Effects of 12-Week Methylphenidate Treatment on Neurometabolism in Adult Patients with ADHD: The First Double-Blind Placebo-Controlled MR Spectroscopy Study
Abstract
:1. Introduction
Rationale
2. Participants and Methods
2.1. Patient Recruitment and Assessment
2.2. Randomization and Masking
2.3. Sample Definition
2.3.1. Baseline Sample (Week 0)
2.3.2. Three-Month Sample (After 12 Weeks)
2.4. Data Acquisition and Analysis
2.5. Statistical Analyses
2.5.1. Comparison of Psychometric and Demographic Data
2.5.2. Influence of MPH (and Psychotherapy)
3. Results
3.1. Demographic and Psychometric Findings
3.2. Longitudinal Analysis of Metabolite Concentrations
3.3. Influence of MPH and Psychotherapy
4. Discussion
4.1. Relevance of the Main Findings
4.2. Link to Previous Findings
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kooij, J.J.S.; Bijlenga, D.; Salerno, L.; Jaeschke, R.; Bitter, I.; Balázs, J.; Thome, J.; Dom, G.; Kasper, S.; Nunes Filipe, C.; et al. Updated European Consensus Statement on diagnosis and treatment of adult ADHD. Eur. Psychiatry 2019, 56, 14–34. [Google Scholar] [CrossRef] [PubMed]
- Posner, J.; Polanczyk, G.V.; Sonuga-Barke, E. Attention-deficit hyperactivity disorder. Lancet 2020, 395, 450–462. [Google Scholar] [CrossRef]
- Faraone, S.V.; Biederman, J. What Is the prevalence of adult ADHD? Results of a population screen of 966 adults. J. Atten. Disord. 2005, 9, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Simon, V.; Czobor, P.; Bálint, S.; Mészáros, Á.; Bitter, I. Prevalence and correlates of adult attention-deficit hyperactivity disorder: Meta-analysis. Br. J. Psychiatry 2009, 194, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Magnin, E.; Maurs, C. Attention-deficit/hyperactivity disorder during adulthood. Rev. Neurol. (Paris) 2017, 173, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Philipsen, A.; Hesslinger, B.; Van Elst, L.T. Attention deficit hyperactivity disorder in adulthood: Diagnosis, etiology and therapy. Dtsch. Arztebl. Int. 2008, 105, 311–317. [Google Scholar]
- Lam, A.P.; Müller, H.; Philipsen, A. ADHS im Erwachsenenalter—Diagnostik und Therapie. Fortschr. Neurol. Psychiatr. 2017, 85, 696–707. [Google Scholar] [CrossRef]
- Hofvander, B.; Ossowski, D.; Lundström, S.; Anckarsäter, H. Continuity of aggressive antisocial behavior from childhood to adulthood: The question of phenotype definition. Int. J. Law Psychiatry 2009, 32, 224–234. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, R.; Aslani, P. Attention-deficit/hyperactivity disorder: An update on medication adherence and persistence in children, adolescents and adults. Expert Rev. Pharmacoecon. Outcomes Res. 2013, 13, 791–815. [Google Scholar] [CrossRef]
- Fayyad, J.; Sampson, N.A.; Hwang, I.; Adamowski, T.; Aguilar-Gaxiola, S.; Al-Hamzawi, A.; Andrade, L.H.; Borges, G.; De Girolamo, G.; Florescu, S.; et al. The descriptive epidemiology of DSM-IV Adult ADHD in the World Health Organization World Mental Health Surveys. Atten. Defic. Hyperact. Disord. 2017, 9, 47–65. [Google Scholar] [CrossRef] [Green Version]
- Philipsen, A. Psychotherapy in adult attention deficit hyperactivity disorder: Implications for treatment and research. Expert Rev. Neurother. 2012, 12, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Retz, W.; Retz-Junginger, P.; Davydenko, S.; Rösler, M. Pharmacotherapy of attention deficit hyperactivity disorder in adults. Der Nervenarzt 2020, 1–8, (Epub ahead of print). [Google Scholar] [CrossRef]
