Dietary Green Seaweed Compromises Overall Feed Conversion Efficiency but not Blood Parameters and Meat Quality and Stability in Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Ingredient Sources
2.2. Diet Formulation and Analyses
2.3. Ethics Approval Statement and Experimental Design
2.4. Feed Intake and Growth Performance
2.5. Blood Collection and Analysis
2.6. Slaughter Procedures, Carcass Traits and Internal Organ Weights
2.7. Meat pH, Color and Shelf Life Determination
2.8. Cooking Loss and Meat Tenderness
2.9. Water Holding Capacity and Drip Loss
2.10. Statistical Analysis
3. Results
3.1. Feed Intake and Physiological Responses
3.2. Carcass Traits and Internal Organ Weights
3.3. Meat Quality and Stability
4. Discussion
4.1. Feed Intake and Physiological Responses
4.2. Carcass Characteristics and Internal Organ Weights
4.3. Meat Quality and Stability
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coneglian, S.L.; Vieira, J.; Berres, D.M. Responses of fast and slow growth broilers fed all vegetable diets with variable ideal protein profiles. Braz. J. Anim. Sci. 2020, 39, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Mnisi, C.M.; Mlambo, V. Growth performance, hematology, serum-biochemistry and meat quality parameters of Japanese quails (Coturnix coturnix japonica) fed canola meal- based diets. Anim. Nutr. 2018, 4, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Angel, R.; Dalloul, R.A.; Doerr, J. Performance of broiler chickens fed diets supplemented with a direct-fed microbial. Poult. Sci. 2005, 84, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Barba, F.J.; Kovačević, D.B.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing and safety. Ann. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nhlane, L.T.; Mnisi, C.M.; Madibana, M.J.; Mlambo, V. Nutrient digestibility, growth performance and blood indices of bushveld chickens fed seaweed-containing diets. Animals 2020, 10, 1296. [Google Scholar] [CrossRef]
- DAFF. Agriculture, Forestry and Fisheries—Integrated Growth and Development Plan; Department of Agriculture, Forestry and Fisheries: Pretoria, South Africa, 2012.
- Troell, M.; Robertson-Andersson, D.; Anderson, R.J.; Bolton, J.J.; Maneveldt, G.W.; Halling, C. Abalone farming in South Africa: An overview with perspectives on kelp resources, abalone feed, potential for on-farm seaweed production and socioeconomic importance. Aquaculture 2006, 257, 266–281. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, T.; O’Doherty, J.V. Marine macroalgal extracts to maintain gut homeostasis in the weaning piglet. Domest. Anim. Endocrinol. 2016, 56, S84–S89. [Google Scholar] [CrossRef]
- Evans, F.D.; Critchley, A.T. Seaweeds for animal production use. J. Appl. Phycol. 2014, 26, 891–899. [Google Scholar] [CrossRef]
- Gullón, B.; Gagaoua, M.; Barba, F.J.; Gullón, P.; Zhang, W.; Lorenzo, J.M. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci. Technol. 2020, 100, 1–18. [Google Scholar] [CrossRef]
- Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T.A.P. Impact of enzyme- and ultrasound-assisted extraction methods on biological properties of red, brown and green seaweeds from the central west coast of Portugal. J. Agric. Food Chem. 2015, 63, 3177–3188. [Google Scholar] [CrossRef]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent trends in the use of natural antioxidants for meat and meat products. Compr. Rev. Food Sci. 2015, 14, 796–812. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.P.P.; Trindade, M.A.; Lorenzo, J.M.; De Melo, M.P. Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Sci. 2018, 137, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Cofrades, S.; Benedí, J.; Garcimartin, A.; Sánchez-Muniz, F.J.; Jimenez-Colmenero, F.A. Comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Res. Int. 2017, 99, 1084–1094. [Google Scholar] [CrossRef] [PubMed]
- Kumanda, C.; Mlambo, V.; Mnisi, C.M. From landfills to the dinner table: Red grape pomace waste as a nutraceutical for broiler chickens. Sustainability 2019, 11, 1931. [Google Scholar] [CrossRef] [Green Version]
- Grau, R.; Hamm, R. About the water-binding capacity of the mammalian muscle. II. Commun. Z. Lebensm. Unters. Brisk. 1957, 105, 446. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, S.; Samaraweera, H.; Lee, E.J.; Ahn, D.U. Improving functional value of meat products. Meat Sci. 2010, 86, 15–31. [Google Scholar] [CrossRef]
- SAS. Users Guide; Version 9.3; Statistical Analyses System Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Yuan, Y.V.; Walsh, N.A. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem. Toxicol. 2006, 44, 1144–1150. [Google Scholar] [CrossRef]
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Ijaz, A.; Sohail, A. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Okab, A.B.; Aljumaah, R.S.; Samara, E.M.; Abdoun, K.A.; Al Haidary, A.A. Nutritional value of green seaweed (Ulva) for broiler chickens. Ital. J. Anim. Sci. 2013, 12, 28. [Google Scholar] [CrossRef]
- El-Deek, A.A.; Brikaa, M.A. Nutritional and biological evaluation of marine seaweed as a feedstuff and as a pellet binder in poultry diet. Int. J. Poult. Sci. 2009, 8, 875–881. [Google Scholar] [CrossRef]
- Verheyen, A.J.M.; Maes, D.G.D.; Mateusen, B.; Deprez, P.; Janssens, G.P.J.; de Lange, L. Serum biochemical reference values for gestating and lactating sows. Vet. J. 2007, 174, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Animashahun, R.A.; Omoikhoje, S.O.; Bamgbose, A.M. Haematological and biochemical indices of weaner rabbits fed concentrates and Syndrella nodiflora forage supplement. In Proceedings of the 11th Animal Science Association of Nigeria Annual Conference, Ibadan, Nigeria, 18 September 2006; pp. 29–32. [Google Scholar]
