Effect of Type 2 Diabetes Mellitus on the Hypoxia-Inducible Factor 1-Alpha Expression. Is There a Relationship with the Clock Genes?
Abstract
:1. Introduction
2. Material and Methods
2.1. Statement on Ethics
2.2. Design of the Study and Description of the Study Population
2.3. Gene expression by Real-Time Quantitative PCR.
2.4. Circulating Lactate and Pyruvate Measurement
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sampol, G.; Lecube, A. Type 2 diabetes and the lung: A bidirectional relationship. Endocrinol. Nutr. 2012, 59, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Aurora, R.N.; Punjabi, N.M. Obstructive sleep apnoea and type 2 diabetes mellitus: A bidirectional association. Lancet Respir. Med. 2013, 1, 329–338. [Google Scholar] [CrossRef]
- Lecube, A.; Sampol, G.; Lloberes, P.; Romero, O.; Mesa, J.; Hernández, C.; Simó, R. Diabetes is an independent risk factor for severe nocturnal hypoxemia in obese patients. A case-control study. PLoS ONE 2009, 4, e4692. [Google Scholar] [CrossRef] [PubMed]
- Lecube, A.; Simó, R.; Pallayova, M.; Punjabi, N.M.; López-Cano, C.; Turino, C.; Hernández, C.; Barbé, F. Pulmonary function and sleep breathing: Two new targets for type 2 diabetes care. Endocr. Rev. 2017, 38, 550–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Cano, C.; Gutiérrez-Carrasquilla, L.; Sánchez, E.; González, J.; Yeramian, A.; Martí, R.; Hernández, M.; Cao, G.; Ribelles, M.; Gómez, X.; et al. Sympathetic hyperactivity and sleep disorders in individuals with type 2 diabetes. Front. Endocrinol. Lausanne 2019, 10, 752. [Google Scholar] [CrossRef]
- Pugh, C.W.; Ratcliffe, P.J. New horizons in hypoxia signaling pathways. Exp. Cell Res. 2017, 356, 116–121. [Google Scholar] [CrossRef]
- Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 1995, 92, 5510–5514. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.; Ho, K.; Stokes, R.; Scott, C.; Lau, S.M.; Hawthorne, W.J.; O’Connell, P.J.; Loudovaris, T.; Kay, T.W.; Kulkarni, R.N.; et al. Hypoxia-inducible factor-1alpha regulates beta cell function in mouse and human islets. J. Clin. Investig. 2010, 120, 2171–2183. [Google Scholar] [CrossRef] [Green Version]
- Roenneberg, T.; Merrow, M. The circadian clock and human health. Curr. Biol. 2016, 26, R432–R443. [Google Scholar] [CrossRef]
- Kalsbeek, A.; Yi, C.X.; La Fleur, S.E.; Fliers, E. The hypothalamic clock and its control of glucose homeostasis. Trends Endocrinol. Metab. 2010, 21, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A. Circadian clock-mediated control of stem cell division and differentiation: Beyond night and day. Development 2014, 141, 3105–3111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Ramsey, K.M.; Marcheva, B.; Bass, J. Circadian rhythms, sleep, and metabolism. J. Clin. Investig. 2011, 121, 2133–2141. [Google Scholar] [CrossRef]
- Poggiogalle, E.; Jamshed, H.; Peterson, C.M. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 2018, 84, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Vieira, E.; Burris, T.P.; Quesada, I. Clock genes, pancreatic function, and diabetes. Trends Mol. Med. 2014, 20, 685–693. [Google Scholar] [CrossRef] [Green Version]
- Froy, O.; Garaulet, M. The circadian clock in white and brown adipose tissue: Mechanistic, endocrine, and clinical aspects. Endocronol. Rev. 2018, 39, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Stenvers, D.J.; Scheer, F.A.J.L.; Schrauwen, P.; La Fleur, S.E.; Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 2019, 15, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.Y.; Lin, P.W.; Lin, H.C.; Lin, P.M.; Chen, I.Y.; Friedman, M.; Hung, C.F.; Salapatas, A.M.; Lin, M.C.; Lin, S.F. Alternations of circadian clock genes expression and oscillation in obstructive sleep apnea. J. Clin. Med. 2019, 8, 1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.P.; Smales, C.; Wu, H.; Hussain, M.V.; Mohamed, Y.A.; Morimoto, M.; Shea, S.A. The circadian system contributes to apnea lengthening across the night in obstructive sleep apnea. Sleep 2015, 38, 1793–1801. [Google Scholar] [CrossRef] [Green Version]
- Amplification Efficiency of TaqMan Gene Expression Assays. Applied Biosystems Application Note Can Be Found Online. Available online: http://docs.appliedbiosystems.com/pebiodocs/00113186.pdf (accessed on 13 August 2020).
