Effect of Hot-Air and Freeze-Drying on the Quality Attributes of Dried Pomegranate (Punica granatum L.) Arils During Long-Term Cold Storage of Whole Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Supply and Storage Condition
2.2. Characterisation of Fresh Arils
2.3. Drying Procedure
2.3.1. Freeze-Drying
2.3.2. Hot-Air Drying
2.4. Colour Measurement
2.5. Characterisation of Dried Arils
2.6. Chemical Properties
Total Soluble Solids and Titratable Acidity Determination
2.7. Determination of Phytochemical Properties
2.7.1. Total Phenolic Content (TPC)
2.7.2. Total Anthocyanin Content
2.8. Antioxidant Capacity
2.8.1. Radical-Scavenging Activity (RSA)
2.8.2. Ferric Ion Reducing Antioxidant Power (FRAP)
2.8.3. Stability of RSA and FRAP
2.9. Statistical Analysis
3. Results
3.1. Effect of Cold Storage on Moisture Content of Pomegranate Aril
3.2. TCD of Fresh and Dried Pomegranate Arils
3.3. Total Soluble Solids (TSS) and Titratable Acidity (TA) of Fresh and Dried Arils
3.4. Total Phenolic Content (TPC) and Total Anthocyanin Content (TAC) of Fresh and Dried Arils
3.5. Antioxidant Capacity of Fresh and Dried Arils
3.6. Stability of Antioxidant Capacity (RSA and FRAP) of Dried Pomegranate Arils
3.7. Correlations among Quality Attributes for Dried Arils at 12 Weeks of Cold Storage
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fawole, O.A.; Opara, U.L.; Theron, K.I. Chemical and phytochemical properties and antioxidant activities of three pomegranate cultivars grown in South Africa. Food Bioproc. Technol. 2012, 5, 2934–2940. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Caleb, O.J.; Fawole, O.A.; Opara, U.L. Effects of different maturity stages and growing locations on changes in chemical, biochemical and aroma volatile composition of ‘Wonderful’ pomegranate juice. J. Sci. Food Agric. 2016, 96, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Opara, U.L.; Al-Ani, M.R.; Al-Shuaibi, Y.S. Physico-chemical properties, vitamin C content and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food Bioproc. Technol. 2009, 2, 315–321. [Google Scholar] [CrossRef]
- Fawole, O.A.; Opara, U.L. Effects of storage temperature and duration on physiological responses of pomegranate fruit. Ind. Crop. Prod. 2013, 47, 300–309. [Google Scholar] [CrossRef]
- Pomegranate Association of South Africa (POMASA). Pomegranate Industry Overview. 2018. Available online: https://www.sapomegranate.co.za/statistics-and-information/pomegranate-industry-overview/ (accessed on 26 October 2019).
- Arendse, E.; Fawole, O.A.; Opara, U.L. Influence of storage temperature and duration on postharvest physico-chemical and mechanical properties of pomegranate fruit and arils. J. Food Sci. 2014, 12, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Belay, Z.A.; Caleb, O.J.; Opara, U.L. Impacts of low and super-atmospheric oxygen concentrations on quality attributes, phytonutrient content and volatile compounds of minimally processed pomegranate arils (cv. Wonderful). Postharvest Biol. Technol. 2017, 124, 119–127. [Google Scholar] [CrossRef]
- Caleb, O.J.; Opara, U.L.; Mahajan, P.V.; Manley, M.; Mokwena, L.; Tredoux, A.G.J. Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of pomegranate arils (cv. ‘Acco’ and ‘Herskawitz’). Postharvest Biol. Technol. 2013, 79, 54–61. [Google Scholar] [CrossRef]
- Kingsly, A.R.P.; Singh, D.B. Drying kinetics of pomegranate arils. J. Food Eng. 2007, 79, 741–744. [Google Scholar] [CrossRef]
- Jalikop, S.H.; Tiwari, R.B.; Kumar, S. Amlidana: A new pomegranate hybrid. Indian J. Hortic. 2002, 21, 22–23. [Google Scholar]
