, J.T.; Paul, D.; Garcia, C.; Carr-Locke, D.; Sharaiha, R.; Urata, Y.; et al. Phase II study of a telomerase-specific oncolytic adenovirus (OBP-301, Telomelysin) in combination with pembrolizumab in gastric and gastroesophageal junction adenocarcinoma. J. Clin. Oncol. 2019, 37, TPS4145. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Bang, Y.-J.; Fuchs, C.S.; Qin, S.; Satoh, T.; Shitara, K.; Tabernero, J.; Cutsem, E.V.; Cao, Z.A.; Chen, X.; et al. KEYNOTE-811 pembrolizumab plus trastuzumab and chemotherapy for HER2+ metastatic gastric or gastroesophageal junction cancer (mG/GEJC): A double-blind, randomized, placebo-controlled phase 3 study. J. Clin. Oncol. 2019, 37, TPS4146. [Google Scholar] [CrossRef]
- The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2019, 4, 934–947. [CrossRef] [Green Version]
- Middha, S.; Zhang, L.; Nafa, K.; Jayakumaran, G.; Wong, D.; Kim, H.R.; Sadowska, J.; Berger, M.F.; Delair, D.F.; Shia, J.; et al. Reliable Pan-Cancer Microsatellite Instability Assessment by Using Targeted Next-Generation Sequencing Data. JCO Precis. Oncol. 2017, 2017. [Google Scholar] [CrossRef]
- Henriksen, A.; Dyhl-Polk, A.; Chen, I.; Nielsen, D. Checkpoint inhibitors in pancreatic cancer. Cancer Treat. Rev. 2019, 78, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Royal, R.E.; Levy, C.; Turner, K.; Mathur, A.; Hughes, M.; Kammula, U.S.; Sherry, R.M.; Topalian, S.L.; Yang, J.C.; Lowy, I.; et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J. Immunother. 2010, 33, 828–833. [Google Scholar] [CrossRef]
- O’Reilly, E.M.; Oh, D.Y.; Dhani, N.; Renouf, D.J.; Lee, M.A.; Sun, W.; Fisher, G.; Hezel, A.; Chang, S.C.; Vlahovic, G.; et al. Durvalumab with or without Tremelimumab for Patients with Metastatic Pancreatic Ductal Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 1431–1438. [Google Scholar] [CrossRef]
- Aglietta, M.; Barone, C.; Sawyer, M.B.; Moore, M.J.; Miller, W.H., Jr.; Bagalà, C.; Colombi, F.; Cagnazzo, C.; Gioeni, L.; Wang, E.; et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann. Oncol. 2014, 25, 1750–1755. [Google Scholar] [CrossRef]
- Kalyan, A.; Kircher, S.M.; Mohindra, N.A.; Nimeiri, H.S.; Maurer, V.; Rademaker, A.; Benson, A.B.; Mulcahy, M.F. Ipilimumab and gemcitabine for advanced pancreas cancer: A phase Ib study. J. Clin. Oncol. 2016, 34, e15747. [Google Scholar] [CrossRef]
- Renouf, D.J.; Dhani, N.C.; Kavan, P.; Jonker, D.J.; Wei, A.C.-c.; Hsu, T.; Tang, P.A.; Graham, B.; Gallinaro, L.; Hasan, T.; et al. The Canadian Cancer Trials Group PA.7 trial: Results from the safety run in of a randomized phase II study of gemcitabine (GEM) and nab-paclitaxel (Nab-P) versus GEM, nab-P, durvalumab (D), and tremelimumab (T) as first-line therapy in metastatic pancreatic ductal adenocarcinoma (mPDAC). J. Clin. Oncol. 2018, 36, 349. [Google Scholar]
- Bockorny, B.; Semenisty, V.; Macarulla, T.; Borazanci, E.; Wolpin, B.M.; Stemmer, S.M.; Golan, T.; Geva, R.; Borad, M.J.; Pedersen, K.S.; et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: The COMBAT trial. Nat. Med. 2020, 26, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Andersson, R.; Pereira, C.-F.; Bauden, M.; Ansari, D. Is immunotherapy the holy grail for pancreatic cancer? Immunotherapy 2019, 11, 1435–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesselhut, J.; Marx, D.; Lange, H.; Regalo, G.; Cillien, N.; Chang, R.Y.; Nesselhut, T. Systemic treatment with anti-PD-1 antibody nivolumab in combination with vaccine therapy in advanced pancreatic cancer. J. Clin. Oncol. 2016, 34, 3092. [Google Scholar] [CrossRef]
- Soares, K.C.; Rucki, A.A.; Wu, A.A.; Olino, K.; Xiao, Q.; Chai, Y.; Wamwea, A.; Bigelow, E.; Lutz, E.; Liu, L.; et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J. Immunother. 2015, 38, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Jemal, A.; Ward, E.M.; Johnson, C.J.; Cronin, K.A.; Ma, J.; Ryerson, B.; Mariotto, A.; Lake, A.J.; Wilson, R.; Sherman, R.L.; et al. Annual Report to the Nation on the Status of Cancer, 1975–2014, Featuring Survival. J. Natl. Cancer Inst. 2017, 109, djx030. [Google Scholar] [CrossRef]
- Network, N.C.C.N. NCCN Guidelines. Available online: https://www.nccn.org/professionals/physician_gls/default.aspx (accessed on 26 June 2020).