- Ross, B.; Bluml, S. Magnetic resonance spectroscopy of the human brain. Anat. Rec. 2001, 265, 54–84. [Google Scholar] [CrossRef] [PubMed]
- Manias, K.A.; Peet, A. What is MR spectroscopy? Arch. Dis. Child. Educ. Pract. Ed. 2018, 103, 213–216. [Google Scholar] [CrossRef] [PubMed]
- MacMaster, F.P.; Carrey, N.; Sparkes, S.; Kusumakar, V. Proton spectroscopy in medication-free pediatric attention-deficit/hyperactivity disorder. Biol. Psychiatry 2003, 53, 184–187. [Google Scholar] [CrossRef]
- Carrey, N.; MacMaster, F.P.; Fogel, J.; Sparkes, S.; Waschbusch, D.; Sullivan, S.; Schmidt, M. Metabolite changes resulting from treatment in children with ADHD: A 1H-MRS study. Clin. Neuropharmacol. 2003, 26, 218–221. [Google Scholar] [CrossRef]
- Carrey, N.J.; MacMaster, F.P.; Gaudet, L.; Schmidt, M.H. Striatal creatine and glutamate/glutamine in attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 2007, 17, 11–17. [Google Scholar]
- Moore, C.M.; Biederman, J.; Wozniak, J.; Mick, E.; Aleardi, M.; Wardrop, M.; Dougherty, M.; Harpold, T.; Hammerness, P.; Randall, E.; et al. Differences in brain chemistry in children and adolescents with attention deficit hyperactivity disorder with and without comorbid bipolar disorder: A proton magnetic resonance spectroscopy study. Am. J. Psychiatry 2006, 163, 316–318. [Google Scholar] [CrossRef]
- Perlov, E.; Philipsen, A.; Matthies, S.; Drieling, T.; Maier, S.; Bubl, E.; Hesslinger, B.; Buechert, M.; Henning, J.; Ebert, D.; et al. Spectroscopic findings in attention-deficit/hyperactivity disorder: Review and meta-analysis. World J. Biol. Psychiatry J. World Fed. Soc. Biol. Psychiatry 2009, 10, 355–365. [Google Scholar] [CrossRef]
- Edden, R.A.; Crocetti, D.; Zhu, H.; Gilbert, D.L.; Mostofsky, S.H. Reduced GABA concentration in attention deficit/hyperactivity disorder. Arch. Gen. Psychiatry 2012, 69, 750–753. [Google Scholar] [CrossRef]
- Bollmann, S.; Ghisleni, C.; Poil, S.S.; Martin, E.; Ball, J.; Eich-Höchli, D.; Edden, R.A.; Klaver, P.; Michels, L.; Brandeis, D.; et al. Developmental changes in gamma-aminobutyric acid levels in attention-deficit/hyperactivity disorder. Trans. Psychiatry 2015, 5, e589. [Google Scholar] [CrossRef] [Green Version]
- Puts, N.A.; Ryan, M.; Oeltzschner, G.; Horska, A.; Edden, R.A.E.; Mahone, E.M. Reduced striatal GABA in unmedicated children with ADHD at 7T. Psychiatry Res. Neuroimaging 2020, 301, 111082. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.; Newcorn, J.; Telang, F.; Solanto, M.V.; Fowler, J.S.; Logan, J.; Ma, Y.; Schulz, K.; Pradhan, K.; et al. Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 2007, 64, 932–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Wang, G.; Kollins, S.H.; Wigal, T.L.; Newcorn, J.H.; Telang, F.; Fowler, J.S.; Zhu, W.; Logan, J.; Ma, Y.; et al. Evaluating dopamine reward pathway in adhd: Clinical implications. JAMA 2009, 302, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Campo, N.; Del Fryer, T.D.; Hong, Y.T.; Smith, R.; Brichard, L.; Acosta-Cabronero, J.; Chamberlain, S.R.; Tait, R.; Izquierdo, D.; Regenthal, R.; et al. A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: Implications for ADHD and its treatment. Brain 2013, 136, 3252–3270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsson, A.; Waters, N.; Carlsson, M.L. Neurotransmitter interactions in schizophrenia—Therapeutic implications. Biol. Psychiatry 1999, 46, 1388–1395. [Google Scholar] [CrossRef]