- Singh, D.B.; Kinglsley, A.R.P. Effect of convective drying on quality of Anardana. Indian J. Hortic. 2008, 65, 413–416. [Google Scholar]
- Sharma, A.; Thakur, N.S. Effect of different packaging treatments on some chemical constituents of Anardana. Int. J. Farm Sci. 2016, 6, 64–69. [Google Scholar]
- Wu, R.; Frei, B.; Kennedy, J.A.; Zhao, Y. Effects of refrigerated storage and processing technologies on the bioactive compounds and antioxidant capacities of ‘Marion’ and ‘Evergreen’ blackberries. LWT Food Sci. Technol. 2010, 43, 1253–1264. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried Marion berry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Shofian, N.M.; Hamid, A.A.; Osman, A.; Saari, N.; Anwar, F.; Pak Dek, M.S.; Hairuddin, M.R. Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. Int. J. Mol. Sci. 2011, 12, 4678–4692. [Google Scholar] [CrossRef] [Green Version]
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Vega-Galvez, A.; Scala, K.D.; Rodrıguez, K.; Lemus-Mondaca, R.; Miranda, M.; Lopez, J.; Perez-Won, M. Effect of air- drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Lewicki, P.P.; Jakubczyk, E. Effect of hot air temperature on mechanical properties of dried apples. J. Food Eng. 2004, 64, 307–314. [Google Scholar] [CrossRef]
- Holland, D.; Hatib, K.; Bar-Ya’akov, I. Pomegranate: Botany, Horticulture, Breeding. Hort. Rev. 2009, 35, 127–191. [Google Scholar]
- Fawole, O.A.; Atukuri, J.; Arendse, E.; Opara, U.O. Postharvest physiological responses of pomegranate fruit (cv. Wonderful) to exogenous putrescine treatment and effects on physico-chemical and phytochemical properties. Food Sci. Hum. Well. 2020, 9, 146–161. [Google Scholar] [CrossRef]
- Pomegranate Association of South Africa (POMASA). Statistics and Information. 2019. Available online: https://www.sapomegranate.co.za/focus-areas/statistics-and-information-2019/ (accessed on 18 February 2020).
- Pomegranate Association of South Africa (POMASA). Pomegranate Industry Overview. 2016. Available online: https://www.sapomegranate.co.za/wp-content/uploads/2017/08/Pomegranate-Industry-Overview-2016_USE-Repaired.pdf (accessed on 26 October 2019).
- Arendse, E. Determining Optimum Storage Conditions for Pomegranate Fruit (cv. Wonderful). Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2014. [Google Scholar]
- Fawole, O.A.; Opara, U.L. Physicomechanical, phytochemical, volatile compounds and free radical scavenging properties of eight pomegranate cultivars and classification by principal component and cluster analyses. Br. Food J. 2014, 116, 544–567. [Google Scholar] [CrossRef]
- Rickman, J.C.; Barrett, D.M.; Bruhn, C.M. Review: Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J. Sci. Food Agric. 2007, 87, 930–944. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Legua, P.; Lech, K.; Carbonell-Barrachina, Á.A.; Hernández, F. Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method. Food Chem. 2016, 207, 170–179. [Google Scholar] [CrossRef]
- Zhang, M.; Hettiarachchy, N.S.; Horax, R.; Chen, P.; Over, K.F. Effect of maturity stages and drying methods on the retention of selected nutrients and phytochemicals in bitter melon (Momordica charantia) leaf. J. Food Sci. 2009, 74, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Beaudry, C.; Raghavan, G.S.V.; Ratti, C.; Rennie, T.J. Effect of four drying methods on the quality of osmotically dehydrated cranberries. Dry. Technol. 2004, 22, 521–539. [Google Scholar] [CrossRef]