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- von Allmen, D.C.; Francey, L.J.; Rogers, G.M.; Ruben, M.D.; Cohen, A.P.; Wu, G.; Schmidt, R.E.; Ishman, S.L.; Amin, R.S.; Hogenesch, J.B.; et al. Circadian dysregulation: The next frontier in obstructive sleep apnea research. Otolaryngol. Head Neck Surg. 2018, 159, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Chilov, D.; Hofer, T.; Bauer, C.; Wenger, R.H.; Gassmann, M. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J. 2001, 15, 2613–2622. [Google Scholar] [CrossRef]
- Ghorbel, M.T.; Coulson, J.M.; Murphy, D. Cross-talk between hypoxic and circadian pathways: Cooperative roles for hypoxia-inducible factor 1alpha and CLOCK in transcriptional activation of the vasopressin gene. Mol. Cell Neurosci. 2003, 22, 396–404. [Google Scholar] [CrossRef]
- Dimova, E.Y.; Jakupovic, M.; Kubaichuk, K.; Mennerich, D.; Chi, T.F.; Tamanini, F.; Oklejewicz, M.; Hänig, J.; Byts, N.; Mäkelä, K.A.; et al. The circadian clock protein cry1 is a negative regulator of HIF-1α. iScience 2019, 13, 284–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhry, H.; Harris, A.L. Advances in hypoxia-inducible factor biology. Cell Metab. 2018, 27, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Peek, C.B.; Levine, D.C.; Cedernaes, J.; Taguchi, A.; Kobayashi, Y.; Tsai, S.J.; Bonar, N.A.; McNulty, M.R.; Ramsey, K.M.; Bass, J. Circadian clock interaction with HIF1a mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab. 2017, 25, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Tang, D.; Liu, N.; Xiong, W.; Huang, H.; Li, Y.; Ma, Z.; Zhao, H.; Chen, P.; Qi, X.; et al. Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals. Cell Metab. 2017, 25, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Adamovich, Y.; Ladeuix, B.; Golik, M.; Koeners, M.P.; Asher, G. Rhythmic oxygen levels reset circadian clocks through HIF1a. Cell Metab. 2017, 25, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Ando, H.; Takamura, T.; Matsuzawa-Nagata, N.; Shima, K.R.; Eto, T.; Misu, H.; Shiramoto, M.; Tsuru, T.; Irie, S.; Fujimura, A.; et al. Clock gene expression in peripheral leucocytes of patients with type 2 diabetes. Diabetologia 2009, 52, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Eckel-Mahan, K.; Sassone-Corsi, P. Metabolism and the circadian clock converge. Physiol. Rev. 2013, 93, 107–135. [Google Scholar] [CrossRef]
- Kalsbeek, A.; Fliers, E. Circadian and endocrine rhythms. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 443. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Li, Y.; Tao, X.; Sun, J. Poor sleep quality is associated with dawn phenomenon and impaired circadian clock gene expression in subjects with type 2 diabetes mellitus. Int. J. Endocrinol. 2017, 2017, 4578973. [Google Scholar] [CrossRef] [PubMed]
