Methods for Management of Soilborne Diseases in Crop Production
Abstract
:1. Introduction
2. Soilborne Disease Management Methods
2.1. Sanitation
2.2. Legal Methods
2.3. Resistant Cultivars/Varieties and Grafting
2.4. Cropping System
2.5. Soil Solarization
2.6. Biofumigants
2.7. Soil Amendments
2.8. Anaerobic Soil Disinfestation
2.9. Soil Steam Sterilization
2.10. Soil Fertility and Plant Nutrients
2.11. Soilless Culture
2.12. Chemical Control
2.13. Biological Control
3. System-Based Approach for Soilborne Disease Management
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lewis, J.A.; Papavizas, G.C. Biocontrol of cotton damping-off caused by Rhizoctonia solani in the field with formulations of Trichoderma spp. and Gliocladium virens. Crop Prot. 1991, 10, 396–402. [Google Scholar] [CrossRef]
- Mihajlović, M.; Rekanović, E.; Hrustić, J.; Tanović, B. Methods for management of soilborne plant pathogens. Pestic. Fitomedicina 2017, 32, 9–24. [Google Scholar] [CrossRef]
- Baysal-Gurel, F.; Kabir, N. Comparative performance of fungicides and biocontrol products in suppression of Rhizoctonia root rot in viburnum. J. Plant Pathol. Microbiol. 2018, 9, 451. [Google Scholar] [CrossRef]
- Mokhtar, M.M.; El-Mougy, N.S. Biocompost application for controlling soilborne plant pathogens–A review. Int. J. Eng. Innov. Technol. 2014, 4, 61–68. [Google Scholar]
- Åström, B.; Gerhardson, B. Differential reactions of wheat and pea genotypes to root inoculation with growth-affecting rhizosphere bacteria. Plant Soil 1988, 109, 263–269. [Google Scholar] [CrossRef]
- Bell, C.H. Alternative physical methods and emission reduction. In The Methyl Bromide Issue; Bell, C.H., Price, N., Chakrabarti, B., Eds.; John Wiley and Sons: West Sussex, UK, 1996; pp. 323–329. [Google Scholar]
- Keinath, A.P.; Batson, W.E. Evaluation of biological and chemical seed treatments to improve stand of snap bean across the southern U.S. Crop Prot. 2000, 19, 501–509. [Google Scholar] [CrossRef]
- Gerik, J.S.; Hanson, B.D. Drip application of methyl bromide alternative chemicals for control of soilborne pathogens and weeds. Pest Manag. Sci. 2011, 67, 1129–1133. [Google Scholar] [CrossRef]
- Christopher, D.J.; Raj, T.S.; Rani, S.U.; Udhayakumar, R. Role of defense enzymes activity in tomato as induced by Trichoderma virens against Fusarium wilt caused by Fusarium oxysporum f.sp. lycopersici. J. Biopestic. 2010, 3, 158–162. [Google Scholar]
- Bolwerk, A.; Lagopodi, A.L.; Lugtenberg, B.J.; Bloemberg, G.V. Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol. Plant Microbe Interact. 2005, 18, 710–721. [Google Scholar] [CrossRef] [Green Version]
- Benítez, M.S.; Baysal, F.; Rotenberg, D.; Kleinhenz, M.D.; Cardina, J.; Stinner, D.; Miller, S.A.; McSpadden Gardener, B. Linking changes in bacterial populations with disease suppression, as affected by agricultural management strategies. Soil Biol. Biochem. 2007, 39, 2289–2301. [Google Scholar] [CrossRef]
- Borneman, J.; Becker, J.O. Identifying microorganisms involved in specific pathogen suppression in soil. Phytopathology 2007, 45, 153–172. [Google Scholar]
- Gross, H.; Stockwell, V.O.; Henkels, M.D.; Nowak-Thompson, B.; Loper, J.E.; Gerwick, W.H. The genomisotopic approach: A systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 2007, 14, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Baysal-Gurel, F.; Kabir, N.; Liyanapathiranage, P. Effect of organic inputs and solarization for the suppression of Rhizoctonia solani in woody ornamental plant production. Plants 2019, 8, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baysal-Gurel, F.; Liyanapathiranage, P.; Addesso, K. Effect of Brassica crop-based biofumigation on soilborne disease suppression in woody ornamentals. Can. J. Plant Pathol. 2019. [Google Scholar] [CrossRef]
- Hoitink, H.A.J.; Boehm, M.J. Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annu. Rev. Phytopathol. 1999, 37, 427–446. [Google Scholar] [CrossRef] [PubMed]
- Han, D.Y.; Coplin, D.L.; Bauer, W.D.; Hoitink, H.A.J. A rapid bioassay for screening rhizosphere microorganisms for their ability to induce systemic resistance. Phytopathology 2000, 90, 327–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, M.S.; De Ceuster, T.J.J.; Tiquia, S.M.; Michel, F.C.; Madden, L.V.; Hoitink, H.A.J. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology 2003, 93, 1292–1300. [Google Scholar] [CrossRef]
- Alfano, G.; Lewis Ivey, M.L.; Cakir, C.; Bos, J.I.B.; Miller, S.A.; Madden, L.V.; Kamoun, S.; Hoitink, H.A.J. Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 2007, 97, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Mazzola, M. Assessment and management of soil microbial community structure for disease suppression. Annu. Rev. Phytopathol. 2004, 42, 35–59. [Google Scholar] [CrossRef]
- Claude, A.; Clarkson, J.; de Cara, F.M.; de Caravalho Franca, S.; Debode, J.; Elorrieta, M.; Furlan, L.; Grand, A.; Hinarejos Esteve, E.; Kos, J.; et al. EIP-AGRI Focus Group on Soil-Borne Diseases: Final Report; EIP-AGRI Focus Group, IPM practices for soil-borne diseases, European Commission, Brussels, Belgium: 2015. Available online: https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/eip-agri_focus_group_on_ipm_practices_for_soil-borne_diseases_final_report_2015.pdf (accessed on 6 December 2019).
- Baysal-Gurel, F.; Gardener, B.M.; Miller, S.A. Soilborne Disease Management in Organic Vegetable Production. 2012. Available online: https://eorganic.org/node/7581 (accessed on 7 December 2019).