- Wrolstad, R.E. Colour and pigment analyses in fruit products. In Agricultural Experiment Station; Oregon State University Station Bulletin: Corvallis, OR, USA, 1993; Volume 624. [Google Scholar]
- Fawole, O.A.; Opara, U.L. Changes in physical properties, chemical and elemental composition and antioxidant capacity of pomegranate (cv. ‘Ruby’) fruit at five maturity stages. Sci. Hortic. 2013, 150, 37–46. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioproc. Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”. The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Taylor, L.S.; Ferruzzi, M.G.; Mauer, L.J. Kinetic study of catechin stability: Effects of pH, concentration and temperature. J. Agric. Food Chem. 2012, 60, 12531–12539. [Google Scholar] [CrossRef]
- Moldovan, B.; David, L.; Popa, A. Effects of storage temperature on the total phenolic content of Cornelian Cherry (Cornus mas L.) fruits extracts. JABFQ 2016, 89, 208–211. [Google Scholar]
- Artés, F.; Marín, J.G.; Martínez, J.A. Controlled atmosphere storage of pomegranate. Z. Lebensm. Unters. Forsch. 1996, 203, 33–37. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Opara, U.L. Effects of postharvest handling and storage on physiological attributes and quality of pomegranate fruit (Punica granatum L.): A review. Int. J. Postharvest Technol. Innov. 2015, 5, 13–31. [Google Scholar] [CrossRef]
- Konopacka, D.; Plocharski, W.J. Effect of raw material storage time on the quality of apple chips. Dry. Technol. 2001, 19, 559–570. [Google Scholar] [CrossRef]
- Awad, M.A.; Al-Qurashi, A.D.; Elsayed, M.I. Effect of pre-storage salicylic acid and oxalic acid dipping on chilling injury and quality of ‘Taify’ pomegranates during cold storage. J. Food Agric. Environ. 2013, 11, 117–122. [Google Scholar]
- Coklar, H.; Akbulut, M.; Kilinc, S.; Yildirim, A.; Alhassan, I. Effect of freeze, oven and microwave pretreated oven drying on color, browning index, phenolic compounds and antioxidant activity of hawthorn (Crataegus orientalis) fruit. Not. Bot. Horti. Agrobo. 2018, 46, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Yusof, Y.A.; Chin, N.L.; Ibrahim, M.N. Effect of different drying treatments on colour quality and ascorbic acid concentration of guava fruit. Int. Food Res. J. 2016, 23, S155–S161. [Google Scholar]
- Kader, A.A.; Chordas, A.; Elyatem, S.M. Responses of pomegranates to ethylene treatment and storage temperature. Calif. Agric. 1984, 38, 4–15. [Google Scholar]
- Vanhal, I.; Blond, G. Impact of melting conditions of sucrose on its glass transition temperature. J. Agric. Food Chem. 1999, 47, 4285–4290. [Google Scholar] [CrossRef]
- Ashebir, D.; Jezik, K.; Weingartemann, H.; Gretzmacher, R. Change in colour and other fruit quality characteristics of tomato cultivars after hot-air drying at low final-moisture content. Int. J. Food Sci. Nutr. 2009, 60, 308–315. [Google Scholar] [CrossRef]
- Al-Said, F.A.; Opara, U.L.; Al-Yahyai, R.A. Physico-chemical and textural quality attributes of pomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman. J. Food Eng. 2009, 90, 129–134. [Google Scholar] [CrossRef]
- Labbe, M.; Peria, A.; Saenz, C. Antioxidant capacity and phenolic composition of juices from pomegranates stored in refrigeration. In Proceedings of the International Conference on Food innovation, Valencia, Spain, 25–29 October 2010. [Google Scholar]
- Miguel, M.G.; Fontes, C.; Antunes, D.; Neves, A.; Martins, D. Anthocyanin concentration of ‘Assaria’ pomegranate fruits during different cold storage conditions. J. Biomed. Biotechnol. 2004, 5, 338–342. [Google Scholar] [CrossRef] [Green Version]