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. New Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.L.; Mathurin, P.; Edeline, J.; Kudo, M.; Han, K.H.; Harding, J.J.; Merle, P.; et al. LBA38_PR - CheckMate 459: A randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann. Oncol. 2019, 30, v874–v875. [Google Scholar] [CrossRef]
- Kudo, M.; Matilla, A.; Santoro, A.; Melero, I.; Gracian, A.C.; Acosta-Rivera, M.; Choo, S.P.; El-Khoueiry, A.B.; Kuromatsu, R.; El-Rayes, B.F.; et al. Checkmate-040: Nivolumab (NIVO) in patients (pts) with advanced hepatocellular carcinoma (aHCC) and Child-Pugh B (CPB) status. J. Clin. Oncol. 2019, 37, 327. [Google Scholar] [CrossRef]
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A.; et al. Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): Results from CheckMate 040. J. Clin. Oncol. 2019, 37, 4012. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients with Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Hilmi, M.; Vienot, A.; Rousseau, B.; Neuzillet, C. Immune Therapy for Liver Cancers. Cancers (Basel) 2019, 12, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vauthey, J.N.; Blumgart, L.H. Recent advances in the management of cholangiocarcinomas. Semin. Liver Dis. 1994, 14, 109–114. [Google Scholar] [CrossRef]
- Kirstein, M.M.; Vogel, A. Epidemiology and Risk Factors of Cholangiocarcinoma. Visc. Med. 2016, 32, 395–400. [Google Scholar] [CrossRef]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin plus Gemcitabine versus Gemcitabine for Biliary Tract Cancer. New Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- Bang, Y.-J.; Ueno, M.; Malka, D.; Chung, H.C.; Nagrial, A.; Kelley, R.K.; Piha-Paul, S.A.; Ros, W.; Italiano, A.; Nakagawa, K.; et al. Pembrolizumab (pembro) for advanced biliary adenocarcinoma: Results from the KEYNOTE-028 (KN028) and KEYNOTE-158 (KN158) basket studies. J. Clin. Oncol. 2019, 37, 4079. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Heinemann, V.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Vehling-Kaiser, U.; Al-Batran, S.E.; Heintges, T.; Lerchenmüller, C.; Kahl, C.; Seipelt, G.; et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial. Lancet Oncol. 2014, 15, 1065–1075. [Google Scholar] [CrossRef]
- Venook, A.P.; Niedzwiecki, D.; Lenz, H.-J.; Innocenti, F.; Fruth, B.; Meyerhardt, J.A.; Schrag, D.; Greene, C.; O’Neil, B.H.; Atkins, J.N.; et al. Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA 2017, 317, 2392–2401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stintzing, S.; Modest, D.P.; Rossius, L.; Lerch, M.M.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Vehling-Kaiser, U.; Al-Batran, S.E.; Heintges, T.; et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal cancer (FIRE-3): A post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial. Lancet Oncol. 2016, 17, 1426–1434. [Google Scholar] [CrossRef]
- Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073–2087.e2073. [Google Scholar] [CrossRef] [PubMed]
- Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 2020, 26, 566–576. [Google Scholar] [CrossRef]
- Diaz, L.A.; Le, D.T.; Yoshino, T.; André, T.; Bendell, J.C.; Rosales, M.; Kang, S.P.; Lam, B.; Jäger, D. KEYNOTE-177: Phase 3, open-label, randomized study of first-line pembrolizumab (Pembro) versus investigator-choice chemotherapy for mismatch repair-deficient (dMMR) or microsatellite instability-high (MSI-H) metastatic colorectal carcinoma (mCRC). J. Clin. Oncol. 2018, 36, TPS877. [Google Scholar] [CrossRef]
- Lenz, H.J.J.; Van Cutsem, E.; Limon, M.L.; Wong, K.Y.; Hendlisz, A.; Aglietta, M.; Garcia-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.; et al. Durable clinical benefit with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC). Ann. Oncol. 2018, 29, viii714. [Google Scholar] [CrossRef]
- Combination Chemotherapy, Bevacizumab, and/or Atezolizumab in Treating Patients with Deficient DNA Mismatch Repair Metastatic Colorectal Cancer, the COMMIT Study; National Cancer Institute: Bethesda, MD, USA, 2020.