- Crooks, J.A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion. Ecoscience 2005, 12, 316–329. [Google Scholar] [CrossRef]
- Goss, E.M.; Carbone, I.; Grunwald, N.J. Ancient isolation and independent evolution of the three clonal lineages of the exotic sudden oak death pathogen Phytophthora ramorum. Mol. Ecol. 2009, 18, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Moralejo, E.; Perez-Sierra, A.M.; Alvarez, L.A.; Belbahri, L.; Lefort, F.; Descals, E. Multiple alien Phytophthora taxa discovered on diseased ornamental plants in Spain. Plant Pathol. 2009, 58, 100–110. [Google Scholar] [CrossRef]
- Sikes, B.A.; Bufford, J.L.; Hulme, P.E.; Cooper, J.A.; Johnston, P.R.; Duncan, R.P. Import volumes and biosecurity interventions shape the arrival rate of fungal pathogens. PLoS Biol. 2018, 16, 100–101. [Google Scholar] [CrossRef] [PubMed]
- De Benedictis, L.; Tajoli, L. The world trade network. World Econ. 2011, 34, 1417–1454. [Google Scholar] [CrossRef]
- The World Bank, International Civil Aviation Organization. Civil Aviation Statistics of the World and ICAO Staff Estimates: Air Transport, Passengers Carried [Internet]; The World Bank: Washington, DC, USA, 2016; Available online: https://data.worldbank.org/indicator/IS.AIR.PSGR (accessed on 15 October 2019).
- Hulme, P.E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef]
- Tittensor, D.P.; Walpole, M.; Hill, S.L.; Boyce, D.G.; Britten, G.L.; Burgess, N.D.; Butchart, S.H.M.; Leadley, P.W.; Regan, E.C.; Alkemade, R.; et al. A mid-term analysis of progress toward international biodiversity targets. Science 2014, 346, 241–244. [Google Scholar] [CrossRef]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M.; et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef]
- Katan, J. Diseases caused by soilborne pathogens: Biology, management and challenges. J. Plant Pathol. 2017, 99, 305–315. [Google Scholar]
- Davis, J.R.; Pavek, J.J.; Corsini, D.L.; Sorensen, L.H. Stability of Verticillium resistance of potato clones and changes in soilborne populations with potato monoculture. In Proceedings of the Soil-Borne Diseases of 4th International Congress of Plant Pathology, Melbourne, Australia, 17–24 August 1985; pp. 165–166. [Google Scholar]
- Christou, P. Plant genetic engineering and agricultural biotechnology 1983–2013. Trends Biotechnol. 2013, 31, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Karlovsky, P. Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl. Microbiol. Biotechnol. 2011, 91, 491–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, O.X.; Ronald, P.C. Genetic engineering for disease resistance in plants: Recent progress and future perspectives. Plant Physiol. 2019, 180, 26–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juge, N. Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci. 2006, 11, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Bruton, B. Grafting watermelon onto squash or gourd rootstock makes firmer, healthier fruit. Agric. Res. 2005, 53, 8–9. [Google Scholar]
- Rivard, C.; Louws, F. Grafting for disease resistance in heirloom tomatoes. North Carolina, USA, North Carolina Cooperative Extension Service, North Carolina State University. 2006. Available online: http://www4.ncsu.edu/~clrivard/TubeGraftingTechnique.pdf (accessed on 6 December 2019).
- Lee, J.M.; Oda, M. Grafting of herbaceous vegetable and ornamental crops. Hortic. Rev. 2003, 28, 61–124. [Google Scholar]
- Cohen, R.; Burger, Y.; Horev, C.; Koren, A.; Edelstein, M. Introducing grafted cucurbits to modern agriculture. Plant Dis. 2007, 91, 916–923. [Google Scholar] [CrossRef] [Green Version]
- Rabinowitch, H.D.; Cohen, R. Genetics and breeding for resistance and grafting for protection against Fusarium oxysporum wilts. In Fusarium Wilts of Greenhouse Vegetable and Ornamental Crops; Gullino, M.L., Katan, J., Garibaldi, A., Eds.; APS Press: St. Paul, MN, USA, 2012; pp. 83–100. [Google Scholar]
- Rouphael, Y.; Kyriacou, M.C.; Colla, G. Vegetable grafting: A toolbox for securing yield stability under multiple stress conditions. Front. Plant Sci. 2018, 8, 2255. [Google Scholar] [CrossRef] [Green Version]
- Stitger, H.C.M. Some aspects of the physiological functioning of the graft muskmelon/Cucurbita ficifolia. Publ./Cent. Plant Physiol. Res. 1971, 65, 223–231. [Google Scholar]
- Harnett, R.F. Resurgence of interest in grafting techniques on heated tomato crops. Grower 1974, 82, 861–862. [Google Scholar]
- Edelstein, M. Grafting vegetable-crop plants: Pros and Cons. Acta Hort. 2004, 659, 235–238. [Google Scholar] [CrossRef]
- Umaerus, V.R.; Scholte, K.; Turkensteen, L.J. Crop rotation and the occurrence of fungal diseases in potatoes. In Effects of Crop Rotation on Potato Production in the Temperate Zones; Vos, J., Loon, C.D., van Bollen, G.J., Eds.; Springer: Dordrecht, The Netherlands, 1989; pp. 171–189. [Google Scholar] [CrossRef]
- Sullivan, P. Sustainable Management of Soil-Borne Plant Diseases; ATTRA, USDA’s Rural Business Cooperative Service: Washington, DC, USA, 2001; Available online: www.attra.org (accessed on 7 December 2019).
