Stable Clinical Course of Chronic Obstructive Pulmonary Disease Patients in the Era of Double Bronchodilator Therapy: A Single Referral Center Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Double Bronchodilators
2.3. Data Collection and Measurements
2.4. Outcome
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Laboratory Findings of the Study Population
3.2. Treatment Change to ICS Addition from LAMA/LABA FDCs Therapy
3.3. Clinical Factors Associated with ICS Addition after Initiation of LAMA/LABA FDCs Therapy
3.4. Clinical Factors Associated with Frequent Exacerbations During LAMA/LABA FDCs Therapy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Collaborators, G.B.D.C.R.D. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017, 5, 691–706. [Google Scholar]
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: 2020 REPORT. Available online: http://www.goldcopd.org (accessed on 25 February 2020).
- Price, D.; West, D.; Brusselle, G.; Gruffydd-Jones, K.; Jones, R.; Miravitlles, M.; Rossi, A.; Hutton, C.; Ashton, V.L.; Stewart, R.; et al. Management of COPD in the UK primary-care setting: An analysis of real-life prescribing patterns. Int. J. Chronic Obstr. Pulm. Dis. 2014, 9, 889–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brusselle, G.; Price, D.; Gruffydd-Jones, K.; Miravitlles, M.; Keininger, D.L.; Stewart, R.; Baldwin, M.; Jones, R.C. The inevitable drift to triple therapy in COPD: An analysis of prescribing pathways in the UK. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 2207–2217. [Google Scholar]
- Simeone, J.C.; Luthra, R.; Kaila, S.; Pan, X.; Bhagnani, T.D.; Liu, J.; Wilcox, T.K. Initiation of triple therapy maintenance treatment among patients with COPD in the US. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalmers, J.D.; Tebboth, A.; Gayle, A.; Ternouth, A.; Ramscar, N. Determinants of initial inhaled corticosteroid use in patients with GOLD A/B COPD: A retrospective study of UK general practice. NPJ Prim. Care Respir. Med. 2017, 27, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Lee, J.H.; Yoon, H.I.; Park, H.Y.; Kim, T.H.; Yoo, K.H.; Oh, Y.M.; Jung, K.S.; Lee, S.D.; Lee, S.W. Change in inhaled corticosteroid treatment and COPD exacerbations: An analysis of real-world data from the KOLD/KOCOSS cohorts. Respir. Res. 2019, 20, 62. [Google Scholar] [CrossRef]
- Calzetta, L.; Rogliani, P.; Matera, M.G.; Cazzola, M. A Systematic Review With Meta-Analysis of Dual Bronchodilation With LAMA/LABA for the Treatment of Stable COPD. Chest 2016, 149, 1181–1196. [Google Scholar] [CrossRef]
- Bateman, E.D.; Ferguson, G.T.; Barnes, N.; Gallagher, N.; Green, Y.; Henley, M.; Banerji, D. Dual bronchodilation with QVA149 versus single bronchodilator therapy: The SHINE study. Eur. Respir. J. 2013, 42, 1484–1494. [Google Scholar] [CrossRef] [Green Version]
- Wedzicha, J.A.; Decramer, M.; Ficker, J.H.; Niewoehner, D.E.; Sandstrom, T.; Taylor, A.F.; D’Andrea, P.; Arrasate, C.; Chen, H.; Banerji, D. Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): A randomised, double-blind, parallel-group study. Lancet Respir. Med. 2013, 1, 199–209. [Google Scholar] [CrossRef]
- Celli, B.; Crater, G.; Kilbride, S.; Mehta, R.; Tabberer, M.; Kalberg, C.J.; Church, A. Once-daily umeclidinium/vilanterol 125/25 mcg in COPD: A randomized, controlled study. Chest 2014, 145, 981–991. [Google Scholar] [CrossRef]