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. New Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.; Kemberling, H.; Eyring, A.; Azad, N.S.; Laheru, D.; Donehower, R.C.; Crocenzi, T.S.; et al. Programmed death-1 blockade in mismatch repair deficient colorectal cancer. J. Clin. Oncol. 2016, 34, 103. [Google Scholar] [CrossRef]
- Le, D.T.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef]
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef]
- Eng, C.; Kim, T.W.; Bendell, J.; Argilés, G.; Tebbutt, N.C.; Di Bartolomeo, M.; Falcone, A.; Fakih, M.; Kozloff, M.; Segal, N.H.; et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): A multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019, 20, 849–861. [Google Scholar] [CrossRef]
- Fukuoka, S.; Hara, H.; Takahashi, N.; Kojima, T.; Kawazoe, A.; Asayama, M.; Yoshii, T.; Kotani, D.; Tamura, H.; Mikamoto, Y.; et al. Regorafenib Plus Nivolumab in Patients With Advanced Gastric or Colorectal Cancer: An Open-Label, Dose-Escalation, and Dose-Expansion Phase Ib Trial (REGONIVO, EPOC1603). J. Clin. Oncol. 2020, 38, 2053–2061. [Google Scholar] [CrossRef] [PubMed]
- Health, N.I.o. Regorafenib and Pembrolizumab in Treating Participants With Advanced or Metastatic Colorectal Cancer. 2019.
- Adams, S.; Diamond, J.R.; Hamilton, E.; Pohlmann, P.R.; Tolaney, S.M.; Chang, C.W.; Zhang, W.; Iizuka, K.; Foster, P.G.; Molinero, L.; et al. Atezolizumab Plus nab-Paclitaxel in the Treatment of Metastatic Triple-Negative Breast Cancer With 2-Year Survival Follow-up: A Phase 1b Clinical Trial. JAMA Oncol. 2019, 5, 334–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Study of Pembrolizumab in Combination with Chemotherapy for Patients with Advanced Colorectal Cancer; University of Southern California: Los Angeles, CA, USA, 2020.
- Knipstein, J.; Gore, L. Entinostat for treatment of solid tumors and hematologic malignancies. Expert Opin. Investig. Drugs 2011, 20, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Surolia, I.; Bates, S.E. Entinostat finds a path: A new study elucidates effects of the histone deacetylase inhibitor on the immune system. Cancer 2018, 124, 4597–4600. [Google Scholar] [CrossRef] [Green Version]
- Azad, N.S.; Shirai, K.; McRee, A.J.; Opyrchal, M.; Johnson, D.B.; Ordentlich, P.; Brouwer, S.; Sankoh, S.; Schmidt, E.V.; Meyers, M.L.; et al. ENCORE 601: A phase 2 study of entinostat in combination with pembrolizumab in patients with microsatellite stable metastatic colorectal cancer. J. Clin. Oncol. 2018, 36, 3557. [Google Scholar] [CrossRef]
- Yarchoan, M.; Huang, C.Y.; Zhu, Q.; Ferguson, A.K.; Durham, J.N.; Anders, R.A.; Thompson, E.D.; Rozich, N.S.; Thomas, D.L., 2nd; Nauroth, J.M.; et al. A phase 2 study of GVAX colon vaccine with cyclophosphamide and pembrolizumab in patients with mismatch repair proficient advanced colorectal cancer. Cancer Med. 2020, 9, 1485–1494. [Google Scholar] [CrossRef]
- Glynne-Jones, R.; Meadows, H.; Wan, S.; Gollins, S.; Leslie, M.; Levine, E.; McDonald, A.C.; Myint, S.; Samuel, L.; Sebag-Montefiore, D. EXTRA—A Multicenter Phase II Study of Chemoradiation Using a 5 Day per Week Oral Regimen of Capecitabine and Intravenous Mitomycin C in Anal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 119–126. [Google Scholar] [CrossRef]
- Das, P.; Crane, C.H.; Eng, C.; Ajani, J.A. Prognostic factors for squamous cell cancer of the anal canal. Gastrointest. Cancer Res. 2008, 2, 10–14. [Google Scholar]