- Johnston, H.W.; Celetti, M.J.; Kimpinski, J.; Platt, H.W. Fungal pathogens and Pratylenchus penetrans associated with preceding crops of clovers, winter wheat, and annual ryegrass and their influence on succeeding potato crops on Prince Edward Island. Am. J. Potato Res. 1994, 71, 797–808. [Google Scholar] [CrossRef]
- Larkin, R.P.; Griffin, T.S.; Honeycutt, C.W. Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Dis. 2010, 94, 1491–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kheyrodin, H. Crop rotations for managing soil-borne plant diseases. Afr. J. Food Sci. Technol. 2010, 1, 1–9. [Google Scholar]
- Carling, D.E.; Baird, R.E.; Gitaitis, R.D.; Brainard, K.A.; Kuninaga, S. Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology 2002, 92, 893–899. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi-Leonel, R.; Mueller, D.; Harbach, C.; Tylka, G.; Leandro, L. Susceptibility of cover crop plants to Fusarium virguliforme, causal agent of soybean sudden death syndrome, and Heterodera glycines, the soybean cyst nematode. J. Soil Water Conserv. 2017, 72, 575–583. [Google Scholar] [CrossRef]
- Hiddink, G.A.; Termorshuizen, A.J.; Raaijmakers, J.M.; van Bruggen, A.H.C. Effect of mixed and single crops on disease suppressiveness of soils. Phytopathology 2005, 95, 1325–1332. [Google Scholar] [CrossRef] [Green Version]
- Katan, J.; Greenberger, A.; Alon, H.; Grinstein, A. Solar heating by polyethylene mulching for the control of diseases caused by soil-borne pathogens. Phytopathology 1976, 66, 683–688. [Google Scholar] [CrossRef]
- Elad, Y.; Katan, J.; Chet, I. Physical, biological, and chemical control integrated for soilborne diseases in potatoes. Phytopathology 1980, 70, 418–422. [Google Scholar] [CrossRef]
- Gutkowski, D.; Terranova, S. Physical aspects of soil solarization. In Soil Solarization, Proceedings of the First Conference on Soil Solarization, Amman, Jordan; DeVay, J.E., Stapleton, J.J., Elmore, C.L., Eds.; FAO plant production and protection paper: Rome, Italy, 19–25 February 1991; Volume 109, pp. 48–61. [Google Scholar]
- Al-Kayssi, A.W.; Al-Karaghouli, A. A new approach for soil solarization by using paraffin-wax emulsion as a mulching material. Renew. Energy 2002, 26, 637–648. [Google Scholar] [CrossRef]
- Zheng, Y.; Yanful, E.K.; Bassi, A.S. A review of plastic waste biodegradation. Critical Reviews in Biotechnology 2005, 25, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Watanabe, S.; Ozaki, H.; Ikeura, Y.; Kotani, A. Soil temperature and moisture environments: Lot-management water requirements associated with soil solarization. Farml. Agric. 2011, 631, 2–10. [Google Scholar]
- Dai, Y.Y.; Kondo, M.; Ito, K.; Yoshiyama, K.; Zhang, P.F.; Zhang, F.P.; Senge, M. Study on irrigation water requirements for the control of Ralstonia solanacearum via soil solarization in managing tomato cultivation. J. Irrig. Drain. Rural Eng. 2014, 294, 85–92. [Google Scholar]
- Larkin, R.P.; Honeycutt, C.W. Effects of different 3-year cropping systems on soil microbial communities and Rhizoctonia diseases of potato. Phytopathology 2006, 96, 68–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkin, R.P.; Griffin, T.S. Control of soilborne diseases of potato using Brassica green manures. Crop Prot. 2007, 26, 1067–1077. [Google Scholar] [CrossRef]
- Baysal-Gurel, F.; Liyanapathiranage, P.; Mullican, J. Biofumigation: Opportunities and challenges for control of soilborne diseases in nursery production. Plant Health Prog. 2018, 332–337. [Google Scholar] [CrossRef]
- Auger, J.; Arnault, I.; Diwo-Allain, S.; Ravier, F.; Molia, M.; Pettiti, M. Insecticidal and fungicidal potential of Allium products and substances as biofumigants. Agroindustria 2004, 3, 367–370. [Google Scholar]
- Arnault, I.; Fleurance, C.; Vey, F.; Du Fretay, G.; Auger, J. Use of Alliaceae residues to control soil-borne pathogens. Ind. Crop. Prod. 2013, 49, 265–272. [Google Scholar] [CrossRef]
- Hao, J.; Subbarao, K.V. Effects of broccoli rotations on lettuce drop caused by Sclerotinia minor and on the population density of sclerotia in soil. Plant Dis. 2003, 87, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Villapudua, J.; Munnecke, D.E. Control of cabbage yellow (Fusarium oxysporum f.sp. conglutinans) by solar heating of field soils amended with dry cabbage residues. Plant Dis. 1987, 71, 217–221. [Google Scholar] [CrossRef]
- Lewis, J.A.; Papavizas, G.C. Evolution of volatile sulfur-containing compounds from decomposition of crucifers in soil. Soil Biol. Biochem. 1970, 2, 239–246. [Google Scholar] [CrossRef]
- Lewis, J.A.; Papavizas, G.C. Effect of sulfur-containing volatile compounds and vapours from cabbage decomposition on Aphanomyces Euteiches. Phytopathology 1971, 61, 208–214. [Google Scholar] [CrossRef]
- Lewis, J.A.; Papavizas, G.C. Effect of volatiles from decomposing plant tissues on pigmentation, growth, and survival of Rhizoctonia Solani. Soil Sci. 1974, 118, 156–163. [Google Scholar] [CrossRef]
- Matthiessen, J.N.; Shackleton, M.A. Biofumigation: Environmental impacts on the biological activity of diverse pure and plant-derived isothiocyanates. Pest Manag. Sci. 2005, 61, 1043–1051. [Google Scholar] [CrossRef]
- Brown, P.D.; Morra, M.J. Control of soilborne plant pests using glucosinolate containing plants. Adv. Agron. 1997, 61, 167–231. [Google Scholar]
