Advances in Platelet Function Testing—Light Transmission Aggregometry and Beyond
Abstract
:1. Introduction
2. International Guidelines for Light Transmission Aggregometry Standardization
3. Light Transmission Aggregometry Revisited
4. Evaluation of Granule Defects
5. Multiple Electrode Aggregometry
6. Detection of Platelet Activation Markers by Flow Cytometry
7. Microfluidics and Microscopy
8. Platelet Function Testing in Thrombocytopenia
9. Reference Ranges & Interpretation
10. Genetic Screening of Patients with Inherited Platelet Disorders
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duke, W.W. The relation of blood platelets to hemorrhagic disease. Description of a method for determining the bleeding time and the coagulation time and report of three cases of hemorrahagic disease relieved by blood transfusion. JAMA 1910, 55, 1185–1192. [Google Scholar] [CrossRef]
- Born, G.V. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962, 194, 927–929. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.V.; Armstrong, P.C.; Warner, T.D. 96-well plate-based aggregometry. Platelets 2018, 29, 650–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouns, S.L.N.; van Geffen, J.P.; Heemskerk, J.W.M. High-throughput measurement of human platelet aggregation under flow: Application in hemostasis and beyond. Platelets 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayton, S.; Born, G.V.; Cross, M.J. Inhibition of the Aggregation of Blood Platelets by Nucleosides. Nature 1963, 200, 138–139. [Google Scholar] [CrossRef]
- Born, G.V.; Hume, M. Effects of the numbers and sizes of platelet aggregates on the optical density of plasma. Nature 1967, 215, 1027–1029. [Google Scholar] [CrossRef]
- Born, G.V.; Cross, M.J. The Aggregation of Blood Platelets. J. Physiol. 1963, 168, 178–195. [Google Scholar] [CrossRef]
- Cattaneo, M.; Hayward, C.P.; Moffat, K.A.; Pugliano, M.T.; Liu, Y.; Michelson, A.D. Results of a worldwide survey on the assessment of platelet function by light transmission aggregometry: A report from the platelet physiology subcommittee of the SSC of the ISTH. J. Thromb. Haemost. 2009, 7, 1029. [Google Scholar] [CrossRef]
- Hayward, C.P.; Moffat, K.A.; Raby, A.; Israels, S.; Plumhoff, E.; Flynn, G.; Zehnder, J.L. Development of North American consensus guidelines for medical laboratories that perform and interpret platelet function testing using light transmission aggregometry. Am. J. Clin. Pathol. 2010, 134, 955–963. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, M.; Cerletti, C.; Harrison, P.; Hayward, C.P.; Kenny, D.; Nugent, D.; Nurden, P.; Rao, A.K.; Schmaier, A.H.; Watson, S.P.; et al. Recommendations for the Standardization of Light Transmission Aggregometry: A Consensus of the Working Party from the Platelet Physiology Subcommittee of SSC/ISTH. J. Thromb. Haemost. 2013, 11, 1183–1189. [Google Scholar] [CrossRef]
- Harrison, P.; Mackie, I.; Mumford, A.; Briggs, C.; Liesner, R.; Winter, M.; Machin, S. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br. J. Haematol. 2011, 155, 30–44. [Google Scholar] [CrossRef]
- Christie, D. Platelet Function Testing by Aggregometry; Approved Guideline. Clin. Lab. Stand. Inst. 2008, 58, 17–19. [Google Scholar]
- Alessi, M.C.; Payrastre, B.; Sié, P. Intérêt et limites des tests d’agrégation pour le diagnostic des anomalies fonctionnelles plaquettaires constitutionnelles. Hématologie 2017, 23, 298–311. [Google Scholar] [CrossRef]