- Salati, S.A.; Al Kadi, A. Anal cancer - a review. Int. J. Health Sci. (Qassim) 2012, 6, 206–230. [Google Scholar] [CrossRef]
- Sclafani, F.; Adams, R.A.; Eng, C.; Benson, A.B.; Glynne-Jones, R.; Sebag-Montefiore, D.; Arnold, D.; Roy, A.C.; Guren, M.G.; Segelov, E.; et al. InterAACT: An international multicenter open label randomized phase II advanced anal cancer trial comparing cisplatin (CDDP) plus 5-fluorouracil (5-FU) versus carboplatin (CBDCA) plus weekly paclitaxel (PTX) in patients with inoperable locally recurrent (ILR) or metastatic disease. J. Clin. Oncol. 2015, 33, TPS792. [Google Scholar]
- Economopoulou, P.; Kotsantis, I.; Psyrri, A. The promise of immunotherapy in head and neck squamous cell carcinoma: Combinatorial immunotherapy approaches. ESMO Open 2016, 1, e000122. [Google Scholar] [CrossRef] [PubMed]
- Morris, V.K.; Salem, M.E.; Nimeiri, H.; Iqbal, S.; Singh, P.; Ciombor, K.; Polite, B.; Deming, D.; Chan, E.; Wade, J.L.; et al. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Ott, P.A.; Piha-Paul, S.A.; Munster, P.; Pishvaian, M.J.; van Brummelen, E.M.J.; Cohen, R.B.; Gomez-Roca, C.; Ejadi, S.; Stein, M.; Chan, E.; et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann. Oncol. 2017, 28, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Hanson, D.L.; Sullivan, P.S.; Novak, R.M.; Moorman, A.C.; Tong, T.C.; Holmberg, S.D.; Brooks, J.T. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann. Intern. Med. 2008, 148, 728–736. [Google Scholar] [CrossRef]
- Puronen, C.E.; Ford, E.S.; Uldrick, T.S. Immunotherapy in People with HIV and Cancer. Front. Immunol. 2019, 10, 2060. [Google Scholar] [CrossRef]
- Cook, M.R.; Kim, C. Safety and Efficacy of Immune Checkpoint Inhibitor Therapy in Patients with HIV Infection and Advanced-Stage Cancer: A Systematic Review. JAMA Oncol. 2019, 5, 1049–1054. [Google Scholar] [CrossRef]
- Nivolumab After Combined Modality Therapy in Treating Patients with High Risk Stage II-IIIB Anal Cancer; National Cancer Institute (NCI): Bethesda, MD, USA, 2020.
- Pembrolizumab in Refractory Metastatic Anal Cancer; Dana-Farber Cancer Institute: Boston, MA, USA, 2019.
- Bian, J.J.; Almhanna, K. Anal cancer and immunotherapy—Are we there yet? Transl. Gastroenterol. Hepatol. 2019, 4, 57. [Google Scholar] [CrossRef]
- A Study of mDCF in Combination or Not with Atezolizumab in Advanced Squamous Cell Anal Carcinoma (SCARCE); GERCOR—Multidisciplinary Oncology Cooperative Group: Paris, France, 2019.
- Cetuximab + Avelumab or Avelumab Alone for Unresectable, Locally Advanced or Metastatic Squamous Cell Anal Carcinoma (SCCAC) Progressed After at Least One Line of Systemic Treatment (CARACAS) (CARACAS); Gruppo Oncologico del Nord-Ovest: Genoa, Italy, 2019.
- Nivolumab with or without Ipilimumab in Treating Patients with Refractory Metastatic Anal Canal Cancer; National Cancer Institute (NCI): Bethesda, MD, USA, 2020.
- Johnson, B.; Eng, C. The promise of immunotherapy in anal squamous cell carcinoma: A novel approach for an orphan disease. Clin. Adv. Hematol Oncol 2017, 15, 968–976. [Google Scholar]
- T Cell Receptor Immunotherapy Targeting HPV-16 E6 for HPV-Associated Cancers; National Cancer Institute (NCI): Bethesda, MD, USA, 2017.
- A Phase I/II Evaluation of ADXS11-001, Mitomycin, 5-fluorouracil (5-FU) and IMRT for Anal Cancer (276); Brown University: Providence, RI, USA, 2020.