- Kwerepe, B.C.; Labuschagne, N. Biofumigation and solarization as integrated pest management (IPM) components for the control of root knot nematode (Meloidogyne incognita (Kofoid & White) Chitwoodi) on bambara groundnut (Vigna subterranea (L.) verdc.). UNISWA J. Agric. 2003, 11, 56–63. [Google Scholar]
- Clarkson, J.; Michel, V.; Neilson, R. Focus group in soilborne diseases: Biofumigation for the control of soil-borne diseases. In EIP-AGRI Focus Group on Soil-Borne Diseases: Final Report; Claude, A., Clarkson, J., de Cara, F.M., de Caravalho Franca, S., Debode, J., Elorrieta, M., Furlan, L., Grand, A., Hinarejos Esteve, E., Kos, J., et al., Eds.; EIP-AGRI: Brussels, Belgium, 2015; pp. 1–7. [Google Scholar]
- Omirou, M.; Rousidou, C.; Bekris, F.; Papadopoulou, K.K.; Menkissoglou-Spiroudi, U.; Ehaliotis, C. The impact of biofumigation and chemical fumigation methods on the structure and function of the soil microbial community. Microb. Ecol. 2011, 61, 201–213. [Google Scholar] [CrossRef]
- Paret, M.L.; Cabos, R.; Kratky, B.A.; Alvarez, A.M. Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant Dis. 2010, 94, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Kirkegaard, J.A.; Sarwar, M.; Wong, P.T.W.; Mead, A.; Howe, G.; Newell, M. Field studies on the biofumigation of take-all by Brassica break crops. Aust. J. Agric. Res. 2000, 51, 445–456. [Google Scholar] [CrossRef]
- El-Sharouny, E.E. Effect of different soil amendments on the microbial count correlated with resistance of apple plants towards pathogenic Rhizoctonia solani AG-5. Biotechnol. Biotechnol. Equip. 2015, 29, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Bonanomi, G.; Antignani, V.; Pane, C.; Scala, F. Suppression of soilborne fungal diseases with organic amendments. J. Plant Pathol. 2007, 89, 311–324. [Google Scholar]
- Shafique, H.A.; Sultana, V.; Ehteshamul-Haque, S.; Athar, M. Management of soil-borne diseases of organic vegetables. J. Plant Prot. Res. 2016, 56, 221–230. [Google Scholar] [CrossRef]
- Welke, S.E. The effect of compost extract on the yield of strawberries and the severity of Botrytis cinerea. J. Sustain. Agric. 2005, 25, 57–68. [Google Scholar] [CrossRef]
- Bonanomi, G.; Lorito, M.; Vinale, F.; Woo, S.L. Organic amendments, beneficial microbes, and soil microbiota: Toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 2018, 56, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Allard, S.M.; Walsh, C.S.; Wallis, A.E.; Ottesen, A.R.; Brown, E.W.; Micallef, S.A. Solanum lycopersicum (tomato) hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers. Sci. Total Environ. 2016, 573, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Inderbitzin, P.; Ward, J.; Barbella, A.; Solares, N.; Izyumin, D.; Burman, P.; Chellemi, D.O.; Subbarao, K.V. Soil microbiomes associated with Verticillium wilt suppressive broccoli and chitin amendments are enriched with potential biocontrol agents. Phytopathology 2018, 108, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Ling, N.; Zhu, C.; Xue, C.; Chen, H.; Duan, Y.; Peng, C.; Guo, S.; Shen, Q. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol. Biochem. 2016, 99, 137–149. [Google Scholar] [CrossRef]
- Bonanomi, G.; Gaglione, S.A.; Cesarano, G.; Sarker, T.C.; Pascale, M.; Scala, F.; Zoina, A. Frequent applications of organic matter to agricultural soil increase fungistasis. Pedosphere 2017, 27, 86–95. [Google Scholar] [CrossRef]
- Silber, A.; Levkovitch, I.; Graber, E.R. pH-dependent mineral release and surface properties of cornstraw biochar: Agronomic implications. Environ. Sci. Technol. 2010, 44, 9318–9323. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Thies, J.E.; Rillig, M.C.; Graber, E.R. Biochar effects on the abundance, activity and diversity of the soil biota. In Biochar for Environmental Management: Science and Technology, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Earthscan Books Ltd.: London, UK, 2015; pp. 327–389. [Google Scholar]
- Brtnicky, M.; Dokulilova, T.; Holatko, J.; Pecina, V.; Kintl, A.; Latal, O.; Vyhnanek, T.; Prichystalova, J.; Datta, R. Long-term effects of biochar-based organic amendments on soil microbial parameters. Agronomy 2019, 9, 747. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, A.K.; Graber, E.R.; Elad, Y.; Frenkel, O. Biochar as a management tool for soilborne diseases affecting early stage nursery seedling production. Crop Prot. 2019, 120, 34–42. [Google Scholar] [CrossRef]
- Sullivan, D.M.; Miller, R.O. Compost quality attributes, measurements, and variability. In Compost Utilization in Horticultural Cropping Systems; Stofella, P.J., Kahn, B.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 95–120. [Google Scholar]
- Scheuerell, S.J.; Sullivan, D.M.; Mahaffee, W.F. Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare and Rhizoctonia solani in container media amended with a diverse range of Pacific Northwest compost sources. Phytopathology 2005, 95, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Debode, J.; Elorrieta, M.A.; Grand, A.; Pugliese, M. Focus group in soil borne diseases: Organic Matter, Compost. In EIP-AGRI Focus Group on Soil-Borne Diseases: Final Report; Claude, A., Clarkson, J., de Cara, F.M., de Caravalho Franca, S., Debode, J., Elorrieta, M., Furlan, L., Grand, A., Hinarejos Esteve, E., Kos, J., et al., Eds.; EIP-AGRI: Brussels, Belgium, 2015; pp. 1–7. [Google Scholar]