- Decramer, M.; Anzueto, A.; Kerwin, E.; Kaelin, T.; Richard, N.; Crater, G.; Tabberer, M.; Harris, S.; Church, A. Efficacy and safety of umeclidinium plus vilanterol versus tiotropium, vilanterol, or umeclidinium monotherapies over 24 weeks in patients with chronic obstructive pulmonary disease: Results from two multicentre, blinded, randomised controlled trials. Lancet Respir. Med. 2014, 2, 472–486. [Google Scholar] [CrossRef]
- Singh, D.; Jones, P.W.; Bateman, E.D.; Korn, S.; Serra, C.; Molins, E.; Caracta, C.; Gil, E.G.; Leselbaum, A. Efficacy and safety of aclidinium bromide/formoterol fumarate fixed-dose combinations compared with individual components and placebo in patients with COPD (ACLIFORM-COPD): A multicentre, randomised study. BMC Pulm. Med. 2014, 14, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buhl, R.; Maltais, F.; Abrahams, R.; Bjermer, L.; Derom, E.; Ferguson, G.; Flezar, M.; Hebert, J.; McGarvey, L.; Pizzichini, E.; et al. Tiotropium and olodaterol fixed-dose combination versus mono-components in COPD (GOLD 2–4). Eur. Respir. J. 2015, 45, 969–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, D.E.; Casaburi, R.; Frith, P.; Kirsten, A.; De Sousa, D.; Hamilton, A.; Xue, W.; Maltais, F. Effects of combined tiotropium/olodaterol on inspiratory capacity and exercise endurance in COPD. Eur. Respir. J. 2017, 49. [Google Scholar] [CrossRef] [Green Version]
- Maltais, F.; Bjermer, L.; Kerwin, E.M.; Jones, P.W.; Watkins, M.L.; Tombs, L.; Naya, I.P.; Boucot, I.H.; Lipson, D.A.; Compton, C.; et al. Efficacy of umeclidinium/vilanterol versus umeclidinium and salmeterol monotherapies in symptomatic patients with COPD not receiving inhaled corticosteroids: The EMAX randomised trial. Respir. Res. 2019, 20, 238. [Google Scholar] [CrossRef]
- Horita, N.; Goto, A.; Shibata, Y.; Ota, E.; Nakashima, K.; Nagai, K.; Kaneko, T. Long-acting muscarinic antagonist (LAMA) plus long-acting beta-agonist (LABA) versus LABA plus inhaled corticosteroid (ICS) for stable chronic obstructive pulmonary disease (COPD). Cochrane Database Syst. Rev. 2017, 2, Cd012066. [Google Scholar] [CrossRef]
- Suissa, S.; Patenaude, V.; Lapi, F.; Ernst, P. Inhaled corticosteroids in COPD and the risk of serious pneumonia. Thorax 2013, 68, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Hahn, B.; Hull, M.; Blauer-Peterson, C.; Buikema, A.R.; Ray, R.; Stanford, R.H. Rates of escalation to triple COPD therapy among incident users of LAMA and LAMA/LABA. Respir. Med. 2018, 139, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Lane, D.C.; Stemkowski, S.; Stanford, R.H.; Tao, Z. Initiation of Triple Therapy with Multiple Inhalers in Chronic Obstructive Pulmonary Disease: An Analysis of Treatment Patterns from a U.S. Retrospective Database Study. J. Manag. Care Spec. Pharm. 2018, 24, 1165–1172. [Google Scholar] [CrossRef]
- López-Campos, J.L.; Abad-Arranz, M.; Calero-Acuña, C. Double or Dual Bronchodilation: Defining the Correct Term. Arch. Bronconeumol. 2015, 51, 661. [Google Scholar] [CrossRef]
- Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.C.; Plummer, A.L.; Taylor, D.R. An official ATS clinical practice guideline: Interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 2011, 184, 602–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M. ATS/ERS task force: Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Thoracic Society. Single-breath carbon monoxide diffusing capacity (transfer factor). Recommendations for a standard technique-1995 update. Am. J. Respir. Crit. Care Med. 1995, 152, 2185–2198. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.K.; Paek, D.; Lee, J.O. Normal predictive values of spirometry in Korean population. Tuberc. Respir. Dis. 2005, 58, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Choi, I.; Park, K. Normal predicted standards of single breath carbon monoxide diffusing capacity of lung in healthy nonsmoking adults. Korean J. Intern. Med. 1985, 28, 176–183. [Google Scholar]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten, C.P.; Gustafsson, P.; Hankinson, J.; et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef]
- Wurst, K.E.; Punekar, Y.S.; Shukla, A. Treatment evolution after COPD diagnosis in the UK primary care setting. PLoS ONE 2014, 9, e105296. [Google Scholar] [CrossRef]
- Hurst, J.R.; Vestbo, J.; Anzueto, A.; Locantore, N.; Mullerova, H.; Tal-Singer, R.; Miller, B.; Lomas, D.A.; Agusti, A.; Macnee, W.; et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N. Engl. J. Med. 2010, 363, 1128–1138. [Google Scholar] [CrossRef] [Green Version]
- Calverley, P.M.; Tetzlaff, K.; Dusser, D.; Wise, R.A.; Mueller, A.; Metzdorf, N.; Anzueto, A. Determinants of exacerbation risk in patients with COPD in the TIOSPIR study. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 3391–3405. [Google Scholar] [CrossRef] [Green Version]
- Nici, L.; Mammen, M.J.; Charbek, E.; Alexander, P.E.; Au, D.H.; Boyd, C.M.; Criner, G.J.; Donaldson, G.C.; Dreher, M.; Fan, V.S.; et al. Pharmacologic Management of Chronic Obstructive Pulmonary Disease. An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2020, 201, e56–e69. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, G.T.; Rabe, K.F.; Martinez, F.J.; Fabbri, L.M.; Wang, C.; Ichinose, M.; Bourne, E.; Ballal, S.; Darken, P.; DeAngelis, K.; et al. Triple therapy with budesonide/glycopyrrolate/formoterol fumarate with co-suspension delivery technology versus dual therapies in chronic obstructive pulmonary disease (KRONOS): A double-blind, parallel-group, multicentre, phase 3 randomised controlled trial. Lancet Respir. Med. 2018, 6, 747–758. [Google Scholar] [PubMed]
- Scioscia, G.; Blanco, I.; Arismendi, E.; Burgos, F.; Gistau, C.; Foschino Barbaro, M.P.; Celli, B.; O’Donnell, D.E.; Agustí, A. Different dyspnoea perception in COPD patients with frequent and infrequent exacerbations. Thorax 2017, 72, 117–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Leupoldt, A.; Kanniess, F.; Dahme, B. The influence of corticosteroids on the perception of dyspnea in asthma. Respir. Med. 2007, 101, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.F. Improving dyspnea in chronic obstructive pulmonary disease: Optimal treatment strategies. Proc. Am. Thorac. Soc. 2006, 3, 270–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnussen, H.; Disse, B.; Rodriguez-Roisin, R.; Kirsten, A.; Watz, H.; Tetzlaff, K.; Towse, L.; Finnigan, H.; Dahl, R.; Decramer, M.; et al. Withdrawal of inhaled glucocorticoids and exacerbations of COPD. N. Engl. J. Med. 2014, 371, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- Vogelmeier, C.; Worth, H.; Buhl, R.; Criee, C.P.; Lossi, N.S.; Mailander, C.; Kardos, P. “Real-life” inhaled corticosteroid withdrawal in COPD: A subgroup analysis of DACCORD. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Agusti, A.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Criner, G.J.; Frith, P.; Halpin, D.M.G.; Han, M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: The GOLD science committee report 2019. Eur. Respir. J. 2019, 53, 1900164. [Google Scholar] [CrossRef]
- Wedzicha, J.A.; Banerji, D.; Chapman, K.R.; Vestbo, J.; Roche, N.; Ayers, R.T.; Thach, C.; Fogel, R.; Patalano, F.; Vogelmeier, C.F. Indacaterol–glycopyrronium versus salmeterol–fluticasone for COPD. N. Engl. J. Med. 2016, 374, 2222–2234. [Google Scholar] [CrossRef] [Green Version]
- Pascoe, S.; Barnes, N.; Brusselle, G.; Compton, C.; Criner, G.J.; Dransfield, M.T.; Halpin, D.M.G.; Han, M.K.; Hartley, B.; Lange, P.; et al. Blood eosinophils and treatment response with triple and dual combination therapy in chronic obstructive pulmonary disease: Analysis of the IMPACT trial. Lancet Respir. Med. 2019, 7, 745–756. [Google Scholar] [CrossRef]
Total (N = 266) | ICS Addition (-) (N = 219) | ICS Addition (+) (N = 47) | p-value | |
---|---|---|---|---|
Age, year | 70.8 (8.3) | 70.7 (8.6) | 71.4 (6.8) | 0.579 |
Sex, male | 245 (92.1) | 202 (92.2) | 43 (91.5) | 0.772 |
Smoking status | 0.672 | |||
Current | 93 (35.0) | 74 (33.8) | 19 (40.4) | |
Former | 149 (56.0) | 125 (57.1) | 24 (51.1) | |
Never | 24 (9.0) | 20 (9.1) | 4 (8.5) | |
BMI < 21 (kg/m2) | 59 (22.2) | 50 (22.8) | 9 (19.2) | 0.581 |
mMRC ≥ 2 | 110 (41.4) | 81 (37.0) | 29 (61.7) | 0.002 |
CAT score ≥ 10 | 193 (72.6) | 155 (70.8) | 38 (80.9) | 0.160 |
Previous ICS use | 56 (21.1) | 39 (17.8) | 17 (36.2) | 0.005 |
Exacerbation * in the previous year | 80 (30.1) | 53 (24.2) | 27 (57.5) | <0.001 |
Comorbidities | ||||
History of PTB | 9 (3.4) | 5 (2.3) | 4 (8.5) | 0.055 |
Lung cancer | 8 (3.0) | 7 (3.2) | 1 (2.1) | 1.000 |
Any | 101 (38.0) | 85 (38.8) | 16 (34.0) | 0.541 |
Total (N = 266) | ICS Addition (-) (N = 219) | ICS Addition (+) (N = 47) | p-Value | |
---|---|---|---|---|
Post-bronchodilator spirometry | ||||
FVC, L | 3.35 (0.78) | 3.37 (0.75) | 3.25 (0.89) | 0.314 |
FVC, % pred | 80.4 (15.2) | 80.6 (14.9) | 79.2 (16.6) | 0.565 |
FEV1, L | 1.81 (0.48) | 1.86 (0.47) | 1.62 (0.51) | 0.003 |
FEV1, %pred | 62.5 (13.1) | 63.6 (12.6) | 57.3 (14.1) | 0.003 |
GOLD grade 1 | 21 (7.9) | 20 (9.1) | 1 (2.1) | 0.033 |
GOLD grade 2 | 202 (75.9) | 168 (76.7) | 34 (72.3) | |
GOLD grade 3 | 40 (15.0) | 30 (13.7) | 10 (21.3) | |
GOLD grade 4 | 3 (1.1) | 1 (0.5) | 2 (4.3) | |
FEV1/FVC | 54.8 (9.9) | 55.5 (9.4) | 51.4 (11.6) | 0.009 |
Positive BDR | 54 (20.3) | 43 (19.6) | 11 (23.4) | 0.560 |
DLco, % pred (n = 232) | 64.4 (19.7) | 65.4 (19.6) | 59.9 (19.7) | 0.101 |
≥ 80% | 56 (24.1) | 49 (25.8) | 7 (16.7) | 0.211 |
< 80% | 176 (75.9) | 141 (74.2) | 35 (83.3) | |
Blood eosinophil count (/μL) (n = 264) | 218.1 (369.1) | 217.5 (398.4) | 221.1 (166.7) | 0.952 |
< 300 | 224 (84.9) | 185 (84.5) | 39 (83.0) | 0.709 |
≥ 300 | 40 (15.1) | 34 (15.5) | 6 (13.3) | |