- Alessi, M.C.; Sié, P.; Payrastre, B. Strengths and Weaknesses of Light Transmission Aggregometry in Diagnosing Hereditary Platelet Function Disorders. J. Clin. Med. 2020, 9, 763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, L.Q.; Liao, J.; Niu, Q.; Wang, X.; Jia, J.; Zuo, C.H.; Jiang, H.; Zhou, J. Evaluation of an automated light transmission aggregometry. Platelets 2017, 28, 712–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrie, A.S.; Kobayashi, K.; Lane, P.J.; Mackie, I.J.; Machin, S.J. The automation of routine light transmission platelet aggregation. Int J. Lab. Hematol. 2014, 36, 431–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frere, C.; Kobayashi, K.; Dunois, C.; Amiral, J.; Morange, P.E.; Alessi, M.C. Assessment of platelet function on the routine coagulation analyzer Sysmex CS-2000i. Platelets 2018, 29, 95–97. [Google Scholar] [CrossRef]
- Bret, V.E.; Pougault, B.; Guy, A.; Castet, S.; Huguenin, Y.; Pillois, X.; James, C.; Fiore, M. Assessment of light transmission aggregometry on the routine coagulation analyzer Sysmex CS-2500 using CE-marked agonists from Hyphen Biomed. Platelets 2019, 30, 540–542. [Google Scholar] [CrossRef]
- Martins Lima, A.; Bragina, M.E.; Burri, O.; Bortoli Chapalay, J.; Costa-Fraga, F.P.; Chambon, M.; Fraga-Silva, R.A.; Stergiopulos, N. An optimized and validated 384-well plate assay to test platelet function in a high-throughput screening format. Platelets 2018. [Google Scholar] [CrossRef]
- Chan, M.V.; Armstrong, P.C.; Papalia, F.; Kirkby, N.S.; Warner, T.D. Optical multichannel (optimul) platelet aggregometry in 96-well plates as an additional method of platelet reactivity testing. Platelets 2011, 22, 485–494. [Google Scholar] [CrossRef]
- Chan, M.V.; Warner, T.D. Standardised optical multichannel (optimul) platelet aggregometry using high-speed shaking and fixed time point readings. Platelets 2012, 23, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Lordkipanidzé, M.; Lowe, G.C.; Kirkby, N.S.; Chan, M.V.; Lundberg, M.H.; Morgan, N.V.; Bem, D.; Nisar, S.P.; Leo, V.C.; Jones, M.L.; et al. Characterization of multiple platelet activation pathways in patients with bleeding as a high-throughput screening option: Use of 96-well Optimul assay. Blood 2014, 123, e11–e22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, M.V.; Leadbeater, P.D.; Watson, S.P.; Warner, T.D. Not all light transmission aggregation assays are created equal: Qualitative differences between light transmission and 96-well plate aggregometry. Platelets 2018, 29, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Stratmann, J.; Karmal, L.; Zwinge, B.; Miesbach, W. Platelet Aggregation Testing on a Routine Coagulation Analyzer: A Method Comparison Study. Clin. Appl. Thromb. Hemost. 2019, 25. [Google Scholar] [CrossRef] [Green Version]
- Pai, M.; Wang, G.; Moffat, K.A.; Liu, Y.; Seecharan, J.; Webert, K.; Heddle, N.; Hayward, C. Diagnostic usefulness of a lumi-aggregometer adenosine triphosphate release assay for the assessment of platelet function disorders. Am. J. Clin. Pathol. 2011, 136, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuis, H.K.; Akkerman, J.W.; Sixma, J.J. Patients with a prolonged bleeding time and normal aggregation tests may have storage pool deficiency: Studies on one hundred six patients. Blood 1987, 70, 620–623. [Google Scholar] [CrossRef] [Green Version]
- Mumford, A.D.; Frelinger, A.L., 3rd; Gachet, C.; Gresele, P.; Noris, P.; Harrison, P.; Mezzano, D. A review of platelet secretion assays for the diagnosis of inherited platelet secretion disorders. Thromb. Haemost. 2015, 114, 14–25. [Google Scholar] [CrossRef]
- Hayward, C.P.; Pai, M.; Liu, Y.; Moffat, K.A.; Seecharan, J.; Webert, K.E.; Cook, R.J.; Heddle, N.M. Diagnostic utility of light transmission platelet aggregometry: Results from a prospective study of individuals referred for bleeding disorder assessments. J. Thromb. Haemost. 2009, 7, 676–684. [Google Scholar] [CrossRef]