Line of Therapy | Name of Drug | Trial Name | Trial Design | Standard Arm | Objective Response Rate | Overall Survival | Progression Free Survival | PDL1 Status |
---|---|---|---|---|---|---|---|---|
Squamous Cell Esophageal Cancer | ||||||||
Second | Pembrolizumab | Keynote 181 | open label randomized phase III | chemotherapy (paclitaxel, docetaxel, irinotecan) | 22% vs 7% (chemo) | 10.3 months vs 6.7 months (chemo) | 3.2 months vs 2.3 months (chemo) | CPS >10 |
Second | Pembrolizumab | Keynote 180 | open label single arm phase II | none | 14.3% (SCC) | 5.8 months | 2 months | CPS >10 |
Second | Nivolumab | Attraction 3 | open label randomized phase III | chemotherapy (paclitaxel or docetaxel) | 19.3% vs 21.5% (chemo) | 10.5 months vs 8.4 months (chemo) | 1.7 months vs 3.4 months (chemo) | no |
Gastroesophageal/Gastric Cancer | ||||||||
Third | Pembrolizumab | Keynote 059 | open label single arm phase II | none | 11.6% | 5.6 months | 2 months | CPS>1 |
Hepatocellular Cancer | ||||||||
Second | Pembrolizumab | Keynote 244 | open label, non-randomized Phase II | none | 17% | 12.9 months | 4.9 months | no |
Second | Nivolumab | Checkmate 040 | open label, non-comparative, dose escalation and expansion Phase I/II | none | 15% in dose escalation phase; 20% in dose expansion phase | 83% at 6 months; 74% at 9 months | 37% at 6 months; 28% at 9 months | no |
Second | Nivolumab + Ipilimumab | Checkmate040 | open label, non-comparative, dose escalation and expansion Phase I/II | none | 33% | 23 months | 88% at 6 months; 31% at least 24 months | no |
First* | Atezolizumab + Bevacizumab | IMbrave 150 | open label randomized Phase III | sorafenib | 28% vs 12% (sorafenib) | Not est. vs 13.2 months (sorafenib) | 6.8 months vs 4.5 (sorafenib) | no |
Colorectal Cancer | ||||||||
First for dMMR/MSI-H | Pembrolizumab | Keynote 177 | Randomized Phase III | chemotherapy (mFOLFOX6/ FOLFIRI +/- bevacizumab or cetuximab | 43.8% vs 33.1% (chemo) | Not achieved vs 10.6 months (chemo) | 16.5 months vs 8.2 months (chemo) | no |
Second for dMMR/MSI-H | Pembrolizumab | Keynote 164 | open label single arm Phase II | none | 33% | 31.4 months | 2.3 months | no |
Second for dMMR/MSI-H | Nivolumab | Checkmate 142 | open label single arm Phase II | none | 31% | 73% at 12 months | 50.4% at 12 months | no |
Second for dMMR/MSI-H | Nivolumab + Ipilimumab | Checkmate 142 | open label single arm Phase II | none | 46% | 85% at 12 months | 71% at 12 months | no |
NCT Number | Line of Therapy | Name of Drug | Trial Name | Standard Arm | Objective Response Rate | Overall Survival | Progression Free Survival | PDL1 Status |
---|---|---|---|---|---|---|---|---|
Gastroesophageal Cancer | ||||||||
NCT 02564263 | Second | Pembrolizumab | Keynote 181 | Chemotherapy (paclitaxel, irinotecan or docetaxel) | 22% vs 7% (chemo) | 10.3 months vs 6.7 months (chemo) | 3.2 months vs 2.3 months (chemo) | CPS> 10 |
NCT 02569242 | Second | Nivolumab | Attraction 3 | Chemotherapy (docetaxel or paclitaxel) | 19% vs 22% (chemo) | 10.9 months vs 8.4 months | not significant | no |
NCT 02625623* | Second | Avelumab | JAVELIN Gastric 300 | chemotherapy (paclitaxel or irinotecan) | 2.2% vs 4.3% (chemo) | 4.6 months vs 5 months (chemo) | 1.4 months vs 2.7 months (chemo) | no |
NCT 02370498 | Second | Pembrolizumab | Keynote 061 | chemotherapy (paclitaxel) | Not reached | 9.1 months vs 8.3 months (chemo) | 1.5 months vs 4.1 months (chemo) | no |
NCT 02494583 | First | Pembrolizumab | Keynote 062 | chemotherapy (cisplatin + 5FU) | 57.1% vs 36.8% (chemo) | 10.6 months vs 11.1 months (chemo) | 2 months vs 6.4 months (chemo) | CPS>1 and CPS >10 |
NCT 02494583 | First | Pembrolizumab + chemotherapy | Keynote 062 | chemotherapy (cisplatin + 5FU) | 64.7% vs 36.8% | 12.5 months vs 11.1 months (chemo) | 6.9 months vs 6.4 months (chemo) | CPS >1 and CPS >10 |
NCT 02625610 | First (after 12 weeks chemo) | Avelumab + chemotherapy | JAVELIN Gastric 100 | chemotherapy (oxaliplatin + 5-FU capecitabine) | Not reached | 10.4 months vs 10.9 months (chemo) | not reached vs 5.9 months (chemo) | no |
Hepatocellular Cancer | ||||||||