- Van Niekerk, R.F.; Mnisi, C.M.; Mlambo, V. Polyethylene glycol inactivates red grape pomace condensed tannins for broiler chickens. Br. Poult. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kulshreshtha, G.; Rathgeber, B.; Stratton, G.; Thomas, N.; Evans, F.; Critchley, A. Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality and gut microbiota of layer hens. Poult. Sci. 2014, 93, 2991–3001. [Google Scholar] [CrossRef] [PubMed]
- Nikolakakis, I.; Granitsiotis, M.; Dotas, V.; Kargopoulos, A.; Imamidou, A.; Nikokiris, P. Effect of field pea seeds in broilers’ diets. Anim. Sci. J. 2005, 34, 51–64. [Google Scholar]
- Mushtaq, T.; Mirza, M.A.; Athar, M.; Hooge, D.M.; Ahmad, T.; Ahmad, G. Dietary sodium and chloride for twenty-nine to forty-two-day-old broiler chickens at constant electrolyte balance under subtropical summer conditions. J. Appl. Poult. Res. 2007, 16, 161–170. [Google Scholar] [CrossRef]
- Brenes, J.C.; Rodríguez, O.; Fornaguera, J. Differential effect of environment enrichment and social isolation on depressive-like behaviour, spontaneous activity and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum. Pharmacol. Biochem. Behav. 2008, 89, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Muchenje, V.; Hugo, A.; Dzama, K.; Chimonyo, M.; Raats, J.G.; Strydom, P.E. Cholesterol levels and fatty acid profiles of beef from three cattle breeds raised on natural pasture. J. Food Compost. Anal. 2009, 22, 354–358. [Google Scholar] [CrossRef]
- Barbut, S. Problem of pale soft exudative meat in broiler chickens. Br. Poult. Sci. 1997, 38, 355–358. [Google Scholar] [CrossRef]
- Dyubele, N.L.; Muchenje, V.; Nkukwana, T.T.; Chimonyo, M. Consumer sensory characteristics of broiler and indigenous chicken meat: A South African example. Food Qual. Prefer. 2010, 21, 815–819. [Google Scholar] [CrossRef]
- Roohinejad, S.; Koubaa, M.; Barba, F.J.; Saljoughian, S.; Amid, M.; Greiner, R. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Res. Int. 2017, 99, 1066–1083. [Google Scholar] [CrossRef]
Ingredients | Grower (14–28 d) | Finisher (29–49 d) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SW0 | SW20 | SW25 | SW30 | SW35 | SW0 | SW20 | SW25 | SW30 | SW35 | |
Seaweed (Ulva sp.) | 0 | 20.0 | 25.0 | 30.0 | 35.0 | 0 | 20.0 | 25.0 | 30.0 | 35.0 |
Yellow maize 8.0% | 630.3 | 643.7 | 647.3 | 648.1 | 648.8 | 636.3 | 633.2 | 635.7 | 637.4 | 646.3 |
Extruded full fat soya | 120.0 | 81.10 | 61.49 | 46.59 | 31.88 | 120.0 | 120.0 | 120.0 | 120.0 | 34.57 |
Oil Crude Soya 47% | 176.6 | 192.8 | 203.0 | 207.5 | 211.9 | 150.6 | 163.4 | 160.0 | 156.8 | 218.1 |
Oil Crude Sunflower 36% | 30.00 | 30.00 | 31.64 | 36.60 | 41.51 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 |
Limestone | 11.94 | 9.66 | 9.07 | 8.48 | 7.89 | 11.16 | 8.82 | 8.26 | 7.70 | 7.05 |
Monocalcium phosphate | 7.80 | 8.05 | 8.14 | 8.21 | 8.28 | 5.65 | 5.66 | 5.70 | 5.75 | 5.99 |
Salt-fine | 2.56 | 0.56 | 0.06 | 0 | 0 | 2.55 | 0.57 | 0.07 | 0 | 0 |
Sodium bicarbonate | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