- Hayward, C.P.; Moffat, K.A.; Pai, M.; Liu, Y.; Seecharan, J.; McKay, H.; Webert, K.E.; Cook, R.J.; Heddle, N.M. An evaluation of methods for determining reference intervals for light transmission platelet aggregation tests on samples with normal or reduced platelet counts. Thromb. Haemost. 2008, 100, 134–145. [Google Scholar]
- Badin, M.S.; Graf, L.; Iyer, J.K.; Moffat, K.A.; Seecharan, J.L.; Hayward, C.P.M. Variability in platelet dense granule adenosine triphosphate release findings amongst patients tested multiple times as part of an assessment for a bleeding disorder. Int. J. Lab. Hematol. 2016, 38, 648–657. [Google Scholar] [CrossRef]
- Hayward, C.P.; Moffat, K.A.; Castilloux, J.F.; Liu, Y.; Seecharan, J.; Tasneem, S.; Carlino, S.; Cormier, A.; Rivard, G.E. Simultaneous measurement of adenosine triphosphate release and aggregation potentiates human platelet aggregation responses for some subjects, including persons with Quebec platelet disorder. Thromb. Haemost. 2012, 107, 726–734. [Google Scholar] [CrossRef]
- Callan, M.B.; Shofer, F.S.; Wojenski, C.; Giger, U. Chrono-lume and magnesium potentiate aggregation of canine but not human platelets in citrated platelet-rich plasma. Thromb. Haemost. 1998, 80, 176–180. [Google Scholar] [PubMed]
- Lordkipanidzé, M.; Lowe, G.C.; Watson, S.P. Simultaneous measurement of ATP release and LTA does not potentiate platelet aggregation to epinephrine. Thromb. Haemost. 2013, 110, 199–201. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Uhl, C.B.; Bryant, S.C.; Krumwiede, M.; Barness, R.L.; Olson, M.C.; Gossman, S.C.; Erdogan Damgard, S.; Gamb, S.I.; Cummins, L.A.; et al. Diagnostic laboratory standardization and validation of platelet transmission electron microscopy. Platelets 2018, 29, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Brunet, J.G.; Iyer, J.K.; Badin, M.S.; Graf, L.; Moffat, K.A.; Timleck, M.; Spitzer, E.; Hayward, C.P.M. Electron microscopy examination of platelet whole mount preparations to quantitate platelet dense granule numbers: Implications for diagnosing suspected platelet function disorders due to dense granule deficiency. In.t J. Lab. Hematol. 2018, 40, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Gunning, W.T., 3rd; Raghavan, M.; Calomeni, E.P.; Turner, J.N.; Roysam, B.; Roysam, S.; Smith, M.R.; Kouides, P.A.; Lachant, N.A. A Morphometric Analysis of Platelet Dense Granules of Patients with Unexplained Bleeding: A New Entity of Delta-Microgranular Storage Pool Deficiency. J. Clin. Med. 2020, 9, 1734. [Google Scholar] [CrossRef] [PubMed]
- Clauser, S.; Cramer-Bordé, E. Role of platelet electron microscopy in the diagnosis of platelet disorders. Semin. Thromb. Hemost. 2009, 35, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Karampini, E.; Bierings, R.; Voorberg, J. Orchestration of Primary Hemostasis by Platelet and Endothelial Lysosome-Related Organelles. Arter. Thromb. Vasc. Biol. 2020, 40, 1441–1453. [Google Scholar] [CrossRef]
- Zaninetti, C.; Greinacher, A. Diagnosis of Inherited Platelet Disorders on a Blood Smear. J. Clin. Med. 2020, 9, 539. [Google Scholar] [CrossRef] [Green Version]
- Greinacher, A.; Pecci, A.; Kunishima, S.; Althaus, K.; Nurden, P.; Balduini, C.L.; Bakchoul, T. Diagnosis of inherited platelet disorders on a blood smear: A tool to facilitate worldwide diagnosis of platelet disorders. J. Thromb. Haemost. 2017, 15, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Ver Donck, F.; Downes, K.; Freson, K. Strengths and limitations of high-throughput sequencing for the diagnosis of inherited bleeding and platelet disorders. J. Thromb Haemost 2020, 18, 1839–1845. [Google Scholar] [CrossRef] [PubMed]
- Gresele, P. Diagnosis of inherited platelet function disorders: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2015, 13, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, D.C.; Flower, R.J. The electronic aggregometer: A novel device for assessing platelet behavior in blood. J. Pharm. Methods 1980, 3, 135–158. [Google Scholar] [CrossRef]