- Courvoisie, H.; Hooper, S.R.; Fine, C.; Kwock, L.; Castillo, M. Neurometabolic functioning and neuropsychological correlates in children with ADHD-H: Preliminary findings. J. Neuropsychiatr. Clin. Neurosci. 2004, 16, 63–69. [Google Scholar] [CrossRef]
- Carrey, N.; MacMaster, F.P.; Sparkes, S.J.; Khan, S.C.; Kusumakar, V. Glutamatergic changes with treatment in attention deficit hyperactivity disorder: A preliminary case series. J. Child Adolesc. Psychopharmacol. 2002, 12, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Zang, Y.F.; Zeng, Y.W.; Zhang, L.; Wang, Y.F. Striatal neuronal loss or dysfunction and choline rise in children with attention-deficit hyperactivity disorder: A 1H-magnetic resonance spectroscopy study. Neurosci. Lett. 2001, 315, 45–48. [Google Scholar] [CrossRef]
- Kronenberg, G.; Ende, G.; Alm, B.; Deuschle, M.; Heuser, I.; Colla, M. Increased NAA and reduced choline levels in the anterior cingulum following chronic methylphenidate. Eur. Arch. Psychiatry Clin. Neurosci. 2008, 258, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Hammerness, P.; Geller, D.; Petty, C.; Lamb, A.; Bristol, E.; Biederman, J. Does ADHD moderate the manifestation of anxiety disorders in children? Eur. Child. Adolesc. Psychiatry 2010, 19, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Wiguna, T.; Guerrero, A.P.S.; Wibisono, S.; Sastroasmoro, S. Effect of 12-week administration of 20-mg long-acting methylphenidate on Glu/Cr, NAA/Cr, Cho/Cr, and mI/Cr ratios in the prefrontal cortices of school-age children in Indonesia: A study using 1H magnetic resonance spectroscopy (MRS). Clin. Neuropharmacol. 2012, 35, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Wiguna, T.; Guerrero, A.P.S.; Wibisono, S.; Sastroasmoro, S. The amygdala’s neurochemical ratios after 12 weeks administration of 20 mg long-acting methylphenidate in children with attention deficit and hyperactivity disorder: A pilot study using 1H magnetic resonance spectroscopy. Clin. Psychopharmacol. Neurosci. 2014, 12, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husarova, V.; Bittsansky, M.; Ondrejka, I.; Dobrota, D. Prefrontal grey and white matter neurometabolite changes after atomoxetine and methylphenidate in children with attention deficit/hyperactivity disorder: A 1H magnetic resonance spectroscopy study. Psychiatry Res. Neuroimaging 2014, 222, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Inci Kenar, A.N.; Unal, G.A.; Kiroglu, Y.; Herken, H. Effects of methylphenidate treatment on the cerebellum in adult attention-deficit hyperactivity disorder: A magnetic resonance spectroscopy study. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 383–388. [Google Scholar] [PubMed]
- Solleveld, M.M.; Schrantee, A.; Puts, N.A.J.; Reneman, L.; Lucassen, P.J. Age-dependent, lasting effects of methylphenidate on the GABAergic system of ADHD patients. Neuroimage Clin. 2017, 15, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 1986, 9, 357–381. [Google Scholar] [CrossRef]