NCT 03434379 | First | Atezolizumab + Bevacizumab | IMBrave 150 | sorafenib | 27% vs 12% (chemo) | Not estimable vs 13.2 months (chemo) | 6.8 months vs 4.5 months (chemo) | no |
NCT 02576509 | First | Nivolumab | Checkmate 459 | sorafenib | 15% vs 7% (chemo) | 16.4 months vs 14.7 months (chemo) | 3.7 months vs 3.8 months (chemo) | no |
NCT 02702401 | Second | Pembrolizumab + Supportive Care | Keynote 240 | supportive care | 16.9% vs 2.2% (supportive) | 13.9 months vs 10.6 months (supportive) | 3.0 months vs 2.8 months (supportive) | |
Colorectal Cancer | ||||||||
NCT 02788279* | Third | Atezolizumab + Cobimetinib combo and Atezolizumab monotherapy | IMBlaze 370 | Regorafenib | Not established | 8.87 months (combo) vs 7.10 months (mono) vs 8.51 months (regorafenib) | Not established | no |
NCT 02563002 | First (dMMR/MSI-H) | Pembrolizumab | Keynote 177 | chemotherapy (mFOLFOX6/ FOLFIRI +/- bevacizumab or cetuximab | 43.8% vs 33.1% (chemo) | Not achieved vs 10.6 months (chemo) | 16.5 months vs 8.2 months (chemo) | no |
NCT Number | Line of Therapy | Drug Name | Trial Name | Trial Design | Standard Arm | PDL1 Status |
---|---|---|---|---|---|---|
Gastro-Esophageal Cancer | ||||||
NCT 02954536 | First | Pembrolizumab + Trastuzumab and chemotherapy | A Phase II Trial of Pembrolizumab With Trastuzumab and Chemotherapy in Advanced HER2+ Esophagogastric Cancer | phase II | none | no |
NCT 02639065 | First | Durvalumab | Study of Durvalumab (MEDI4736) in Esophageal Cancer | open label phase II | none | no |
NCT 02559687 | Third | Pembrolizumab | KEYNOTE-180 | phase II | none | no |
NCT 02689284 | First/ Second | Pembrolizumab + Margetuximab | Combination Margetuximab and Pembrolizumab for Advanced, Metastatic HER2(+) Gastric or Gastroesophageal Junction Cancer | phase 1b/2 open label dose escalation study | none | no |
NCT 02335411 | First/ Second | Pembrolizumabor Pembrolizumab + chemotherapy | KEYNOTE-059 | phase II | none | no |
Pancreatic Cancer | ||||||
NCT 2826486 | Second | Motixafortide + Pembrolizumab | COMBAT/KEYNOTE-202 | randomized phase IIa | BL-8040 | no |
NCT 3184870 | Second | BMS-813160 + Nivolumab | A Phase 1b/2 Study of BMS-813160 in Combination with Chemo or Nivolumab in Patients with Advanced Solid Tumors | non-randomized phase I/II | none | no |
NCT 3193190 | Second | Atezolizumab + chemotherapy + Selicrelumab | Morpheus-Pancreatic Cancer | randomized phase Ib and II | chemotherapy (nab-paclitaxel and gemcitabine) | no |
NCT 03849469 | Second | XmAb22841 + Pembrolizumab | DUET-4 | nonrandomized phase I | none | no |
NCT 03257761 | Second | Guadecitabine, Durvalumab | A Phase Ib Study of Guadecitabine and Durvalumab in Patients with Advanced Hepatocellular Carcinoma, Pancreatic Adenocarcinoma, GB cancer, and Cholangiocarcinoma | phase Ib | none | no |
NCT 04361162 | Second (MSI stable) | Nivolumab + Ipilimumab | Nivolumab anD Ipilimumab and Radiation Therapy in Metastatic, Microsatellite Stable Pancreatic Cancer | phase II | none | no |
NCT 03816358 | Second | Anetumab Ravtansine, Nivolumab, Ipilimumab | A Phase I Study of Anetumab Ravtansine in Combination with Either Anti-PD-1 Antibody, or Anti-CTLA4 and Anti-PD-1 Antibodies or Anti-PD-1 Antibody and Gemcitabine in Mesothelin-Positive Advanced Pancreatic Adenocarcinoma | Non-randomized phase I/II | Anetumab ravtansine, nivolumab, gemcitabine | no |
NCT 04161755 | First | Atezolizumab | Phase 1 Clinical Trial of Personalized Neoantigen Tumor Vaccines and Programmed Death-Ligand 1 (PD-L1) Blockade in Patients with Surgically Resected Pancreatic Cancer | phase I | Chemotherapy (mFOLFIRINOX) | no |
NCT 03563248 | First | Losartan + Nivolumab | A Randomized Phase 2 Study of Losartan and Nivolumab in Combination With FOLFIRINOX and SBRT in Localized Pancreatic Cancer | randomized phase II | chemotherapy (FOLFIRINOX) | no |
Hepatocellular Cancer | ||||||
NCT 04170556 | Second | Regorafenib + Nivolumab | The GOING Study: Regorafenib Followed by Nivolumab in Patients With Hepatocellular Carcinoma Progressing Under Sorafenib | phase II | none | no |