DL-Methionine | 2.82 | 2.88 | 2.88 | 2.90 | 2.92 | 2.08 | 2.27 | 2.29 | 2.32 | 2.29 |
L-Threonine | 0.67 | 0.84 | 0.88 | 0.93 | 0.98 | 0.31 | 0.47 | 0.52 | 0.57 | 0.58 |
Lysine HCL | 2.72 | 3.01 | 3.12 | 3.26 | 3.40 | 1.81 | 1.59 | 1.69 | 1.80 | 1.85 |
Crude soya oil mixer | 7.16 | 0 | 0 | 0 | 0 | 15 | 7.18 | 3.827 | 0.76 | 11.39 |
Lignobond | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Grower premix | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 0 | 0 | 0 | 0 | 0 |
Finisher premix | 0 | 0 | 0 | 0 | 0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
AxtraPhy10000 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Salinomycin 12% | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Prime gluten 60 | 0 | 0 | 0 | 0 | 0 | 17.62 | 0 | 0 | 0 | 0 |
Zinc Bacitracin | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
Grower (14–28 d) | Finisher (29–49 d) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SW0 | SW20 | SW25 | SW30 | SW35 | SW0 | SW20 | SW25 | SW30 | SW35 | |
Dry Matter | 884.8 | 882.5 | 882.1 | 881.8 | 881.6 | 885.0 | 883.0 | 882.3 | 881.7 | 882.3 |
1 ME (MJ/kg) | 12.92 | 12.92 | 12.92 | 12.92 | 12.92 | 13.26 | 13.26 | 13.26 | 13.26 | 13.26 |
Crude protein | 192.2 | 192.2 | 192.2 | 192.2 | 192.2 | 189.5 | 189.5 | 189.5 | 189.5 | 189.5 |
AP Lysine | 10.65 | 10.65 | 10.65 | 10.65 | 10.65 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 |
AP Methionine | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 4.98 | 4.98 | 4.98 | 4.98 | 4.98 |
AP Threonine | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 |
Crude fat | 56.16 | 43.35 | 40.23 | 37.87 | 35.54 | 64.17 | 56.7 | 53.62 | 50.78 | 46.87 |
Crude fiber | 35.45 | 44.0 | 46.23 | 49.05 | 51.87 | 34.83 | 44.5 | 46.8 | 49.09 | 49.88 |
Ash | 25.12 | 30.92 | 32.39 | 33.91 | 35.44 | 24 | 30.87 | 32.32 | 33.77 | 35.16 |
Avail. phosphorus | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 |
Calcium | 8.4 | 8.4 | 8.4 | 8.4 | 8.4 | 7.6 | 7.6 | 7.6 | 7.6 | 7.6 |
Chloride | 2.4 | 2.71 | 2.79 | 3.15 | 3.54 | 2.26 | 2.49 | 2.58 | 2.92 | 3.29 |
Sodium | 1.8 | 1.8 | 1.8 | 1.97 | 2.16 | 1.8 | 1.8 | 1.8 | 1.96 | 2.16 |
Total phosphorus | 5.48 | 5.46 | 5.46 | 5.46 | 5.47 | 4.95 | 4.97 | 4.97 | 4.97 | 4.94 |
1 Diets | 2 SEM | p Value | ||||||
---|---|---|---|---|---|---|---|---|
CON | SW20 | SW25 | SW30 | SW35 | Linear | Quadratic | ||
Initial BW (g/bird) | 157.0 | 160.8 | 157.2 | 159.1 | 162.3 | 5.18 | 0.475 | 0.863 |
Final BW (g/bird) | 1390.3 | 1379.1 | 1301.5 | 1339.2 | 1287.4 | 61.29 | 0.274 | 0.721 |
Overall FI (g/bird) | 2311.8 | 2424.6 | 2313.8 | 2397.8 | 2286.0 | 74.75 | 0.846 | 0.277 |
Overall BWG (g/bird) | 1233.3 | 1218.2 | 1144.3 | 1180.1 | 1125.1 | 61.11 | 0.249 | 0.710 |
Overall FCE (g:g) | 0.533 | 0.502 | 0.493 | 0.490 | 0.490 | 0.014 | 0.019 | 0.586 |
1 Diets | 2 SEM | p Value | ||||||
---|---|---|---|---|---|---|---|---|