- Moreira, S.; Rodrigues, R.; Barros, A.; Pejanovic, N.; Neves-Costa, A.; Pedroso, D.; Pereira, C.; Fernandes, D.; Valenca Rodrigues, J.; Barbara, C.; et al. Changes in expression of the clock gene in obstructive sleep apnea syndrome patients are not reverted by continuous positive airway pressure treatment. Front. Med. Lausanne 2017, 4, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugh, C.W. Modulation of the hypoxic response. Adv. Exp. Med. Biol. 2016, 903, 259–271. [Google Scholar] [PubMed]
- Vieira, E.; Marroquí, L.; Figueroa, A.L.; Merino, B.; Fernandez-Ruiz, R.; Nadal, A.; Burris, T.P.; Gomis, R.; Quesada, I. Involvement of the clock gene rev-erb alpha in the regulation of glucagon secretion in pancreatic alpha-cells. PLoS ONE 2013, 8, e69939. [Google Scholar] [CrossRef]
- Barnea, M.; Haviv, L.; Gutman, R.; Chapnik, N.; Madar, Z.; Froy, O. Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner. BiochimBiophys. Acta 2012, 1822, 1796–1806. [Google Scholar] [CrossRef] [Green Version]
- Hawley, J.A.; Lundby, C.; Cotter, J.D.; Burke, L.M. Maximizing cellular adaptation to endurance exercise in skeletal muscle. Cell Metab. 2018, 27, 962–976. [Google Scholar] [CrossRef] [Green Version]
Type 2 Diabetes | Non-Type 2 Diabetes | p | |
---|---|---|---|
n | 62 | 67 | - |
Age (Years) | 57.3 ± 10.0 | 58.8 ± 9.4 | 0.381 |
Women, n (%) | 32 (51.6) | 17 (25.3) | 0.003 |
BMI (Kg/m2) | 33.6 ± 6.2 | 28.6 ± 6.6 | <0.001 |
Hba1c (%) | 8.4 ± 1.8 | 5.4 ± 0.3 | <0.001 |
Hba1c (mmol/mol) | 68.9 ± 19.8 | 35.6 ± 3.7 | <0.001 |
Fasting Glucose (mmol/L) | 8.6 ± 3.1 | 4.9 ± 1.3 | <0.001 |
Total Cholesterol (mmol/L) | 45.7 ± 10.6 | 53.5 ± 15.8 | 0.173 |
HDL Cholesterol (mmol/L) | 11.7 ± 3.1 | 14.8 ± 5.2 | 0.018 |
LDL Cholesterol (mmol/L) | 26.8 ± 9.1 | 35.3 ± 7.5 | 0.426 |
Triglycerides (mmol/L) | 2.1 ± 1.2 | 1.3 ± 0.7 | 0.006 |
Hypertension, n (%) | 50 (80.6) | 13 (24.0) | <0.001 |
Smoking Habit, n (%) | 23 (37.0) | 22 (32.8) | 0.348 |
Cardiovascular Disease, n (%) | 1 (0.01) | 2 (0.002) | 0.518 |
Retinopathy, n (%) | 16 (25.8) | - | <0.001 |
Nephropathy, n (%) | 20 (32.2) | - | <0.001 |
Lactate (uM/L) | 2102.1 ± 688.2 | 1730.4 ± 694.4 | 0.013 |
Pyruvate (uM/L) | 61.9 ± 25.6 | 50.3 ± 23.1 | 0.026 |
HbA1c | HIF-1α | |||
---|---|---|---|---|
r | p | r | p | |
HIF-1α | −0.358 | <0.001 | - | - |
HIF-2α | −0.168 | 0.058 | 0.615 | < 0.001 |
PER1 | −0.313 | <0.001 | 0.833 | <0.001 |
PER2 | −0.438 | <0.001 | 0.868 | <0.001 |
PER3 | −0.328 | <0.001 | 0.657 | <0.001 |
RORA | −0.256 | 0.003 | 0.758 | <0.001 |