NCT 03316872 | Second | Pembrolizumab + Radiotherapy | Pembrolizumab and Stereotactic Radiotherapy Combined in Subjects With Advanced Hepatocellular Carcinoma | phase II | none | no |
NCT 04152356 | First | Sorafenib + anti-PDI | Study on Combined Immunotherapy and Targeted Therapy for Hepatocellular Carcinoma | phase II | none | no |
NCT 02821754 | First | Durvalumab + Tremelimumab with or without TACE/RFA/cryo | A Pilot Study of Combined Immune Checkpoint Inhibition in Combination With Ablative Therapies in Subjects With Hepatocellular Carcinoma (HCC) or Biliary Tract Carcinomas (BTC) | phase II | none | no |
NCT 03841201 | First | Nivolumab + Lenvatinib | IMMUNIB trial | open label phase II | none | no |
NCT03753659 | First | Pembrolizumab + Ablation | IMMULAB - A Phase II Trial of Immunotherapy With Pembrolizumab in Combination With Local Ablation for Patients With Early Stage Hepatocellular Carcinoma (HCC) | phase II | none | no |
Biliary Tract Cancer | ||||||
NCT 02866383 | Second | Nivolumab + radiotherapy or Nivolumab/ Ipilimumab + radiotherapy | A Prospective Randomized, Open-label Phase 2 Study of Immune Checkpoint Inhibition, Nivolumab With or Without Ipilimumab in Combination With Radiation Therapy in Pretreated Patients With Metastatic Pancreatic Cancer or Biliary Tract Cancer. | randomized open label phase II | none | no |
NCT 03110328 | Second | Pembrolizumab | Phase II Study of Pembrolizumab in Metastatic Biliary Tract Cancer as Second-line Treatment After Failing to at Least One Cytotoxic Chemotherapy Regimen: Integration of Genomic Analysis to Identify Predictive Molecular Subtypes | phase II | none | no |
NCT 02829918 | Second | Nivolumab | A Phase II Investigator Sponsored Study of Nivolumab in Patients With Advanced Refractory Biliary Tract Cancers | phase II | none | no |
NCT 03999658 | Second | STI-3031, an anti-PD-L1 antibody | An Open-label, Multicenter, Global Phase 2 Basket Study to Investigate the Efficacy, Safety, Pharmacokinetics and Pharmacodynamics of STI-3031 in Patients With Selected Relapsed or Refractory Malignancies | open label phase II | none | no |
NCT 03250273 | Second | Entinostat + Nivolumab | A Phase 2 Clinical Trial of Entinostat in Combination With Nivolumab for Patients With Previously Treated Unresectable or Metastatic Cholangiocarcinoma and Pancreatic Adenocarcinoma | Phase II | none | no |
NCT 03473574 | First | Durvalumab + Tremelimumab + chemotherapy | IMMUCHEC trial | randomized phase II | none | no |
NCT 03796429 | First | Toripalimib + chemotherapy | A Single-arm, Single-center, Prospective Clinical Study of the Efficacy and Safety of Chemotherapy Combined With Toripalimab in Treatment of Advanced Biliary Tract Cancer | phase II | none | no |
NCT 03201458 | First | Atezolizumab + Cobimetinib or Atezolizumab | A Randomized Phase 2 Study of Atezolizumab in Combination With Cobimetinib Versus Atezolizumab Monotherapy in Participants With Unresectable Cholangiocarcinoma | randomized phase II | none | no |
NCT 03101566 | First | Nivolumab + chemotherapy or Nivolumab + Ipilimumab | A Randomized Phase II Study of Nivolumab in Combination With Gemcitabine/Cisplatin or Ipilimumab as First Line Therapy for Patients With Advanced Unresectable Biliary Tract Cancer | randomized phase II | none | no |
Colorectal Cancer | ||||||
NCT 03228667 | Second (MSI-H) | ALT-803 + anti-PD-1/PDL-1 antibody | QUILT-3.055 trial | phase IIb | none | no |
NCT 02484404 | Second | MEDI4736, anti-PDL-1 + Olaparib and/or Cediranib | Phase I/II Study of the Anti-Programmed Death Ligand-1 Antibody MEDI4736 in Combination With Olaparib and/or Cediranib for Advanced Solid Tumors and Advanced Colorectal Cancers | phase I/II | none | no |
NCT 02754856 | Second | Tremelimumab + Durvalumab | Pilot Study Assessing the Safety and Tolerability of the Neoadjuvant Use of Tremelimumab (Anti-CTLA-4) Plus Durvalumab (MEDI4736) (Anti-PD-L1) in the Treatment of Resectable Colorectal Cancer Liver Metastases | phase II | none | no |
NCT 02982694 | Second (MSI-H) | Atezolizumab + Bevacizumab | A Phase II Open-label Study with the Anti-PD-L1 Atezolizumab Monoclonal Antibody in Combination With Bevacizumab in Patients With Advanced Chemotherapy Resistant Colorectal Cancer and MSI-like Molecular Signature | open label phase II | none | no |