- Aradi, D.; Storey, R.F.; Komócsi, A.; Trenk, D.; Gulba, D.; Kiss, R.G.; Husted, S.; Bonello, L.; Sibbing, D.; Collet, J.P.; et al. Expert position paper on the role of platelet function testing in patients undergoing percutaneous coronary intervention. Eur. Heart J. 2014, 35, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, M.; Dupuis, C.; Dincq, A.S.; Jacqmin, H.; Lecompte, T.; Mullier, F.; Lessire, S. Reduction of Preoperative Waiting Time before Urgent Surgery for Patients on P2Y(12) Inhibitors Using Multiple Electrode Aggregometry: A Retrospective Study. J. Clin. Med. 2020, 9, 424. [Google Scholar] [CrossRef] [PubMed]
- Frelinger, A.L., 3rd; Gachet, C.; Mumford, A.D.; Noris, P.; Mezzano, D.; Harrison, P.; Gresele, P. Laboratory monitoring of P2Y(12) inhibitors: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2018, 16, 2341–2346. [Google Scholar] [CrossRef] [Green Version]
- Mahla, E.; Tantry, U.S.; Prüller, F.; Gurbel, P.A. Is There a Role for Preoperative Platelet Function Testing in Patients Undergoing Cardiac Surgery During Antiplatelet Therapy? Circulation 2018, 138, 2145–2159. [Google Scholar] [CrossRef]
- Awidi, A.; Maqablah, A.; Dweik, M.; Bsoul, N.; Abu-Khader, A. Comparison of platelet aggregation using light transmission and multiple electrode aggregometry in Glanzmann thrombasthenia. Platelets 2009, 20, 297–301. [Google Scholar] [CrossRef]
- Moenen, F.; Vries, M.J.A.; Nelemans, P.J.; van Rooy, K.J.M.; Vranken, J.; Verhezen, P.W.M.; Wetzels, R.J.H.; Ten Cate, H.; Schouten, H.C.; Beckers, E.A.M.; et al. Screening for platelet function disorders with Multiplate and platelet function analyzer. Platelets 2019, 30, 81–87. [Google Scholar] [CrossRef]
- Albanyan, A.; Al-Musa, A.; AlNounou, R.; Al Zahrani, H.; Nasr, R.; AlJefri, A.; Saleh, M.; Malik, A.; Masmali, H.; Owaidah, T. Diagnosis of Glanzmann thrombasthenia by whole blood impedance analyzer (MEA) vs. light transmission aggregometry. Int J. Lab. Hematol. 2015, 37, 503–508. [Google Scholar] [CrossRef]
- Al Ghaithi, R.; Drake, S.; Watson, S.P.; Morgan, N.V.; Harrison, P. Comparison of multiple electrode aggregometry with lumi-aggregometry for the diagnosis of patients with mild bleeding disorders. J. Thromb. Haemost. 2017, 15, 2045–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, T.; Cushing, M.M.; Varga, S.; Gilloz, S.; Schmugge, M. Usefulness of multiple electrode aggregometry as a screening tool for bleeding disorders in a pediatric hospital. Platelets 2019, 30, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; McMillan-Ward, E.; Mian, R.; Israels, S.J. Comparison of light transmission aggregometry and multiple electrode aggregometry for the evaluation of patients with mucocutaneous bleeding. Int J. Lab. Hematol. 2019, 41, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubak, P.; Skipper, M.T.; Larsen, O.H.; Hvas, A.M. Continuous exploration of parameters derived from multiple electrode platelet aggregometry is warranted. Thromb. Res. 2018, 164, 45–47. [Google Scholar] [CrossRef]
- Hardy, M.; Lessire, S.; Kasikci, S.; Baudar, J.; Guldenpfennig, M.; Collard, A.; Dogné, J.M.; Chatelain, B.; Jacqmin, H.; Lecompte, T.; et al. Effects of Time-Interval since Blood Draw and of Anticoagulation on Platelet Testing (Count, Indices and Impedance Aggregometry): A Systematic Study with Blood from Healthy Volunteers. J. Clin. Med. 2020, 9, 2515. [Google Scholar] [CrossRef]
- Navred, K.; Martin, M.; Ekdahl, L.; Zetterberg, E.; Andersson, N.G.; Strandberg, K.; Norstrom, E. A simplified flow cytometric method for detection of inherited platelet disorders-A comparison to the gold standard light transmission aggregometry. PLoS ONE 2019, 14, e0211130. [Google Scholar] [CrossRef] [Green Version]