- Kebrom, T.H.; Woldesenbet, S.; Bayabil, H.K.; Garcia, M.; Gao, M.; Ampim, P.; Awal, R.; Fares, A. Evaluation of phytotoxicity of three organic amendments to collard greens using the seed germination bioassay. Environ. Sci. Pollut. Res. 2019, 26, 5454–5462. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, A.K.; Frenkel, O.; Elad, Y.; Lew, B.; Graber, E.R. Non-monotonic influence of biochar dose on bean seedling growth and susceptibility to Rhizoctonia solani: The “Shifted Rmax-Effect”. Plant Soil 2015, 395, 125–140. [Google Scholar] [CrossRef]
- Frenkel, O.; Jaiswal, A.K.; Elad, Y.; Lew, B.; Kammann, C.; Graber, E.R. The effect of biochar on plant diseases: What should we learn while designing biochar substrates? J. Environ. Eng. Landsc. Manag. 2017, 25, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Termorshuizen, A.J.; van Rijn, E.; van der Gaag, D.; Alabouvette, C.; Chen, Y.; Lagerlöf, J.; Malandrakis, A.A.; Paplomatas, E.J.; Rämert, B.; Ryckeboer, J.; et al. Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response. Soil Biol. Biochem. 2006, 38, 2461–2477. [Google Scholar] [CrossRef]
- De Clercq, D.; Vandesteen, L.; Coosemans, J.; Ryckeboer, J. Use of compost as suppressor of plant diseases. In Resource Recovery and Reuse in Organic Solid Waste Management; Lens, P., Hamelers, B., Hoitink, H., Bidlingmaier, W., Eds.; IWA Publishing: London, UK, 2004; pp. 317–337. [Google Scholar]
- Okon-Levy, N.; Meller, Y.; Haile, Z.M.; Elad, Y.; Rav-David, E.; Jurkevitch, E.; Katan, J. Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathol. 2015, 64, 365–374. [Google Scholar] [CrossRef]
- Blok, W.J.; Lamers, J.G.; Termorshuizen, A.J.; Bollen, A.J. Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 2000, 30, 253–259. [Google Scholar] [CrossRef] [Green Version]
- De Cara, M. Focus group in soilborne diseases: Anaerobic Soil Disinfestation and other techniques of ‘non chemical’ soil disinfestation technique. In EIP-AGRI Focus Group on Soil-Borne Diseases: Final Report; Claude, A., Clarkson, J., de Cara, F.M., de Caravalho Franca, S., Debode, J., Elorrieta, M., Furlan, L., Grand, A., Hinarejos Esteve, E., Kos, J., et al., Eds.; EIP-AGRI: Brussels, Belgium, 2015; pp. 3–5. [Google Scholar] [CrossRef]
- Momma, N.; Kobara, Y.; Uematsu, S.; Kita, S.; Shinmura, A. Development of biological soil disinfestations in Japan. Appl. Microbiol. Biotechnol. 2013, 97, 3801–3809. [Google Scholar]
- Shrestha, U.; Wszelaki, A.L.; Butler, D.M. Introduction to Anaerobic Soil Disinfestation as a Fumigant Alternative. 2014. Available online: https://extension.tennessee.edu/publications/Documents/SP765-A.pdf (accessed on 7 December 2019).
- Strauss, S.L.; Greenhut, R.F.; McClean, A.E.; Kluepfel, D.A. Effect of anaerobic soil disinfestation on the bacterial community and key soilborne phytopathogenic agents under walnut tree-crop nursery conditions. Plant Soil 2017, 415, 493–506. [Google Scholar] [CrossRef]
- Poret-Peterson, A.T.; Albu, S.; McClean, A.E.; Kluepfel, D.A. Shifts in soil bacterial communities as a function of carbon source used during anaerobic soil disinfestation. Front. Environ. Sci. 2019, 6, 160. [Google Scholar] [CrossRef]
- Muramoto, J.; Shennan, C.; Baird, G.; Zavatta, M.; Koike, S.T.; Bolda, M.P.; Daugovish, O.; Dara, S.K.; Klonsky, K.; Mazzola, M.; et al. Optimizing anaerobic soil disinfestation for california strawberries. Acta Hortic. 2014, 1044, 215–220. [Google Scholar] [CrossRef]
- Shennan, C.; Muramoto, J.; Lamers, J.; Mazzola, M.; Rosskopf, E.N.; Kokalis-Burelle, N.; Momma, N.; Butler, D.M.; Kobara, Y.; Pugliese, M. Anaerobic soil disinfestation for soilborne disease control in strawberry and vegetable systems: Current knowledge and future directions. Acta Hortic. 2014, 1044, 165–175. [Google Scholar] [CrossRef]
- Shrestha, U.; Augé, R.M.; Butler, D.M. A meta-analysis of the impact of anaerobic soil disinfestation on pest suppression and yield of horticultural crops. Front. Plant Sci. 2016, 7, 1–20. [Google Scholar] [CrossRef]
- Baker, K.F.; Olsen, C.M. Aerated steam for soil treatment. Phytopathology 1960, 50, 82. [Google Scholar]
- Tanaka, S.; Kobayashi, T.; Iwasaki, K.; Yamane, S.; Maeda, K.; Sakurai, K. Properties and metabolic diversity of microbial communities in soils treated with steam sterilization compared with methyl bromide and chloropicrin fumigations. Soil Sci. Plant Nutr. 2003, 49, 603–610. [Google Scholar] [CrossRef]
- Afek, U.; Orenstein, J. Disinfecting potato tubers using steam treatments. Can. J. Plant Pathol. 2002, 24, 36–39. [Google Scholar] [CrossRef]
- Fennimore, S.A.; Martin, F.N.; Miller, T.C.; Broome, J.C.; Dorn, N.; Greene, I. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 2014, 49, 1542–1549. [Google Scholar] [CrossRef]
- Kokalis-Burelle, N.; Rosskopf, E.N.; Butler, D.M.; Fennimore, S.A.; Holzinger, J. Evaluation of steam and soil solarization for Meloidogyne arenaria control in Florida floriculture crops. J. Nematol. 2016, 48, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, W.A.; Shew, H.D.; Melton, T.A. Sources of inoculum and management for Rhizoctonia solani damping-off on tobacco transplants under greenhouse conditions. Plant Dis. 1997, 81, 604–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minuto, G.; Gilardi, G.; Kejji, S.; Gullino, M.L.; Garibaldi, A. Effect of physical nature of soil and humidity on stream disinfestation. Acta Hortic. 2005, 698, 257–262. [Google Scholar] [CrossRef]