NCT 04118933 | Second (MSI-H) | JSOO1 Anti PDL-1 antibody | An Exploratory Study for PD-1 Antibody JS001 in Participants With Microsatellite Instability-high (MSI-H) Advanced or Recurrent Colorectal Cancer | phase II | none | no |
NCT 03206073 | Second | Pexa-Vec + Durvalumab or Durvalumab + Tremelimumab | A Phase I/II Study of Pexa-Vec Oncolytic Virus in Combination with Immune Checkpoint Inhibition in Refractory Colorectal Cancer | phase I/II | none | no |
NCT 03186326 | Second (MSI-H) | Avelumab | Multicenter Randomized Phase II Study Comparing the Effectiveness and Tolerance of Avelumab Versus Standard 2nd Line Treatment Chemotherapy in Patients with Colorectal Metastatic Cancer with Microsatellite Instability | randomized phase II | Chemotherapy (FOLFOX/FOLFIRI +/- anti-VEGF) | no |
NCT 03376659 | Second | Durvalumab + CV301 + Chemotherapy | A Phase I/II Trial of the PD-L1 Inhibitor, Durvalumab Plus CV301 in Combination with Maintenance Chemotherapy for Patients with Metastatic Colorectal or Pancreatic Adenocarcinoma | phase I/II | none | no |
NCT 03608046 | Second (MSS) | Avelumab + Cetuximab/Irinotecan | AVETUXIRI Trial | Phase IIa | none | no |
NCT 03642067 | First (MSS) | Nivolumab + Relatimab | Phase 2 Study Evaluating Response and Biomarkers in Patients With Microsatellite Stable (MSS) Advanced Colorectal Cancer Treated With Nivolumab in Combination With Relatlimab | open label phase II | none | no |
NCT 02811497 | First (MSS) | Azacitidine + Durvalumab | METADUR trial | open label phase II | none | no |
NCT 03202758 | First | Durvalumab + Tremelimumab + FOLOFOX | Phase Ib/II Trial Evaluating the Safety, Tolerability and Immunological Activity of Durvalumab (MEDI4736) (Anti-PD-L1) Plus Tremelimumab (Anti-CTLA-4) Combined with FOLFOX in Patients with Metastatic Colorectal Cancer | Phase Ib/II | none | no |
Anal Cancer | ||||||
NCT 02314169 | Second | Nivolumab | A Multi-Institutional Phase 2 Study of Nivolumab or Nivolumab in Combination With Ipilimumab in Refractory Metastatic Squamous Cell Carcinoma of the Anal Canal | phase II | none | no |
NCT 03519295 | Second | Atezolizumab + chemotherapy | SCARCE trial | randomized phase II | chemotherapy (docetaxel, cisplatin, 5-FU) | no |
NCT 03944252 | second | Avelumab or Cetuximab + Avelumab | CARACAS trial | randomized phase II | none | no |
NCT 04230759 | first | Durvalumab | Radio-chemotherapy +/- Durvalumab for Locally-advanced Anal Carcinoma | randomized phase II | chemotherapy (5-FU + Mitomycin C) | no |
NCT 04046133 | first/ second | Pembrolizumab + chemotherapy | Phase 1b/II Trial of Pembrolizumab Plus IMRT in Stage III/IV Carcinoma of Anus | phase Ib/II | none | no |
NCT 03233711 | first | Nivolumab | Nivolumab After Combined Modality Therapy in Treating Patients With High Risk Stage II-IIIB Anal Cancer | randomized phase II | clinical observation | no |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazloom, A.; Ghalehsari, N.; Gazivoda, V.; Nimkar, N.; Paul, S.; Gregos, P.; Rateshwar, J.; Khan, U. Role of Immune Checkpoint Inhibitors in Gastrointestinal Malignancies. J. Clin. Med. 2020, 9, 2533. https://doi.org/10.3390/jcm9082533
Mazloom A, Ghalehsari N, Gazivoda V, Nimkar N, Paul S, Gregos P, Rateshwar J, Khan U. Role of Immune Checkpoint Inhibitors in Gastrointestinal Malignancies. Journal of Clinical Medicine. 2020; 9(8):2533. https://doi.org/10.3390/jcm9082533
Chicago/Turabian StyleMazloom, Anita, Nima Ghalehsari, Victor Gazivoda, Neil Nimkar, Sonal Paul, Peter Gregos, Janice Rateshwar, and Uqba Khan. 2020. "Role of Immune Checkpoint Inhibitors in Gastrointestinal Malignancies" Journal of Clinical Medicine 9, no. 8: 2533. https://doi.org/10.3390/jcm9082533
APA StyleMazloom, A., Ghalehsari, N., Gazivoda, V., Nimkar, N., Paul, S., Gregos, P., Rateshwar, J., & Khan, U. (2020). Role of Immune Checkpoint Inhibitors in Gastrointestinal Malignancies. Journal of Clinical Medicine, 9(8), 2533. https://doi.org/10.3390/jcm9082533