- van Asten, I.; Schutgens, R.E.G.; Baaij, M.; Zandstra, J.; Roest, M.; Pasterkamp, G.; Huisman, A.; Korporaal, S.J.A.; Urbanus, R.T. Validation of flow cytometric analysis of platelet function in patients with a suspected platelet function defect. J. Thromb. Haemost. 2018, 16, 689–698. [Google Scholar] [CrossRef] [Green Version]
- Spurgeon, B.E.J.; Naseem, K.M. Platelet Flow Cytometry: Instrument Setup, Controls, and Panel Performance. Cytom. B Clin. Cytom. 2020, 98, 19–27. [Google Scholar] [CrossRef]
- van Asten, I.; Blaauwgeers, M.; Granneman, L.; Heijnen, H.F.G.; Kruip, M.; Beckers, E.A.M.; Coppens, M.; Eikenboom, J.; Tamminga, R.Y.J.; Pasterkamp, G.; et al. Flow cytometric mepacrine fluorescence can be used for the exclusion of platelet dense granule deficiency. J. Thromb. Haemost. 2020, 18, 706–713. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Mullier, F.; Frotscher, B.; Briquel, M.E.; Toussaint, M.; Massin, F.; Lecompte, T.; Latger-Cannard, V. Usefulness of Flow Cytometric Mepacrine Uptake/Release Combined with CD63 Assay in Diagnosis of Patients with Suspected Platelet Dense Granule Disorder. Semin Thromb. Hemost. 2016, 42, 282–291. [Google Scholar] [CrossRef]
- Dovlatova, N.; Lordkipanidzé, M.; Lowe, G.C.; Dawood, B.; May, J.; Heptinstall, S.; Watson, S.P.; Fox, S.C. Evaluation of a whole blood remote platelet function test for the diagnosis of mild bleeding disorders. J. Thromb Haemost 2014, 12, 660–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliez, M.; Fouassier, M.; Robillard, N.; Ternisien, C.; Sigaud, M.; Trossaert, M.; Bene, M.C. Detection of phosphatidyl serine on activated platelets’ surface by flow cytometry in whole blood: A simpler test for the diagnosis of Scott syndrome. Br. J. Haematol. 2015, 171, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Hayward, C.P.; Harrison, P.; Cattaneo, M.; Ortel, T.L.; Rao, A.K. Platelet function analyzer (PFA)-100 closure time in the evaluation of platelet disorders and platelet function. J. Thromb. Haemost. 2006, 4, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Miike, T.; Sakamoto, Y.; Sakurai, R.; Ohta, M.; Goto, A.; Imahase, H.; Yahata, M.; Umeka, M.; Koami, H.; Yamada, K.C.; et al. Effects of hyperbaric exposure on thrombus formation. Undersea Hyperb. Med. 2016, 43, 233–238. [Google Scholar] [PubMed]
- Daidone, V.; Barbon, G.; Cattini, M.G.; Pontara, E.; Romualdi, C.; Di Pasquale, I.; Hosokawa, K.; Casonato, A. Usefulness of the Total Thrombus-Formation Analysis System (T-TAS) in the diagnosis and characterization of von Willebrand disease. Haemophilia 2016, 22, 949–956. [Google Scholar] [CrossRef]
- Arima, Y.; Kaikita, K.; Ishii, M.; Ito, M.; Sueta, D.; Oimatsu, Y.; Sakamoto, K.; Tsujita, K.; Kojima, S.; Nakagawa, K.; et al. Assessment of platelet-derived thrombogenicity with the total thrombus-formation analysis system in coronary artery disease patients receiving antiplatelet therapy. J. Thromb. Haemost. 2016, 14, 850–859. [Google Scholar] [CrossRef]
- Minami, H.; Nogami, K.; Ogiwara, K.; Furukawa, S.; Hosokawa, K.; Shima, M. Use of a microchip flow-chamber system as a screening test for platelet storage pool disease. Int J. Hematol. 2015, 102, 157–162. [Google Scholar] [CrossRef]
- Hosokawa, K.; Ohnishi, T.; Miura, N.; Sameshima, H.; Koide, T.; Tanaka, K.A.; Maruyama, I. Antithrombotic effects of PAR1 and PAR4 antagonists evaluated under flow and static conditions. Thromb. Res. 2014, 133, 66–72. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriki, T.; Igari, A.; Matsubara, Y.; Ohnishi, T.; Hosokawa, K.; Murata, M. Studies of a microchip flow-chamber system to characterize whole blood thrombogenicity in healthy individuals. Thromb. Res. 2013, 132, 263–270. [Google Scholar] [CrossRef]