- Luvisi, A.; Panattoni, A.; Materazzi, A. Heat treatments for sustainable control of soil viruses. Agron. Sustain. Dev. 2015, 35, 657–666. [Google Scholar] [CrossRef]
- Samtani, J.B.; Gilbert, C.; Weber, J.B.; Subbarao, K.V.; Goodhue, R.E.; Fennimore, S.A. Effect of steam and solarization treatments on pest control, strawberry yield, and economic returns relative to methyl bromide fumigation. HortScience 2012, 47, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Samtani, J.B.; Ajwa, H.A.; Weber, J.B.; Browne, G.T.; Klose, S.; Hunzie, J.; Fennimore, S.A. Evaluation of non-fumigant alternatives to methyl bromide for weed control and crop yield in California strawberries (Fragaria ananassa L.). Crop Prot. 2011, 30, 45–51. [Google Scholar] [CrossRef]
- Huber, D.M.; Graham, R.D. The role of nutrition in crop resistance and tolerance to diseases. In Mineral Nutrition of Crops: Fundamental Mechanisms and Implications; Rengel, Z., Ed.; Food Products Press: New York, NY, USA, 1999; pp. 169–206. [Google Scholar]
- Huber, D.M.; Watson, R.D. Nitrogen form and plant disease. Annu. Rev. Phytopathol. 1974, 12, 139–165. [Google Scholar] [CrossRef] [PubMed]
- Huber, D.M.; Haneklaus, S. Managing nutrition to control plant disease. Landbauforsch Volkenrode 2007, 57, 313–322. [Google Scholar]
- Myers, D.F.; Campbell, R.N. Lime and the control of clubroot of crucifers: Effects of pH, calcium, magnesium, and their interactions. Phytopathology 1985, 75, 670–673. [Google Scholar] [CrossRef]
- Jones, J.P.; Engelhard, A.W.; Woltz, S.S. Management of Fusarium wilt of vegetables and ornamentals by macro- and micro-element nutrition. p. 18–32. In Soilborne Plant Pathogens: Management of Diseases with Macro- and Micro-Elements; Engelhard, A.W., Ed.; American Phytopathological Society: St. Paul, MN, USA, 1989; p. 217. [Google Scholar]
- Woltz, S.S.; Jones, J.P. Tomato Fusarium wilt control by adjustments in soil fertility. Proc. Fla. State Hortic. Soc. 1973, 86, 157–159. [Google Scholar]
- Woltz, S.S.; Ebgelhard, A.W. Fusarium wilt of chrysanthemum: Effect of nitrogen source and lime on disease development. Phytopathology 1973, 63, 155–157. [Google Scholar] [CrossRef]
- Foster, R.E.; Walker, J.C. Predisposition of tomato to Fusarium wilt. J. Agric. Res. 1947, 74, 165–185. [Google Scholar]
- Dick, J.B.; Tisdale, H.B. Fertilizers in relation to incidence of wilt as affecting a resistant and susceptible variety. Phytopathology 1938, 28, 666–667. [Google Scholar]
- Dordas, C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Hooley, P.; Shaw, D.S. Inheritance of sensitivity to heavy metals in Phytophthora drechsleri. Trans. Br. Mycol. Soc. 1985, 85, 677–682. [Google Scholar] [CrossRef]
- Graham, D.R.; Webb, M.J. Micronutrients and disease resistance and tolerance in plants. In Micronutrients in Agriculture, 2nd ed.; Mortvedt, J.J., Cox, F.R., Shuman, L.M., Welch, R.M., Eds.; Soil Science Society of America, Inc.: Madison, Wisconsin, WI, USA, 1991; pp. 329–370. [Google Scholar]
- Vallance, J.; Deniel, F.; Le Floch, G.; Guerin-Dubrana, L.; Blancard, D.; Rey, P. Pathogenic and beneficial microorganisms in soilless cultures. Agron. Sustain. Dev. 2011. [Google Scholar] [CrossRef]
- Neshev, G. Major soil-borne phytopathogens on tomato and cucumber in Bulgaria, and methods for their management. In Alternatives to Replace Methyl Bromide for Soil-Borne Pest Control in East and Central Europe; Labrada, R., Ed.; FAO, UNEP: Rome, Italy, 2008; pp. 1–14. [Google Scholar]
- Engindeniz, S.; Gul, A. Economic analysis of soilless and soil-based greenhouse cucumber production in Turkey. Sci. Agric. 2008, 66, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N. Does soilless culture have an influence on product quality of vegetables? J. Appl. Bot. Food Qual. 2009, 82, 141–147. [Google Scholar]
- Favrin, R.J.; Rahe, J.E.; Mauza, B. Pythium spp. associated with crown rot of cucumbers in British Columbia greenhouses. Plant Dis. 1988, 72, 683–687. [Google Scholar] [CrossRef]
- Rafin, C.; Tirilly, Y. Characteristics and pathogenicity of Pythium spp. associated with root rot of tomatoes in soilless culture in Brittany, France. Plant Pathol. 1995, 44, 779–785. [Google Scholar] [CrossRef]
- Hutton, D.G.; Forsberg, L.I. Phytophthora root rot in hydroponically grown lettuce. Australas. Plant Pathol. 1991, 20, 76–79. [Google Scholar] [CrossRef]
- Gold, S.E.; Stanghellini, M.E. Effects of temperature on Pythium root rot of spinach grown under hydroponic conditions. Phytopathology 1985, 75, 333–337. [Google Scholar] [CrossRef]
- Stanghellini, M.E.; Rasmussen, S.L. Hydroponics–A solution for zoosporic pathogens. Plant Dis. 1994, 78, 1129–1138. [Google Scholar] [CrossRef]
- Chérif, M.; Tirilly, Y.; Bélanger, R.R. Effect of oxygen concentration on plant growth, lipidperoxidation, and receptivity of tomato roots to Pythium F under hydroponic conditions. Eur. J. Plant Pathol. 1997, 103, 264. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Os, E.; Anseeuw, D.; Havermaet, R.V.; Junge, R. Hydroponic technologies. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G., Eds.; Springer: Cham, Switzerland, 2019; ISBN 978-3-030-15943-6. [Google Scholar] [CrossRef] [Green Version]
- Labrada, R. Non-chemical alternatives to methyl bromide for soil-borne pest control. In Workshop on Non-Chemical Alternatives to Replace Methyl Bromide as a Soil Fumigant-Report; Labrada, R., Ed.; FAO/UNEP: Budapest, Hungary, 2007; pp. 3–14. [Google Scholar]