FeNO (ppb) (n = 59) | 29.3 (18.1) | 25.9 (13.0) | 41.5 (27.3) | 0.005 |
Total IgE (kU/L) (n = 223) | 235.1 (384.2) | 232.4 (371.5) | 247.4 (443.0) | 0.824 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Unadjusted HR (95% CI) | p-Value | Adjusted HR (95% CI) | p-Value | |
Age, years | 1.01 (0.98–1.05) | 0.460 | 0.99 (0.95–1.03) | 0.719 |
Male sex | 0.88 (0.32–2.46) | 0.813 | 0.48 (0.09–2.57) | 0.392 |
Smoking, ever | 1.10 (0.39–3.06) | 0.857 | 1.64 (0.31–8.68) | 0.558 |
BMI < 21(kg/m2) | 0.97 (0.47–2.00) | 0.927 | 0.69 (0.30–1.60) | 0.393 |
mMRC ≥ 2 | 2.31 (1.28–4.16) | 0.005 | 3.38 (1.73–6.63) | <0.001 |
CAT ≥ 10 | 1.69 (0.82–3.50) | 0.157 | ||
Previous ICS use | 2.03 (1.12–3.68) | 0.020 | 2.04 (1.00–4.15) | 0.049 |
Exacerbation in the previous year * | 3.39 (1.90–6.04) | <0.001 | 3.97 (2.13–7.40) | <0.001 |
GOLD grade ≥ 3 † | 1.80 (0.93–3.47) | 0.080 | 1.50 (0.73–3.08) | 0.268 |
DLco < 80% pred | 1.87 (0.83–4.21) | 0.132 | ||
Positive BDR | 1.36 (0.69–2.67) | 0.376 | 1.66 (0.82–3.38) | 0.162 |
Blood eosinophil count ≥ 300 (/μL) | 0.91 (0.39–2.15) | 0.833 | 1.14 (0.47–2.77) | 0.765 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Unadjusted OR (95% CI) | p-value | Adjusted OR (95% CI) | p-value | |
Age, years | 1.02 (0.97–1.07) | 0.543 | 1.00 (0.94–1.05) | 0.867 |
Male sex † | 1.00 (N/A) | N/A | ||
Smoking, ever | 2.65 (0.34–20.47) | 0.350 | 3.60 (0.44–29.30) | 0.232 |
BMI < 21(kg/m2) | 0.27 (0.06–1.17) | 0.079 | 0.22 (0.05–1.01) | 0.052 |
mMRC ≥ 2 | 2.08 (0.92–4.73) | 0.080 | 2.64 (1.03–6.74) | 0.043 |
CAT ≥ 10 | 1.66 (0.60–4.58) | 0.327 | ||
Previous ICS use | 2.17 (0.91–5.18) | 0.080 | 2.00 (0.74–5.41) | 0.170 |
Exacerbation in the previous year | 5.31 (2.25–12.51) | <0.001 | 5.28 (2.16–12.92) | <0.001 |
GOLD grade ≥ 3 ‡ | 1.65 (0.62–4.37) | 0.318 | 1.38 (0.47–4.07) | 0.563 |
DLco < 80% pred | 1.57 (0.51–4.84) | 0.429 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.H.; Kang, N.; Cho, J.; Choi, Y.; Cho, H.K.; Choi, H.S.; Kim, H.; Lim, J.H.; Park, H.Y. Stable Clinical Course of Chronic Obstructive Pulmonary Disease Patients in the Era of Double Bronchodilator Therapy: A Single Referral Center Experience. J. Clin. Med. 2020, 9, 2547. https://doi.org/10.3390/jcm9082547
Shin SH, Kang N, Cho J, Choi Y, Cho HK, Choi HS, Kim H, Lim JH, Park HY. Stable Clinical Course of Chronic Obstructive Pulmonary Disease Patients in the Era of Double Bronchodilator Therapy: A Single Referral Center Experience. Journal of Clinical Medicine. 2020; 9(8):2547. https://doi.org/10.3390/jcm9082547
Chicago/Turabian StyleShin, Sun Hye, Noeul Kang, Juhee Cho, Yeonseok Choi, Hyun Kyu Cho, Hye Sook Choi, Hojoong Kim, Jun Hyeok Lim, and Hye Yun Park. 2020. "Stable Clinical Course of Chronic Obstructive Pulmonary Disease Patients in the Era of Double Bronchodilator Therapy: A Single Referral Center Experience" Journal of Clinical Medicine 9, no. 8: 2547. https://doi.org/10.3390/jcm9082547
APA StyleShin, S. H., Kang, N., Cho, J., Choi, Y., Cho, H. K., Choi, H. S., Kim, H., Lim, J. H., & Park, H. Y. (2020). Stable Clinical Course of Chronic Obstructive Pulmonary Disease Patients in the Era of Double Bronchodilator Therapy: A Single Referral Center Experience. Journal of Clinical Medicine, 9(8), 2547. https://doi.org/10.3390/jcm9082547