- Al Ghaithi, R.; Mori, J.; Nagy, Z.; Maclachlan, A.; Hardy, L.; Philippou, H.; Hethershaw, E.; Morgan, N.V.; Senis, Y.A.; Harrison, P. Evaluation of the Total Thrombus-Formation System (T-TAS): Application to human and mouse blood analysis. Platelets 2019, 30, 893–900. [Google Scholar] [CrossRef]
- Oimatsu, Y.; Kaikita, K.; Ishii, M.; Mitsuse, T.; Ito, M.; Arima, Y.; Sueta, D.; Takahashi, A.; Iwashita, S.; Yamamoto, E.; et al. Total Thrombus-formation Analysis System Predicts Periprocedural Bleeding Events in Patients With Coronary Artery Disease Undergoing Percutaneous Coronary Intervention. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Witt, S.M.; Swieringa, F.; Cavill, R.; Lamers, M.M.; van Kruchten, R.; Mastenbroek, T.; Baaten, C.; Coort, S.; Pugh, N.; Schulz, A.; et al. Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nat. Commun. 2014, 5, 4257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, M.; Kita, A.; Leach, J.; Rounsevell, R.; Huang, J.N.; Moake, J.; Ware, R.E.; Fletcher, D.A.; Lam, W.A. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J Clin. Invest. 2012, 122, 408–418. [Google Scholar] [CrossRef] [Green Version]
- Lordkipanidze, M. Platelet Function Tests. Semin. Thromb. Hemost. 2016, 42, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Slichter, S.J.; Kaufman, R.M.; Assmann, S.F.; McCullough, J.; Triulzi, D.J.; Strauss, R.G.; Gernsheimer, T.B.; Ness, P.M.; Brecher, M.E.; Josephson, C.D.; et al. Dose of prophylactic platelet transfusions and prevention of hemorrhage. N. Engl. J. Med. 2010, 362, 600–613. [Google Scholar] [CrossRef] [Green Version]
- De Cuyper, I.M.; Meinders, M.; van de Vijver, E.; de Korte, D.; Porcelijn, L.; de Haas, M.; Eble, J.A.; Seeger, K.; Rutella, S.; Pagliara, D.; et al. A novel flow cytometry-based platelet aggregation assay. Blood 2013, 121, e70–e80. [Google Scholar] [CrossRef] [Green Version]
- van Bladel, E.R.; Laarhoven, A.G.; van der Heijden, L.B.; Heitink-Polle, K.M.; Porcelijn, L.; van der Schoot, C.E.; de Haas, M.; Roest, M.; Vidarsson, G.; de Groot, P.G.; et al. Functional platelet defects in children with severe chronic ITP as tested with 2 novel assays applicable for low platelet counts. Blood 2014, 123, 1556–1563. [Google Scholar] [CrossRef] [Green Version]
- Frelinger, A.L., 3rd; Grace, R.F.; Gerrits, A.J.; Berny-Lang, M.A.; Brown, T.; Carmichael, S.L.; Neufeld, E.J.; Michelson, A.D. Platelet function tests, independent of platelet count, are associated with bleeding severity in ITP. Blood 2015. [Google Scholar] [CrossRef] [Green Version]
- Boknäs, N.; Macwan, A.S.; Södergren, A.L.; Ramström, S. Platelet function testing at low platelet counts: When can you trust your analysis? Res. Pr. Thromb. Haemost. 2019, 3, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Spurgeon, B.E.J.; Naseem, K.M. High-Throughput Signaling Profiling in Blood Platelets by Multiplexed Phosphoflow Cytometry. Methods Mol. Biol. 2018, 1812, 95–111. [Google Scholar] [CrossRef]
- Le Blanc, J.; Lordkipanidzé, M. Platelet Function in Aging. Front. Cardiovasc. Med. 2019, 6, 109. [Google Scholar] [CrossRef] [PubMed]
- Huskens, D.; Sang, Y.; Konings, J.; van der Vorm, L.; de Laat, B.; Kelchtermans, H.; Roest, M. Standardization and reference ranges for whole blood platelet function measurements using a flow cytometric platelet activation test. PLoS ONE 2018, 13, e0192079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otahbachi, M.; Simoni, J.; Simoni, G.; Moeller, J.F.; Cevik, C.; Meyerrose, G.E.; Roongsritong, C. Gender differences in platelet aggregation in healthy individuals. J. Thromb. Thrombolysis 2010, 30, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Cowman, J.; Dunne, E.; Oglesby, I.; Byrne, B.; Ralph, A.; Voisin, B.; Müllers, S.; Ricco, A.J.; Kenny, D. Age-related changes in platelet function are more profound in women than in men. Sci. Rep. 2015, 5, 12235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, C.H.; Rice, A.S.; Garrett, K.; Stein, S.F. Gender, race and diet affect platelet function tests in normal subjects, contributing to a high rate of abnormal results. Br. J. Haematol. 2014, 165, 842–853. [Google Scholar] [CrossRef] [Green Version]