ARNTL | −0.293 | 0.001 | 0.776 | <0.001 |
CLOCK | −0.327 | <0.001 | 0.814 | <0.001 |
CRY1 | −0.301 | 0.001 | 0.834 | <0.001 |
CRY2 | −0.279 | 0.001 | 0.817 | <0.001 |
Model 1 | β | Beta 95% CI | p |
Hba1c (%) | −0.226 | −0.323 (−0.344 to −0.109) | <0.001 |
Gender (Female/Male) | 0.069 | - | 0.433 |
BMI (Kg/m2) | 0.041 | - | 0.635 |
Age (Years) | 0.013 | - | 0.878 |
Constant | - | 3.363 (2.523 to 4.204) | <0.001 |
R2 = 0.104 | |||
Model 2 | Β | Beta 95% CI | p |
PER1 | 0.519 | 0.307 (0.262 to 0.351) | <0.001 |
PER2 | 0.254 | 0.345 (0.125 to 0.566) | 0.002 |
CRY2 | 0.227 | 0.540 (0.198 to 0.882) | 0.002 |
CLOCK | 0.192 | 0.328 (0.075 to 0.580) | 0.011 |
PER3 | −0.160 | −0.363 (−0.581 to −0.145) | 0.001 |
Gender (Female/Male) | 0.051 | - | 0.058 |
RORA | −0.075 | - | 0.221 |
Hba1c (%) | −0.033 | - | 0.245 |
CRY1 | −0.084 | - | 0.372 |
BMI (Kg/m2) | −0.008 | - | 0.750 |
ARNTL | −0.017 | - | 0.823 |
Age (Years) | 0.000 | - | 1.000 |
Constant | - | −0.223 (−0.429 to −0.017) | 0.034 |
R2 = 0.920 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Cano, C.; Gutiérrez-Carrasquilla, L.; Barbé, F.; Sánchez, E.; Hernández, M.; Martí, R.; Ceperuelo-Mallafre, V.; Dalmases, M.; Fernández-Veledo, S.; Vendrell, J.; et al. Effect of Type 2 Diabetes Mellitus on the Hypoxia-Inducible Factor 1-Alpha Expression. Is There a Relationship with the Clock Genes? J. Clin. Med. 2020, 9, 2632. https://doi.org/10.3390/jcm9082632
López-Cano C, Gutiérrez-Carrasquilla L, Barbé F, Sánchez E, Hernández M, Martí R, Ceperuelo-Mallafre V, Dalmases M, Fernández-Veledo S, Vendrell J, et al. Effect of Type 2 Diabetes Mellitus on the Hypoxia-Inducible Factor 1-Alpha Expression. Is There a Relationship with the Clock Genes? Journal of Clinical Medicine. 2020; 9(8):2632. https://doi.org/10.3390/jcm9082632
Chicago/Turabian StyleLópez-Cano, Carolina, Liliana Gutiérrez-Carrasquilla, Ferran Barbé, Enric Sánchez, Marta Hernández, Raquel Martí, Vicky Ceperuelo-Mallafre, Mireia Dalmases, Sonia Fernández-Veledo, Joan Vendrell, and et al. 2020. "Effect of Type 2 Diabetes Mellitus on the Hypoxia-Inducible Factor 1-Alpha Expression. Is There a Relationship with the Clock Genes?" Journal of Clinical Medicine 9, no. 8: 2632. https://doi.org/10.3390/jcm9082632
APA StyleLópez-Cano, C., Gutiérrez-Carrasquilla, L., Barbé, F., Sánchez, E., Hernández, M., Martí, R., Ceperuelo-Mallafre, V., Dalmases, M., Fernández-Veledo, S., Vendrell, J., Hernández, C., Simó, R., & Lecube, A. (2020). Effect of Type 2 Diabetes Mellitus on the Hypoxia-Inducible Factor 1-Alpha Expression. Is There a Relationship with the Clock Genes? Journal of Clinical Medicine, 9(8), 2632. https://doi.org/10.3390/jcm9082632