- Shishehgarha, F.; Makhlouf, J.; Ratti, C. Freeze-drying characteristics of strawberries. Dry. Technol. 2002, 20, 131–145. [Google Scholar] [CrossRef]
- Mejia-Meza, E.I.; Yanez, J.A.; Davies, N.M.; Rasco, B.; Younce, F.; Remsberg, C.M.; Clary, C. Improving nutritional value of dried blueberries (Vaccinium corymbosum L.) combining microwave-vacuum, hot-air drying and freeze drying technologies. Int. J. Food Eng. 2008, 4. [Google Scholar] [CrossRef]
- Tzulker, R.; Glazer, I.; Bar-Ilan, I.; Holland, D.; Aviram, M.; Amir, R. Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. J. Sci. Food Agric. 2007, 55, 9559–9570. [Google Scholar] [CrossRef]
- Çam, M.; Hisil, Y.; Durmaz, G. Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. J. Food Chem. 2009, 112, 721–726. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Mohan, P.S.; Becker, K. Studies on the antioxidant activity of Indian laburnum (Cassia fistula L.): A preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem. 2002, 79, 61–67. [Google Scholar] [CrossRef]
- Golukcu, M. The effects of drying methods, packaging atmosphere and storage time on dried pomegranate aril quality. J. Agric. Sci. 2014, 21, 207–219. [Google Scholar]
- Chong, C.H.; Law, C.L.; Figiel, A.; Wojdyło, A.; Oziembłowski, M. Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. J. Food Chem. 2013, 141, 3889–3896. [Google Scholar] [CrossRef] [PubMed]
- Cano-Lamadrid, M.; Lech, K.; Michalska, A.; Wasilewska, M.; Figiel, A.; Wojdyło, A.; Carbonell-Barrachina, Á.A. Influence of osmotic dehydration pre-treatment and combined drying method on physico-chemical and sensory properties of pomegranate arils, cultivar Mollar de Elche. J. Food Chem. 2017, 232, 306–315. [Google Scholar] [CrossRef]
- Moser, P.; Telis, V.R.N.; de Andrade Neves, N.; García-Romero, E.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chem. 2017, 214, 308–318. [Google Scholar] [CrossRef]
- Mrad, N.D.; Boudhrioua, N.; Kechaou, N.; Courtois, F.; Bonazzi, C. Influence of air-drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food Bioprod. Process. 2012, 90, 433–441. [Google Scholar] [CrossRef]
- Michalczyk, M.; Macura, R.; Matuszak, I. The effect of air-drying, freeze-drying and storage on the quality and antioxidant activity of some selected berries. J. Food Process. Pres. 2009, 33, 11–21. [Google Scholar] [CrossRef]
- Fracassetti, D.; Del Bo’, C.; Simonetti, P.; Gardana, C.; Klimis-Zacas, D.; Ciappellano, S. Effect of time and storage temperature on anthocyanin decay and antioxidant activity in wild blueberry (Vaccinium angustifolium) powder. J. Agric. Food Chem. 2013, 61, 2999–3005. [Google Scholar] [CrossRef] [PubMed]
- Di Scala, K.; Crapiste, G. Drying kinetics and quality changes during drying of red pepper. LWT Food Sci. Technol. 2008, 41, 789–795. [Google Scholar] [CrossRef]
- Devic, E.; Guyot, S.; Daudin, J.D.; Bonazzi, C. Kinetics of polyphenol losses during soaking and drying of cider apples. Food Bioproc. Technol. 2010, 3, 867–877. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, Z.; Bi, J.; Yi, J.; Chen, Q.; Wu, X.; Zhou, M. Degradation kinetics of total phenolic compounds, capsaicinoids and antioxidant activity in red pepper during hot air and infrared drying process. Int. J. Food Sci. Technol. 2016, 51, 842–853. [Google Scholar] [CrossRef]
- Garau, M.C.; Simal, S.; Rossello, C.; Femenia, A. Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chem. 2007, 104, 1014–1024. [Google Scholar] [CrossRef]
Storage Period (Weeks) | Moisture Content (%) | TSS (°Brix) | TA (% Citric Acid) | TSS:TA | TCD |
---|---|---|---|---|---|