- Edelstein, L.C.; Simon, L.M.; Montoya, R.T.; Holinstat, M.; Chen, E.S.; Bergeron, A.; Kong, X.; Nagalla, S.; Mohandas, N.; Cohen, D.E.; et al. Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat. Med. 2013, 19, 1609–1616. [Google Scholar] [CrossRef] [Green Version]
- Gader, A.M.; Bahakim, H.; Jabbar, F.A.; Lambourne, A.L.; Gaafar, T.H.; Edrees, Y.B. Dose-response aggregometry in maternal/neonatal platelets. Thromb. Haemost. 1988, 60, 314–318. [Google Scholar] [CrossRef]
- Mumford, A.; Westbury, S. Genetic Techniques Used in the Diagnosis of Inherited Platelet Disorders. Semin. Thromb. Hemost. 2019, 45. [Google Scholar] [CrossRef]
- Lentaigne, C.; Freson, K.; Laffan, M.A.; Turro, E.; Ouwehand, W.H. Inherited platelet disorders: Toward DNA-based diagnosis. Blood 2016, 127, 2814–2823. [Google Scholar] [CrossRef] [Green Version]
Final Concentration | Christie et al., 2008 [12] | Hayward et al., 2010 [9] | Harrison et al., 2011 [11] | Cattaneo et al., 2013 [10] | Alessi et al., 2017 [13] | Alessi et al., 2020 [14] | |
---|---|---|---|---|---|---|---|
ADP | 2 µM | X | X | X | X | X | |
5 µM | X | X | |||||
10 µM | X | X | X | ||||
100 µM | X | X | |||||
Collagen | 1 µg/mL | X | |||||
2 µg/mL | X | X | X | X | |||
10 µg/mL | X | X | |||||
25 µg/mL | X | ||||||
Type: | Type I fibrillary | Type I | Horm | Not mentioned | Not mentioned | ||
Epinephrine | 5 µM | X | X | X | X | X | X |
10 µM | X | X | |||||
25 µM | X | X | |||||
TRAPs | 10 µM | X | X | X | X | ||
50 µM | X | X | |||||
Type: | PAR-1 (SFLLRN) 10–100 µM and PAR-4 (AYPGKF) 100–500 µM TRAPs | PAR1 (-AP) | TRAP-6 | TRAP-6 | |||
Arachidonic Acid | 1 mM | X (0.5–1.6) | X (0.5–1.6) | X (0.5–1.0) | X | X | X |
Thromboxane A2 analog U6619 | 1 µM | X | X | X | X | X | X |
2 µM | X | ||||||
3μM | X | X | |||||
5 µM | X | ||||||
10 µM | X | X | |||||
Ristocetin | Low dose | ≤0.6 | 0.5–0.6 | 0.5–0.7 | |||
High dose | 0.8–1.5 | 1.2–1.5 | 1.2–1.5 | 1.2 * | 1.2 * | 1.2 * | |
Collagen-related peptide (CRP)- Convulxin | 1 µg/mL | Concentration not provided | |||||
2 µg/mL | X (0.01-1) | ||||||
Gamma-thrombin | 50–200 ng/mL | X | |||||
Ca-ionophore A23187 | 1.25–10 µmol/L | X | |||||
Phorbol 12-myristate 13-acetate (PMA) | 30 nmol/L | X | Concentration not provided |
- Screening
- To diagnose complete P2Y12 deficiencies
- Can allow the TP receptor to be distinguished from TXA2 synthesis deficiencies
- If arachidonic acid aggregation is abnormal
- If γ thrombin is abnormal
- If abnormalities in the thrombin receptors, Receptors targets: Calcium mobilization and procoagulant function
- To check the correct functioning of the PKC pathway
- GPVI specific activator
- To diagnose CalDAG-GEFI deficiency
- Thrombin receptors but without clotting
Study | Assessed Instrument | Reference Instrument | Samples | Agonists | Results | Comments on Assessed Instrument |
---|---|---|---|---|---|---|
LQ. Ling et al. [15] | Sysmex CS-2100i | Chrono-log Model 700 (Chrono-log Corporation, Havertown, PA, USA) | Pooled PRP from healthy subjects (n=8-10) | ADP 5 µM, AA 500 µg/mL, Col 2.5 µg/mL, Epi 5.4 µM, Risto 1.5 mg/mL (Hyphen Biomed) | Strong correlation between both instruments (Pearson’s r: 0.69 to 0.88) Good repeatability of CS-2100i (MA CV < 10%) | Inhibitory effect of PPP on aggregation induced by ADP, AA, Col, Epi Inhibitory effect of PS on ristocetin-induced aggregation Short turnaround time Low PC requirement in PRP: 80 × 109/L |