- Budge, S.P.; Whipps, J.M. Potential for integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology 2001, 91, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matheron, M.E.; Porchas, M. Activity of boscalid, fenhexamid, fluazinam, fludioxonil, and vinclozolin on growth of Sclerotinia minor and S. sclerotiorum and development of lettuce drop. Plant Dis. 2004, 88, 665–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bubici, G.; Amenduni, M.; Colella, C.; D’amico, M.; Cirulli, M. Efficacy of acibenzolar-S-methyl and two strobilurins, azoxystrobin and trifloxystrobin, for the control of corky root of tomato and Verticillium wilt of eggplant. Crop Prot. 2006, 25, 814–820. [Google Scholar] [CrossRef]
- Windels, C.E.; Brantner, J.R. Early-season application of azoxystrobin to sugarbeet for control of Rhizoctonia solani AG 4 and AG 2-2. J. Sugar Beet Res. 2005, 42, 1. [Google Scholar] [CrossRef]
- Sundravadana, S.; Alice, D.; Kuttalam, S.; Samiyappan, R. Azoxystrobin activity on Rhizoctonia solani and its efficacy against rice sheath blight. Tunis. J. Plant Prot. 2007, 2, 79. [Google Scholar]
- Marín, A.; Oliva, J.; Garcia, C.; Navarro, S.; Barba, A. Dissipation rates of cyprodinil and fludioxonil in lettuce and table grape in the field and under cold storage conditions. J. Agric. Food Chem. 2003, 51, 4708–4711. [Google Scholar] [CrossRef]
- Benigni, M.; Bompeix, G. Chemical and biological control of Sclerotinia sclerotiorum in wilt of chicory culture. Pest Manag. Sci. 2010, 66, 1332–1336. [Google Scholar] [CrossRef]
- Wang, M.C.; Gong, M.; Zang, H.B.; Hua, X.M.; Yao, J.; Pang, J.Y.; Yang, Y.H. Effect of methamidophos and urea application on microbial communities in soils as determined by microbial biomass and community level physiological profiles. J. Environ. Sci. Health Part B: Pestic. Food Contam. Agric. Wastes 2006, 41, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Dekker, J. Build-up and persistence of fungicide resistance. In Rational Pesticide Use; Brent, K.J., Atkin, R.K., Eds.; Cambridge University Press: Cambridge, UK, 1987; pp. 153–168. [Google Scholar]
- Mazzola, M.; Freilich, S. Prospects for biological soilborne disease control: Application of indigenous versus synthetic microbiomes. Phytopathology 2017, 107, 256–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loganathan, M.; Sible, G.V.; Maruthasalam, S.; Saravanakumar, D.; Raguchander, T.; Sivakumar, M.; Samiyappan, R. Trichoderma and chitin mixture based bioformulation for the management of head rot (Sclerotinia sclerotiorum (Lib.) de Bary)–root-knot (Meloidogyne incognita Kofoid and White; Chitwood) complex diseases of cabbage. Arch. Phytopathol. Plant Prot. 2010, 43, 1011–1024. [Google Scholar]
- Kowsari, M.; Motallebi, M.; Zamani, R.M. Construction of new GFP-tagged fusants for Trichoderma harzianum with enhanced biocontrol activity. J. Plant Prot. Res. 2014, 54, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Meyer, S.L.F.; Roberts, D.P.; Chitwood, D.J.; Carta, L.K.; Lumsden, R.D.; Mao, W. Application of Burkholderia cepacia and Trichoderma virens, alone and in combination, against Meloidogyne incognita on bell pepper. Nematropica 2001, 31, 75–86. [Google Scholar]
- Dennis, C.; Webster, J. Antagonistic properties of species-groups of Trichoderma. I. Production of nonvolatile antibiotics. Trans. Br. Mycol. Soc. 1971, 57, 25–39. [Google Scholar] [CrossRef]
- Dennis, C.; Webster, J. Antagonistic properties of species-groups of Trichoderma. II. Production of volatile antibiotics. Trans. Br. Mycol. Soc. 1971, 57, 41–48. [Google Scholar] [CrossRef]
- Dennis, C.; Webster, J. Antagonistic properties of species-groups of Trichoderma. III. Hyphal interaction. Trans. Br. Mycol. Soc. 1971, 57, 363–369. [Google Scholar] [CrossRef]
- Tomprefa, N.; Hill, R.; Whipps, J.; McQuilken, M. Some environmental factors affect growth and antibiotic production by mycoparasite Coniothyrium minitans. Biocontrol Sci. Technol. 2011, 21, 721–731. [Google Scholar] [CrossRef]
- Smolińska, U.; Kowalska, B. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum–A review. J. Plant Pathol. 2018, 100, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tu, J.C. Mycoparasitism by Coniothyrium minitans and its effects on sclerotia germination. J. Phytopathol. 1984, 109, 261–268. [Google Scholar] [CrossRef]
- Bitsadze, N.; Siebold, M.; Koopmann, B.; von Tiedemann, A. Single and combined colonization of Sclerotinia sclerotiorum sclerotia by the fungal mycoparasites Coniothyrium minitans and Microsphaeropsis ochracea. Plant Pathol. 2015, 64, 690–700. [Google Scholar] [CrossRef]
- Henis, Y.; Papavizas, G.C. Factrors affecting susceptibility of Sclerotium rolfsii sclerotia to Trichoderma harzianum in natural soil. (Abstr.). Phytopathology 1982, 72, 1010. [Google Scholar]
- Henis, Y.; Papavizas, G.C. Factrors affecting germinability and susceptibility to attack of sclerotia of Sclerotium rolfsii by Trichoderma harzianum in field soil. Phytopathology 1983, 73, 1469–1474. [Google Scholar] [CrossRef]
- Ji, S.H.; Paul, N.C.; Deng, J.X.; Kim, Y.S.; Yun, B.; Yu, S.H. Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant disease. Mycobiology 2013, 41, 234–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wang, J.D.; Liu, C.X.; Yuan, J.H.; Wang, X.J.; Xiang, W.S. A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Nat. Prod. Res. 2014, 28, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Berta, G.; Sampo, S.; Gamalero, E.; Massa, N.; Lemanceau, P. Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur. J. Plant Pathol. 2005, 111, 270–288. [Google Scholar] [CrossRef]
