BLOB-Based AOMs: A Method for the Extraction of Crop Data from Aerial Images of Cotton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agronomic Information
2.1.1. Plot Information, Seed, and Plant Counts
2.1.2. Maximum Canopy Calculations
2.1.3. Maturity and Yield
2.2. UAS Imaging System and Image Processing
UAS Image Processing
2.3. BLOB-Based AOM Creation
2.3.1. Cotton Plant Canopy Isolation
2.3.2. BLOB Identification and Extraction
3. Results and Discussion
3.1. Agronomic Plot-Level Data
3.2. Plot-Level Imagery Analysis
3.3. Maximum Canopy Size and Analysis
3.4. Summary of Plot-Level Image Analysis
3.5. Automated BLOB-Based AOM Creation
3.6. BLOB Color Mapping for Visualization
3.7. BLOB Data Extraction
4. Conclusions
- (1)
- BLOB generation can be automated to a great extent.
- (2)
- The ability to define AOMs based on end-of-season canopy area provides a means to track growth and development from planting to harvest.
- (3)
- The ability to assign and modify AOMs at any point in the season allows flexibility inherent to this method.
- (1)
- Automated AOM selection can produce many AOMs that may require complex data management approaches to utilize.
- (2)
- The number of AOMs that can be extracted from uniform plots is reduced. In uniform plots, the AOMs may be limited to the number of rows.
- (3)
- Between-row canopy closure results in AOMs that cross rows and reduces the scale of resolution.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Standard USDA Disclaimer for Discrimination
References
- Bednarz, C.; Nichols, R.L.; Brownn, S.M. Plant Density Modifications of Cotton Within-Boll Yield Components. Crop Sci. 2006, 46, 2076. [Google Scholar] [CrossRef] [Green Version]
- Wanjura, D.F.; Upchurch, D.R.; Mahan, J.R.; Burke, J.J. Cotton Yield and Applied Water Relationships under Drip Irrigation. Agric. Water Manag. 2002, 55, 217–237. [Google Scholar] [CrossRef]
- Bednarz, C.W.; Bridges, D.C.; Brown, S.M. Analysis of Cotton Yield Stability Across Population Densities. Agron. J. 2000, 92, 128. [Google Scholar] [CrossRef]
- Feng, L.; Mathis, G.; Ritchie, G.; Han, Y.; Li, Y.; Wang, G.; Zhi, X.; Bednarz, C.W. Optimizing Irrigation and Plant Density for Improved Cotton Yield and Fiber Quality. Agron. J. 2014, 106, 1111. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Effects of Different Seeding Rates and Plant Growth Regulators on Early-Plant. J. Cotton. Sci. 2005, 9, 10. [Google Scholar]
- Campanella, R. Testing Components toward a Remote Sensing–based Decision Support System for Cotton Production. Photogram. Eng. Rem. S. 2000, 66, 1219–1227. [Google Scholar]
- Larson, J.A.; Mapp, H.P.; Verhalen, L.M.; Banks, J.C. Adapting a Cotton Model for Decision Analyses: A Yield-Response Evaluation. Agric. Syst. 1996, 50, 145–167. [Google Scholar] [CrossRef]
- Boquet Donald, J. Cotton in Ultra-Narrow Row Spacing. Agron. J. 2005, 97, 279. [Google Scholar] [CrossRef]
- Rosenow, D.T.; Quisenberry, J.E.; Wendt, C.W.; Clark, L.E. Drought Tolerant Sorghum and Cotton Germplasm. Developments in Agricultural and Managed Forest Ecology. Dev. Agric. Manag. For. Ecol. 1983, 12, 207–222. [Google Scholar] [CrossRef]
- Wrather, J.A. Cotton Planting Date and Plant Population Effects on Yield and Fiber Quality Mississippi Delta. J. Cotton. Sci. 2008, 12, 1–7. [Google Scholar]
- Michez, A.; Bauwens, S.; Brostaux, Y.; Hiel, M.; Garré, S. How Far Can Consumer-Grade UAV RGB Imagery Describe Crop Production? A 3D and Multitemporal Modeling Approach Applied to Zea mays. Remote Sens. 2018, 10, 1798. [Google Scholar] [CrossRef] [Green Version]
- Carbonneau, E.P.; Dietrich, J.T. Cost-effective non-metric photogrammetry from consumer-grade UAS: Implications for direct georeferencing of structure from motion photogrammetry. Earth Surf. Process. Landf. 2017, 42, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Malambo, L.; Popescu, S.C.; Murray, S.C.; Putman, E.; Pugh, N.A.; Horne, D.W.; Richardson, G.; Sheridan, R.; Rooney, W.L.; Avant, R.; et al. Multitemporal Field-Based Plant Height Estimation Using 3D Point Clouds Generated from Small Unmanned Aerial Systems High-Resolution Imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 31–42. [Google Scholar] [CrossRef]
- Chen, R.; Chu, J.; Landivar, J.; Yang, C.; Maeda, M. Monitoring cotton (Gossypium hirsutum L.) germination using ultrahigh-resolution UAS images. Precis. Agric. 2018, 19, 161–177. [Google Scholar] [CrossRef]
- Pádua, L.; Adão, T.; Hruška, J.; Sousa, J.J.; Emanuel, P.; Morais, R.; Sous, A. Very high resolution aerial data to support multi-temporal precision agriculture information management. Procedia Comput. Sci. 2017, 21, 407–414. [Google Scholar] [CrossRef]
- Walter, J.; Edwards, J.; Mcdonald, G.; Kuchel, H. Photogrammetry for the estimation of wheat biomass and harvest index. Field Crop. Res. 2018, 216, 165–174. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.; Bradford, J.; Murden, D. Airborne Hyperspectral Imagery and Yield Monitor Data for Mapping Cotton Yield Variability. Precis. Agric. 2004, 5, 445–461. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.; Ustin, S.; Whiting, M. Temporal and Spatial Relationships between Within-Field Yield Variability in Cotton and High-Spatial Hyperspectral Remote Sensing Imagery. Agron. J. 2005, 97, 641–653. [Google Scholar] [CrossRef] [Green Version]
- White, J.W.; Andrade-Sanchez, P.; Gore, M.A.; Bronson, K.F.; Coffelt, T.A.; Conley, M.M.; Feldmann, K.A.; French, A.N.; Heun, J.T.; Hunsaker, D.J.; et al. Field-Based Phenomics Plant Genet. Res. Field Crop. Res. 2012, 133, 101–112. [Google Scholar] [CrossRef]
- Ritchie, G.L.; Sullivan, D.G.; Perry, C.D.; Hook, J.E.; Bednarz, C.W. Preparation of a Low-Cost Digital Camera System for Remote Sensing. Appl. Eng. Agric. 2008, 24, 885–894. [Google Scholar] [CrossRef]
- Roth, L.; Streit, B. Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: An applied photogrammetric approach. Precis. Agric. 2018, 19, 93–114. [Google Scholar] [CrossRef] [Green Version]
- True Story of BLOBs. 23 July 2011. Available online: https://web.archive.org/web/20110723065224/ or http://www.cvalde.net/misc/blob_true_history.htm (accessed on 11 November 2019).