- Mega, M.S.; Cummings, J.L. Frontal-subcortical circuits and neuropsychiatric disorders. J. Neuropsychiatr. Clin. Neurosci. Fall 1994, 6, 358–370. [Google Scholar]
- Tekin, S.; Cummings, J.L. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: An update. J. Psychosom. Res. Aug. 2002, 53, 647–654. [Google Scholar] [CrossRef]
- Perlov, E.; Philipsen, A.; Hesslinger, B.; Buechert, M.; Ahrendts, J.; Feige, B.; Bubl, E.; Hennig, J.; Ebert, D.; Tebartz van Elst, L. Reduced cingulate glutamate/glutamine-to-creatine ratios in adult patients with attention deficit/hyperactivity disorder—A magnet resonance spectroscopy study. J. Psychiatr. Res. 2007, 41, 934–941. [Google Scholar] [CrossRef]
- Perlov, E.; Van Elst, L.T.; Buechert, M.; Maier, S.; Matthies, S.; Ebert, D.; Hesslinger, B.; Philipsen, A. H1-MR-spectroscopy of cerebellum in adult attention deficit/hyperactivity disorder. J. Psychiatr. Res. 2010, 44, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Ito, M. Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 2008, 9, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Endres, D.; Perlov, E.; Maier, S.; Feige, B.; Nickel, K.; Goll, P.; Bubl, E.; Lange, T.; Glauche, V.; Graf, E.; et al. Normal neurochemistry in the prefrontal and cerebellar brain of adults with attention-deficit hyperactivity disorder. Front. Behav. Neurosci. 2015, 9, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philipsen, A.; Jans, T.; Graf, E.; Matthies, S.; Borel, P.; Colla, M.; Gentschow, L.; Langner, D.; Jacob, C.; Groß-Lesch, S.; et al. Effects of group psychotherapy, individual counseling, methylphenidate, and placebo in the treatment of adult attention-deficit/hyperactivity disorder: A randomized clinical trial. JAMA Psychiatry 2015, 72, 1199–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, S.; Perlov, E.; Graf, E.; Dieter, E.; Sobanski, E.; Rump, M.; Warnke, A.; Ebert, D.; Berger, M.; Matthies, S.; et al. Discrete Global but No Focal Gray Matter Volume Reductions in Unmedicated Adult Patients with Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry Dec. 2016, 80, 905–915. [Google Scholar] [CrossRef]
- Philipsen, A.; Graf, E.; Van Elst, L.T.; Jans, T.; Warnke, A.; Hesslinger, B.; Ebert, D.; Gerlach, M.; Matthies, S.; Colla, M.; et al. Evaluation of the efficacy and effectiveness of a structured disorder tailored psychotherapy in ADHD in adults: Study protocol of a randomized controlled multicentre trial. Atten. Defic. Hyperact. Disord. 2010, 2, 203–212. [Google Scholar] [CrossRef]
- Van Elst, L.T.; Maier, S.; Fangmeier, T.; Endres, D.; Mueller, G.T.; Nickel, K.; Ebert, D.; Lange, T.; Hennig, J.; Biscaldi, M.; et al. Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: Evidence in support of the excitatory/inhibitory imbalance hypothesis. Mol. Psychiatry Dec. 2014, 19, 1314–1325. [Google Scholar] [CrossRef] [Green Version]
- Endres, D.; Tebartz van Elst, L.; Maier, S.J.; Feige, B.; Goll, P.; Meyer, S.A.; Matthies, S.; Domschke, K.; Lange, T.; Sobanski, E.; et al. Neurochemical sex differences in adult ADHD patients: An MRS study. Biol. Sex. Differ. 2019, 10, 50. [Google Scholar] [CrossRef]
- Helms, G. The principles of quantification applied to in vivo proton MR spectroscopy. Eur J Radiol. 2008, 67, 218–229. [Google Scholar] [CrossRef]
- Provencher, S.W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 1993, 30, 672–679. [Google Scholar] [CrossRef]