- Pfleger, F.L.; Linderman, R.G. Mycorrhiza and Plant Growth; The American Phytopathological Society Press: St. Paul, MN, USA, 2000; p. 360. [Google Scholar]
- Liu, R.J. Effect of vesicular-arbuscular mycorrhizal fungi on Verticillium wilt of cotton. Mycorrhiza 1995, 5, 293–297. [Google Scholar] [CrossRef]
- Cordier, C.; Gianinazzi, S.; Gianinazzi-Pearson, V. Colonization patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 1996, 185, 223–232. [Google Scholar]
- Pertot, I.; Alabouvette, C.; Esteve, E.H.; Franca, S. Focus group in soil borne diseases: The use of microbial biocontrol agents against soilborne diseases. In EIP-AGRI Focus Group on Soil-Borne Diseases: Final Report; Claude, A., Clarkson, J., de Cara, F.M., de Caravalho Franca, S., Debode, J., Elorrieta, M., Furlan, L., Grand, A., Hinarejos Esteve, E., Kos, J., et al., Eds.; EIP-AGRI: Brussels, Belgium, 2015; pp. 3–5. [Google Scholar] [CrossRef] [Green Version]
- Shafi, J.; Tian, H.; Ji, M. Bacillus species are versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar]
- Lan, X.; Zhang, J.; Zong, Z.; Ma, Q.; Wang, Y. Evaluation of the biocontrol potential of Purpureocillium lilacinum QLP12 against Verticillium dahliae in eggplant. Biomed Res. Int. 2017, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Howell, C.R.; Stipanovic, R.D. Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluterin. Phytopathology 1980, 70, 712–715. [Google Scholar] [CrossRef]
- Chellemi, D.O.; Gamliel, A.; Katan, J.; Subbarao, K.V. Development and deployment of system-based approaches for the management of soilborne plant pathogens. Phytopathology 2016, 106, 216–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levins, R. Perspectives in integrated pest management: From and industrial to an ecological model of pest management. In Ecological Theory and Integrated Pest Management; Kogan, M., Ed.; John Wiley & Sons: New York, NY, USA, 1986; pp. 1–18. [Google Scholar]
- Lewis, W.J.; van Lenteren, J.C.; Phatak, S.C.; Tumlinson, J.H., III. A total system approach to sustainable pest management. Proc. Natl. Acad. Sci. USA 1997, 94, 12243–12248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colla, P.; Gilardi, G.; Gullino, M.L. A review and critical analysis of the european situation of soilborne disease management in the vegetable sector. Phytoparasitica 2012, 40, 515–523. [Google Scholar] [CrossRef]
- Larkin, R.P. Soil health paradigms and implications for disease management. Annu. Rev. Phytopathol. 2015, 53, 199–221. [Google Scholar] [CrossRef]
- Newton, A.C.; Fitt, B.D.L.; Atkins, S.D.; Walters, D.R.; Daniell, T. Pathogenesis, mutualism and parasitism in the trophic space of microbe-plant interactions. Trends Microbiol. 2010, 18, 365–373. [Google Scholar] [CrossRef] [Green Version]
Biocontrol Agents | Target Pathogen | Mode of Action | Reference |
---|---|---|---|
Bacillus spp. (B. subtilis, B. amyloliquefaciens, B. firmus and B. pumilus) | Pythium spp., Fusarium spp., Rhizoctonia solani, Aspergillus flavus | Competition, direct antibiosis, induced resistance | [175,176] |
Coniothyrium minitans | Sclerotinia sclerotiorum and S. trifoliorum | Lysis by chitinase and β-1,3 glucanase | [175] |
Gliocladium catenulatum | Species of Rhizoctonia, Pythium, Phytophthora, Fusarium, Didymella, Botrytis, Verticillium, Alternaria, Cladosporium, Helminthosporium, Penicillium and Plicaria | Toxin production | [175] |
Purpureocillium lilacinum QLP 12 (previously Paecilomyces lilacinus) | Verticillium dahliae, R. solani and nematodes | Parasitism | [177] |
Phlebiopsis gigantea | Heterobasidion annosum | Competition for resources | [175] |
Pseudomonas spp. | Pythium spp. R. solani | Production of antibiotics, siderophores, volatiles | [175,178] |
Pythium oligandrum | Species of Alternaria, Botrytis, Fusarium, Gaeumannonyces, Ophistoma, Phoma, Pseudocercosporella, Pythium, Sclerotinia and Sclerotium | Hyperparasitism | [175] |
Streptomyces spp. | Species of Fusarium, Rhizoctonia, Phytophthora, Pythium, Phytomatotricum, Aphanomyces, Monosprascus, Armillaria, Sclerotinia, Verticillium, Geotrichum | Mycoparasitism | [175] |
Trichoderma spp. (T. atroviride, T. asperellum, T. harzianum, T. viridae, T. gamsii and T. polysporum) | Species of Rhizoctonia, Fusarium, Alternaria and Colletotrichum as well as oomycetes, such as Pythium and Phytophthora | Competition, resistance and hyperparasitism | [175] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panth, M.; Hassler, S.C.; Baysal-Gurel, F. Methods for Management of Soilborne Diseases in Crop Production. Agriculture 2020, 10, 16. https://doi.org/10.3390/agriculture10010016
Panth M, Hassler SC, Baysal-Gurel F. Methods for Management of Soilborne Diseases in Crop Production. Agriculture. 2020; 10(1):16. https://doi.org/10.3390/agriculture10010016
Chicago/Turabian StylePanth, Milan, Samuel C. Hassler, and Fulya Baysal-Gurel. 2020. "Methods for Management of Soilborne Diseases in Crop Production" Agriculture 10, no. 1: 16. https://doi.org/10.3390/agriculture10010016
APA StylePanth, M., Hassler, S. C., & Baysal-Gurel, F. (2020). Methods for Management of Soilborne Diseases in Crop Production. Agriculture, 10(1), 16. https://doi.org/10.3390/agriculture10010016