- James, M.; Payton, P. Design and Implementation of a Rainfed Matrix for Cotton. Agriculture 2018, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- OpenDroneMap. Open Source Toolkit for Processing Aerial Imagery. Available online: https://www.opendronemap.org/ (accessed on 13 November 2019).
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2019. Available online: http://qgis.osgeo.org (accessed on 13 November 2019).
- Python Software Foundation. Python Language Reference, Version 3.8. Available online: http://www.python.org (accessed on 13 November 2019).
- Gary, B.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008. [Google Scholar]
- Satoshi, S.; Keiichi, A.B. Topological Structural Analysis of Digitized Binary Images by Border Following. Comput. Vis. Graph. Image Process. 1985, 30, 32–46. [Google Scholar] [CrossRef]
Plot | Plant Date | Plot Area (m2) | Seeds | Plants | Plants (% of Seed) | Days to Maximum Canopy | Maximum Canopy Area (m2) | Final Canopy Area (% of Plot Size) | Days to Maturity | Yield Seed Cotton (kg/ha) |
---|---|---|---|---|---|---|---|---|---|---|
1 | March 15 | 992 | 9920 | 1107 | 11% | 112 | 193 | 19.4 | 140 | 1353 |
2 | April 12 | 866 | 8656 | 1598 | 18% | 108 | 268 | 30.96 | 129 | 1179 |
3 | May 29 | 745 | 7450 | 3067 | 41% | 110 | 189 | 25.43 | 143 | 944 |
Plot Number | Number of BLOBs | Mean BLOB Size (m2) | Minimum BLOB Size (m2) | Maximum BLOB Size (m2) |
---|---|---|---|---|
1 | 317 | 0.93 | 0.12 | 6.95 |
2 | 391 | 0.69 | 0.03 | 9.55 |
3 | 425 | 0.45 | 0.04 | 4.640 |
BLOB | Area (m2/BLOB) | Plants/BLOB | Plants/m2 | Days to Maximum Canopy | Canopy Expansion (cm2/Day/Plant) | Yield (g/BLOB) | Yield/m2 (g) | Yield (g/Plant) |
---|---|---|---|---|---|---|---|---|
1 | 9.55 | 55 | 5.7 | 108 | 16 | 3353 | 351 | 60 |
2 | 2.74 | 19 | 6.9 | 108 | 13 | 1613 | 587 | 85 |
3 | 0.33 | 1 | 3.0 | 102 | 32 | 182 | 552 | 182 |
4 | 2.61 | 11 | 4.2 | 109 | 22 | 1208 | 463 | 110 |
5 | 1.13 | 3 | 2.6 | 117 | 32 | 689 | 610 | 230 |
6 | 0.74 | 1 | 1.4 | 131 | 56 | 340 | 459 | 340 |
7 | 1.14 | 6 | 5.3 | 109 | 17 | 670 | 588 | 112 |
8 | 0.85 | 3 | 3.5 | 108 | 26 | 374 | 440 | 125 |
9 | 1.77 | 11 | 6.2 | 109 | 15 | 757 | 428 | 69 |
10 | 3.02 | 42 | 13.9 | 109 | 7 | 1457 | 482 | 35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, A.; Mahan, J.; Dodge, W.; Payton, P. BLOB-Based AOMs: A Method for the Extraction of Crop Data from Aerial Images of Cotton. Agriculture 2020, 10, 19. https://doi.org/10.3390/agriculture10010019
Young A, Mahan J, Dodge W, Payton P. BLOB-Based AOMs: A Method for the Extraction of Crop Data from Aerial Images of Cotton. Agriculture. 2020; 10(1):19. https://doi.org/10.3390/agriculture10010019
Chicago/Turabian StyleYoung, Andrew, James Mahan, William Dodge, and Paxton Payton. 2020. "BLOB-Based AOMs: A Method for the Extraction of Crop Data from Aerial Images of Cotton" Agriculture 10, no. 1: 19. https://doi.org/10.3390/agriculture10010019
APA StyleYoung, A., Mahan, J., Dodge, W., & Payton, P. (2020). BLOB-Based AOMs: A Method for the Extraction of Crop Data from Aerial Images of Cotton. Agriculture, 10(1), 19. https://doi.org/10.3390/agriculture10010019