- Provencher, S.W. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001, 14, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Friston, K.J. Unified segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef]
- Volkow, N.D.; Fowler, J.S.; Wang, G.-J.; Telang, F.; Logan, J.; Wong, C.; Ma, J.; Pradhan, K.; Benveniste, H.; Swanson, J.M. Methylphenidate decreased the amount of glucose needed by the brain to perform a cognitive task. PLoS ONE 2008, 3, e2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todd, R.D.; Botteron, K.N. Is attention-deficit/hyperactivity disorder an energy deficiency syndrome? Biol. Psychiatry 2001, 50, 151–158. [Google Scholar] [CrossRef]
- Miceli, M.D.; Gronier, B. Psychostimulants and atomoxetine alter the electrophysiological activity of prefrontal cortex neurons, interaction with catecholamine and glutamate NMDA receptors. Psychopharmacology (Berl) 2015, 232, 2191–2205. [Google Scholar] [CrossRef]
- Cavaliere, C.; Cirillo, G.; Bianco, M.R.; Adriani, W.; De Simone, A.; Leo, D.; Perrone-Capano, C.; Papa, M. Methylphenidate administration determines enduring changes in neuroglial network in rats. Eur. Neuropsychopharmacol. 2012, 22, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Xiong, Z.; Duffney, L.J.; Wei, J.; Liu, A.; Liu, S.; Chen, G.J.; Yan, Z. Methylphenidate exerts dose-dependent effects on glutamate receptors and behaviors. Biol. Psychiatry 2014, 76, 953–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, C.G.; Niciu, M.J.; Fenton, L.R.; Fasula, M.K.; Jiang, L.; Black, A.; Rothman, D.L.; Mason, G.F.; Sanacora, G. Decreased Occipital Cortical Glutamate Levels in Response to Successful Cognitive-Behavioral Therapy and Pharmacotherapy for Major Depressive Disorder. Psychother. Psychosom. 2014, 83, 298–307. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J.; Gorbis, E.; Feusner, J.D.; Yip, J.C.; Chang, S.; Maidment, K.M.; Levitt, J.G.; Salamon, N.; Ringman, J.M.; Saxena, S. Effects of intensive cognitive-behavioral therapy on cingulate neurochemistry in obsessive–compulsive disorder. J. Psychiatr. Res. 2013, 47, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Fayed, N.; Del Hoyo, Y.L.; Andres, E.; Serrano-Blanco, A.; Bellón, J.; Aguilar, K.; Cebolla, A.; Garcia-Campayo, J. Brain changes in long-term zen meditators using proton magnetic resonance spectroscopy and diffusion tensor imaging: A controlled study. PLoS ONE 2013, 8, e58476. [Google Scholar] [CrossRef] [Green Version]
Study | Population | n (ADHD/ Contr.) | Methods | Region(s) | Results |
---|---|---|---|---|---|
1. Jin et al., 2001 [29] | Children | 12/10 | 1,9 T, SVS, 1H-MRS (PRESS); MPH once | Striatum le | NAA/Cre ↓ |
Striatum ri | NAA/Cre ↓, t-Cho/Cre ↑; MPH-once without effect | ||||
2. Carrey et al., 2002 [28] | Children | 4/0 | 1,5 T, SVS, 1H-MRS (PRESS); before and after MPH/AM | Striatum le | Glu/Cre ↓ under MPH + AM |
PFC ri | Glu/Cre ↓only under AM | ||||
3. Carrey et al., 2003 [16] | Children; iADHD, cADHD | 14/0 | 1,5 T, SVS, 1H-MRS (PRESS); before and after MPH (4)/AM (3)/Dexedrine (7) | Striatum le | Glx/Cre ↓ under medication |
PFC ri | ↔ | ||||
4. Carrey et al., 2007 [17] | Children; cADHD | 13/10 | 1,5 T, SVS, 1H-MRS (PRESS); before and after MPH | Striatum le | Glx ↑, Cre ↑; Cre ↓ after MPH |
PFC ri | ↔ | ||||