0 | 74.7 ± 1.25 a | 13.7 ± 0.25 c | 0.38 ± 0.03 a | 36.7 ± 2.01 c | - |
4 | 71.9 ± 0.92 a | 14.4 ± 0.22 b | 0.33 ± 0.01 ab | 44.2 ± 2.25 c | 5.69 ± 1.18 b |
8 | 67.8 ± 0.73 b | 14.8 ± 0.05 ab | 0.28 ± 0.01 bc | 53.2 ± 2.10 b | 4.31 ± 0.77 b |
12 | 57.4 ± 1.08 c | 15.1 ± 0.06 a | 0.24 ± 0.01 c | 62.5 ± 2.97 a | 11.2 ± 1.43 a |
Drying Method | Storage Period (Weeks) | TCD | TSS (°Brix) | TA (% Citric Acid) | TSS:TA |
---|---|---|---|---|---|
Hot-air drying | 0 | - | 22.2 ± 0.67 a | 3.15 ± 0.17 b | 7.03 ± 0.19 c |
4 | 7.15 ± 0.86 b | 22.7 ± 0.73 a | 3.23 ± 0.01 a | 7.00 ± 0.21 c | |
8 | 1.81 ± 0.71 c | 23.7 ± 0.44 a | 3.13 ± 0.00 bc | 7.55 ± 0.15 c | |
12 | 3.02 ± 1.09 bc | 23.5 ± 0.58 a | 3.10 ± 0.02 c | 7.58 ± 0.22 c | |
Freeze-drying | 0 | - | 17.5 ± 1.00 b | 1.14 ± 0.01 e | 15.4 ± 0.86 a |
4 | 19.6 ± 2.77 a | 15.0 ± 0.29 c | 1.20 ± 0.01 d | 12.5 ± 0.36 b | |
8 | 3.94 ± 1.32 bc | 14.0 ± 0.50 cd | 1.24 ± 0.03 d | 11.3 ± 0.62 b | |
12 | 23.6 ± 2.55 a | 12.8 ± 0.33 d | 1.14 ± 0.01 e | 10.2 ± 0.36 b | |
Drying method (A) | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Storage period (B) | 0.0001 | 0.0910 | 0.0001 | 0.0020 | |
A × B | 0.0001 | 0.0007 | 0.0060 | 0.0002 |
Storage Period (Weeks) | TPC mg GAE/100 mL | TAC Cyanidin-3-Glucoside (mg/100 mL) | RSA mM TE/100 mL | FRAP mM TE/100 mL |
---|---|---|---|---|
0 | 20.9 ± 6.27 c | 6.91 ± 3.11 c | 12.4 ± 1.66 a | 2.36 ± 0.36 a |
4 | 22.1 ± 0.59 b | 7.56 ± 4.88 bc | 10.4 ± 1.66 b | 2.27 ± 0.05 a |
8 | 22.9 ± 0.65 ab | 8.44 ± 1.62 ab | 8.40 ± 1.71 c | 2.09 ± 0.34 b |
12 | 23.9 ± 2.35 a | 8.77 ± 0.37 a | 4.92 ± 1.79 d | 2.07 ± 0.68 b |
Drying Methods | Antioxidant (mM TE/g) | k × 10−3/(Week−1) | t1/2/Week | R2 |
---|---|---|---|---|
Hot-air | RSA | 0.151 | 5.654 | 0.9949 |
FRAP | 0.129 | 7.306 | 0.9949 | |
Freeze-drying | RSA | 0.146 | 5.844 | 0.9031 |
FRAP | 0.143 | 6.597 | 0.8582 |
Variables | TCD | TSS | TA | TSS:TA | TPC | TAC | FRAP | RSA |
---|---|---|---|---|---|---|---|---|
TCD | 1 | |||||||
TSS | 0.052 * | 1 | ||||||
TA | 0.687 ** | −0.555 * | 1 | |||||
TSS:TA | −0.237 ns | 0.941 ** | −0.804 ** | 1 | ||||
TPC | 0.067 ns | 0.946 ** | −0.649 ** | 0.944 ** | 1 | |||
TAC | 0.122 ns | 0.937 ** | −0.612 ** | 0.922 ** | 0.998 ** | 1 | ||
FRAP | −0.132 ns | −0.944 ** | 0.599 * | −0.922 ** | −0.998 ** | −1.000 ** | 1 | |
RSA | 0.430 ns | −0.905 ** | 0.244 ns | −0.749 ** | −0.894 ** | −0.910 ** | 0.919 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adetoro, A.O.; Opara, U.L.; Fawole, O.A. Effect of Hot-Air and Freeze-Drying on the Quality Attributes of Dried Pomegranate (Punica granatum L.) Arils During Long-Term Cold Storage of Whole Fruit. Agriculture 2020, 10, 493. https://doi.org/10.3390/agriculture10110493
Adetoro AO, Opara UL, Fawole OA. Effect of Hot-Air and Freeze-Drying on the Quality Attributes of Dried Pomegranate (Punica granatum L.) Arils During Long-Term Cold Storage of Whole Fruit. Agriculture. 2020; 10(11):493. https://doi.org/10.3390/agriculture10110493
Chicago/Turabian StyleAdetoro, Adegoke Olusesan, Umezuruike Linus Opara, and Olaniyi Amos Fawole. 2020. "Effect of Hot-Air and Freeze-Drying on the Quality Attributes of Dried Pomegranate (Punica granatum L.) Arils During Long-Term Cold Storage of Whole Fruit" Agriculture 10, no. 11: 493. https://doi.org/10.3390/agriculture10110493
APA StyleAdetoro, A. O., Opara, U. L., & Fawole, O. A. (2020). Effect of Hot-Air and Freeze-Drying on the Quality Attributes of Dried Pomegranate (Punica granatum L.) Arils During Long-Term Cold Storage of Whole Fruit. Agriculture, 10(11), 493. https://doi.org/10.3390/agriculture10110493