AS. Lawrie et al. [16] | Sysmex CS-2100i | AggRAM aggregometer (Helena Laboratories, Beaumont, TX, USA) | PRP from healthy subjects or patients on NSAID (n = 14) or clopidogrel (n = 2) | ADP 0.5–10 µM, AA 0.12–1.0 mM Col 0.5–10 μg/mL, Epi 0.5–10 µM, Risto 0.75–1.25 mg/mL (Hyphen Biomed) | Comparable dose-responses with each of the agonists with both instruments Comparable aggregation traces with samples from subjects under NSAID or clopidogrel Similar aggregation imprecision (MA and slope CV to ADP: 3–12%) | Influence of cuvette stirrer speed on the reaction sensitivity: optimum speed of 800 rpm No clinically significant changes in aggregation response for PC ranging from 150–480 × 109/L in PRP, but poor sensitivity in case of PC <100 × 109/L |
C. Frère et al. [17] | Sysmex CS-2100i | APACT-4004 aggregometer (LABiTec, Ahrensburg, Germany) | PRP from patients suspected from PFD (n = 46) or with ACS (n = 62) receiving dual antiplatelet therapy | ADP 2.5–10 μM, AA 0.5 mg/mL, Col 3.3 μg/mL, Epi 10 μM, Risto1.25 mg/mL (Hyphen Biomed) | Significant correlations between both instruments (Pearson’s r: 0.38 to 0.98) Similar aggregation profiles with both systems in patients with bleedings (including 1 GT patient) Strong inter-agreement rates to detect low responders to thienopyridines or aspirin (weighted kappa> 0.70) Good intra-serial imprecision of CS-2000i (MA CV < 5% for each agonist) | Cuvette stirrer speed: 800 rpm |
VE. Bret et al. [18] | Sysmex CS-2500 | APACT-4004 aggregometer (LABiTec, Ahrensburg, Germany) | PRP from patients with suspected PFD, vWD or antiplatelet therapy (n = 49) | ADP 0.5–10 μM, AA 1 mM, Col 2 μg/mL, Risto 0.625 and 1.2 mg/mL (Hyphen Biomed) | Significant correlation between the two aggregometers (Passing and Bablok’s r: 0.48 to 0.90) More variable response using low concentrations of ADP (≤5 μM) with Sysmex CS-2500 Discrepancies with the low dose of ristocetin: excessive paradoxical agglutination with the Sysmex CS-2500 Good intra-serial imprecision of CS-2500 (MA CV to ADP: 1.5%) | Cuvette stirrer speed: 600 rpm |
J. Stratmann et al. [24] | Sysmex CS-2100i | APACT-4004 aggregometer (LABiTec, Ahrensburg, Germany) | PRP from healthy subjects (n = 61) and from patients with known bleeding disorder (n = 20) or antiplatelet therapy (n = 42) | ADP 5 μM, AA 1 mM, Risto 1 mg/mL), Col 2 μg/mL, Epi 5 μM (Hyphen Biomed) | Significant MA correlation between both instruments with all subgroups and agonists tested (Pearson’s r ≥ 0.85) Weak or no correlation between both instruments in regard to lag time (Pearson’s r < 0.20) Systematic bias to lower measurements below a threshold of 50% MA with the CS-2100i Successful identification of patients with known bleeding disorder or antiplatelet therapy using the CS-2100i | Non-adjusted PRP Reading period of 600 s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Blanc, J.; Mullier, F.; Vayne, C.; Lordkipanidzé, M. Advances in Platelet Function Testing—Light Transmission Aggregometry and Beyond. J. Clin. Med. 2020, 9, 2636. https://doi.org/10.3390/jcm9082636
Le Blanc J, Mullier F, Vayne C, Lordkipanidzé M. Advances in Platelet Function Testing—Light Transmission Aggregometry and Beyond. Journal of Clinical Medicine. 2020; 9(8):2636. https://doi.org/10.3390/jcm9082636
Chicago/Turabian StyleLe Blanc, Jessica, François Mullier, Caroline Vayne, and Marie Lordkipanidzé. 2020. "Advances in Platelet Function Testing—Light Transmission Aggregometry and Beyond" Journal of Clinical Medicine 9, no. 8: 2636. https://doi.org/10.3390/jcm9082636
APA StyleLe Blanc, J., Mullier, F., Vayne, C., & Lordkipanidzé, M. (2020). Advances in Platelet Function Testing—Light Transmission Aggregometry and Beyond. Journal of Clinical Medicine, 9(8), 2636. https://doi.org/10.3390/jcm9082636