Occipital lobe | ↔ | ||||
5. Kronenberg et al., 2008 [30] | Adults | 7/0 | 1,5 T, CSI, 1H-MRS (PRESS); before and after MPH | ACC both sides | t-Cho↓, NAA↑ after MPH, Cre ↔ |
6. Hammerness et al., 2010 [31] | Children | 10/12 | 4 T, SVS, 1H-MRS (PRESS); before and after MPH | ACC both sides | ↔, no significant changes under MPH |
7. Wiguna et al., 2012 [32] | Children; iADHD, cADHD | 21/0 | 1,5 T, SVS, 1H-MRS; before and after MPH | PFC le | NAA/Cre ↑, Glu/Cre ↓, t-Cho/Cre ↓, mI/Cr ↓ after MPH |
PFC ri | NAA/Cre ↑, Glu/Cre ↓, t-Cho/Cre ↓ after MPH | ||||
8. Wiguna et al., 2014 [33] | Children; cADHD and iADHD | 21/0 | 1,5 T, SVS, 1H-MRS; before and after MPH | Amygdala le | Glu/Cre ↓ after MPH |
Amygdala ri | Glu/Cre ↓ after MPH | ||||
9. Husarova et al., 2014 [34] | Children; cADHD | 21/0 | 1,5 T, SVS, 1H-MRS (PRESS); before and after MPH/AM | DLPFC le | NAA and NAA/Cre ↓ after AM |
DLPFC ri | t-Cho/Cre ↑ after AM | ||||
Anterior semioval center le | Glx ↑ and Glx/Cre ↑ after MPH | ||||
Anterior semioval center ri | ↔ | ||||
10. Inci Kenar et al., 2017 [35] | Adults | 60/0 | 1,5 T, SVS, 1H-MRS (PRESS); before and after MPH | DLPFC | ↔ after MPH |
Striatum | ↔ after MPH | ||||
ACC | ↔ after MPH | ||||
Cerebellum | Cre ↑ after MPH ↑ | ||||
11. Solleveld et al., 2017 [36] | Adult (early-stimulant-treated (<16 years) vs. late-stimulant-treated (>23 years) vs. stimulant-treatment-naive patients) | 44/0 | 3 T, SVS, 1H-MRS (PRESS); before and after MPH | mPFC both sides | GABA lower in early-stimulant-treated vs. late-stimulant-treated. After MPH only the early-stimulant-treated patients showed increase in GABA. No Glx differences at baseline or after MPH. |
Variable | MPH | Plac | Total | Statistics (MPH vs. Plac) | ||||
---|---|---|---|---|---|---|---|---|
ACC | ||||||||
n | n | n | Chi2 | p-value | ||||
Total | 40 | 33 | 73 | |||||
Female:Male | 20:20 | 16:17 | 36:37 | 0.02 | 0.897 | |||
Psychotherapy (GPT:CM) | 17:23 | 15:18 | 32:41 | 0.06 | 0.800 | |||
Mean | SD | Mean | SD | Mean | SD | t-value | p-value | |
IQ | 115.05 | 16.3 | 112.67 | 16.3 | 113.97 | 16.2 | t(71) = 0.62 | 0.536 |
Age (years) | 34.80 | 10.7 | 35.58 | 9.1 | 35.15 | 10.0 | t(71) = −0.33 | 0.744 |
WURS−k | 39.78 | 9.5 | 41.88 | 7.2 | 40.73 | 8.5 | t(71) = −1.05 | 0.298 |
CAARS (baseline) | 107.11 | 30.5 | 105.59 | 34.0 | 106.43 | 31.9 | t(71) = 0.20 | 0.841 |
BDI (baseline) | 12.37 | 7.0 | 11.73 | 8.9 | 12.07 | 7.9 | t(71) = 0.35 | 0.731 |
Dose (mg/kg) | 0.64 | 0.3 | 0.84 | 0.3 | 0.73 | 0.3 | t(71) = −3.19 | 0.002 * |
Dose (mg) | 46.38 | 18.8 | 64.09 | 21.1 | 54.38 | 21.7 | t(71) = −3.79 | <0.001 * |
CHL | ||||||||
n | n | n | Chi2 | p−value | ||||
Total | 33 n | 29 | 62 | |||||
Female:Male | 18:15 | 15:14 | 33:29 | 0.049 | 0.824 | |||
Psychotherapy (GPT:CM) | 13:20 | 13:16 | 26:36 | 0.187 | 0.665 | |||
Mean | SD | Mean | SD | Mean | SD | t-value | p-value | |
IQ | 114.21 | 16.7 | 112.59 | 15.8 | 113.45 | 16.2 | t(60) = 0.39 | 0.696 |
Age (years) | 34.73 | 11.36 | 35.38 | 9.2 | 35.03 | 10.3 | t(60) = −0.25 | 0.807 |
WURS−k | 40.67 | 10.1 | 41.28 | 7.5 | 40.95 | 8.9 | t(60) = −0.27 | 0.790 |
CAARS | 103.82 | 34.52 | 104.01 | 33.9 | 103.91 | 33.9 | t(60) = −0.21 | 0.983 |
BDI (baseline) | 12.15 | 7.0 | 11.28 | 8.9 | 11.74 | 7.9 | t(60) = 0.43 | 0.669 |
Dose (mg/kg) † | 0.64 | 0.2 | 0.83 | 0.3 | 0.73 | 0.3 | t(60) = −2.75 | 0.008 * |
Dose (mg) † | 45.91 | 18.1 | 62.59 | 22.1 | 53.71 | 21.6 | t(60) = −3.27 | 0.002 * |
ACC | ||||
---|---|---|---|---|
T0 Metabolite concentration (Mean ± SD) | T1 Metabolite concentration (Mean ± SD) | Visit (week 0 to week 13) x Medication | ||
NAA | MPH (n = 40) | 5.60 ± 0.67 | 5.35 ± 0.79 | F(1, 71) = 0.23; p = 0.632 |
Placebo (n = 33) | 5.73 ± 0.61 | 5.39 ± 0.59 | ||
Glx | MPH (n = 40) | 8.32 ± 1.08 | 7.44 ± 1.32 | F(1, 71) = 0.00; p = 0.984 |
Placebo (n = 33) | 8.29 ± 1.10 | 7.43 ± 1.06 | ||
t-Cho | MPH (n = 40) | 1.12 ± 0.21 | 1.06 ± 0.23 | F(1, 71) = 0.18; p = 0.671 |
Placebo (n = 33) | 1.13 ± 0.18 | 1.10 ± 0.16 | ||
Cre | MPH (n = 40) | 4.77 ± 0.69 | 4.53 ± 0.90 | F(1, 71) = 0.00; p = 0.967 |
Placebo (n = 33) | 4.91 ± 0.69 | 4.67 ± 0.68 | ||
mI | MPH (n = 40) | 3.04 ± 0.48 | 3.04 ± 0.57 | F(1, 71) = 1.35; p = 0.249 |
Placebo (n = 33) | 3.32 ± 0.43 | 3.16 ± 0.43 | ||
CHL | ||||
T0 Metabolite concentration (Mean ± SD) | T1 Metabolite concentration (Mean ± SD) | Visit (week 0 to week 13) x Medication | ||
NAA | MPH (n = 33) | 4.95 ± 0.56 | 4.87 ± 0.42 | F(1, 60) = 0.23; p = 0.631 |
Placebo (n = 29) | 4.95 ± 0.73 | 4.80 ± 0.36 | ||
Glx | MPH (n = 33) | 5.97 ± 1.05 | 5.98 ± 0.74 | F(1, 60) = 0.01; p = 0.910 |
Placebo (n = 29) | 6.11 ± 0.94 | 6.08 ± 0.88 | ||
t-Cho | MPH (n = 33) | 1.31 ± 0.20 | 1.25 ± 0.18 | F(1, 60) = 0.24; p = 0.627 |
Placebo (n = 29) | 1.27 ± 0.15 | 1.23 ± 0.11 | ||
Cre | MPH (n = 33) | 5.58 ± 0.66 | 5.56 ± 0.71 | F(1, 60) = 0.17; p = 0.678 |
Placebo (n = 29) | 5.63 ± 0.46 | 5.54 ± 0.47 | ||
mI | MPH (n = 33) | 2.60 ± 0.56 | 2.86 ± 0.38 | F(1, 60) = 0.14; p = 0.713 |
Placebo (n = 29) | 2.73 ± 0.56 | 2.93 ± 0.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maier, S.; Tebartz van Elst, L.; Philipsen, A.; Lange, T.; Feige, B.; Glauche, V.; Nickel, K.; Matthies, S.; Alm, B.; Sobanski, E.; et al. Effects of 12-Week Methylphenidate Treatment on Neurometabolism in Adult Patients with ADHD: The First Double-Blind Placebo-Controlled MR Spectroscopy Study. J. Clin. Med. 2020, 9, 2601. https://doi.org/10.3390/jcm9082601
Maier S, Tebartz van Elst L, Philipsen A, Lange T, Feige B, Glauche V, Nickel K, Matthies S, Alm B, Sobanski E, et al. Effects of 12-Week Methylphenidate Treatment on Neurometabolism in Adult Patients with ADHD: The First Double-Blind Placebo-Controlled MR Spectroscopy Study. Journal of Clinical Medicine. 2020; 9(8):2601. https://doi.org/10.3390/jcm9082601
Chicago/Turabian StyleMaier, Simon, Ludger Tebartz van Elst, Alexandra Philipsen, Thomas Lange, Bernd Feige, Volkmar Glauche, Kathrin Nickel, Swantje Matthies, Barbara Alm, Esther Sobanski, and et al. 2020. "Effects of 12-Week Methylphenidate Treatment on Neurometabolism in Adult Patients with ADHD: The First Double-Blind Placebo-Controlled MR Spectroscopy Study" Journal of Clinical Medicine 9, no. 8: 2601. https://doi.org/10.3390/jcm9082601
APA StyleMaier, S., Tebartz van Elst, L., Philipsen, A., Lange, T., Feige, B., Glauche, V., Nickel, K., Matthies, S., Alm, B., Sobanski, E., Domschke, K., Perlov, E., & Endres, D. (2020). Effects of 12-Week Methylphenidate Treatment on Neurometabolism in Adult Patients with ADHD: The First Double-Blind Placebo-Controlled MR Spectroscopy Study. Journal of Clinical Medicine, 9(8), 2601. https://doi.org/10.3390/jcm9082601