3 Blood indices | SW0 | SW20 | SW25 | SW30 | SW35 | Linear | Quadratic | |
Hematology | ||||||||
Hematocrits (%) | 32.02 | 32.17 | 31.67 | 31.42 | 33.0 | 0.884 | 0.781 | 0.481 |
Heterophils (%) | 7.43 | 11.97 | 12.37 | 10.45 | 14.16 | 3.252 | 0.181 | 0.872 |
WCC (×109/L) | 11.03 | 16.27 | 16.75 | 13.66 | 18.36 | 2.898 | 0.124 | 0.759 |
Platelets (×109/L) | 7.87 | 10.15 | 10.05 | 8.24 | 11.06 | 2.040 | 0.401 | 0.891 |
Lymphocytes (×109/L) | 3.29 | 2.19 | 2.91 | 2.97 | 2.46 | 0.438 | 0.028 | 0.042 |
Monocytes (×109/L) | 1.02 | 1.02 | 0.81 | 0.81 | 0.96 | 0.332 | 0.077 | 0.601 |
Serum Biochemistry | ||||||||
Glucose (mmol/L) | 6.34 | 7.28 | 4.43 | 6.438 | 5.89 | 0.742 | 0.839 | 0.549 |
SDMA (µg/dL) | 3.92 | 4.92 | 6.93 | 4.63 | 5.52 | 1.523 | 0.707 | 0.409 |
Creatinine (µmol/L) | 24.5 | 31.49 | 33.77 | 24.75 | 54.83 | 11.89 | 0.177 | 0.064 |
Albumin (g/L) | 32.42 | 43.3 | 54.58 | 37.25 | 53.8 | 9.836 | 0.866 | 0.954 |
Lipase (U/L) | 3.56 | 5.46 | 4.29 | 3.75 | 5.59 | 0.664 | 0.921 | 0.053 |
BUN/CREA | 27.63 | 14.33 | 23.71 | 27.33 | 24.19 | 5.988 | 0.987 | 0.376 |
Phosphorus (mmol/L) | 4.13 | 2.55 | 4.37 | 4.13 | 3.62 | 0.485 | 0.681 | 0.359 |
Calcium (mmol/L) | 76.82 | 117.4 | 82.58 | 104.5 | 92.58 | 11.56 | 0.132 | 0.484 |
Total protein (g/L) | 97.5 | 58.08 | 94.67 | 83.08 | 88.92 | 10.85 | 0.499 | 0.141 |
GGT (U/L) | 320.5 | 206.6 | 295.8 | 330.1 | 328.8 | 61.53 | 0.837 | 0.640 |
Amylase (U/L) | 303.2 | 441.3 | 471.0 | 331.5 | 346.2 | 0.254 | 0.492 | 0.838 |
1 Diets | 2 SEM | p Value | ||||||
---|---|---|---|---|---|---|---|---|
SW0 | SW20 | SW25 | SW30 | SW35 | Linear | Quadratic | ||
Carcass yield (%) | 69.48 | 71.22 | 70.17 | 69.21 | 71.18 | 1.745 | 0.693 | 0.869 |
3 HCW (g) | 967.3 | 976.9 | 912.4 | 929.3 | 917.9 | 47.79 | 0.378 | 0.748 |
4 CCW (g) | 952.4 | 957.7 | 895.3 | 913.3 | 889.7 | 47.65 | 0.306 | 0.675 |
Breast | 21.13 | 23.19 | 20.43 | 21.69 | 23.92 | 1.064 | 0.268 | 0.531 |
Drumstick | 6.41 | 6.62 | 6.13 | 6.43 | 6.87 | 0.270 | 0.514 | 0.353 |
Wing | 6.12 | 5.81 | 5.61 | 6.11 | 6.27 | 0.252 | 0.879 | 0.067 |
Thigh | 7.47 | 7.04 | 6.82 | 7.39 | 7.56 | 0.371 | 0.959 | 0.135 |
Gizzard | 2.64 | 2.64 | 2.567 | 2.76 | 2.61 | 0.111 | 0.895 | 0.947 |
Proventriculus | 0.67 | 0.65 | 0.65 | 0.9 | 0.76 | 0.101 | 0.307 | 0.469 |
Spleen | 0.24 | 0.21 | 0.22 | 0.21 | 0.17 | 0.016 | 0.020 | 0.464 |
Liver | 3.57 | 3.39 | 3.48 | 3.58 | 3.59 | 0.148 | 0.894 | 0.265 |
Duodenum | 1.97 | 1.71 | 2.02 | 2.13 | 2.01 | 0.269 | 0.736 | 0.539 |
Jejunum | 3.35 | 2.39 | 3.41 | 3.65 | 3.39 | 0.872 | 0.827 | 0.504 |
Ileum | 3.75 | 3.08 | 2.14 | 2.97 | 3.12 | 0.825 | 0.419 | 0.444 |
Large intestine | 0.65 | 1.17 | 0.88 | 0.84 | 0.49 | 0.249 | 0.914 | 0.052 |
Caeca | 1.04 | 1.05 | 1.15 | 1.16 | 1.12 | 0.054 | 0.141 | 0.928 |
1 Diets | 2 SEM | p Value | ||||||
---|---|---|---|---|---|---|---|---|
SW0 | SW20 | SW25 | SW30 | SW35 | Linear | Quadratic | ||
pH | 6.22 | 6.09 | 6.36 | 6.25 | 6.33 | 0.091 | 0.361 | 0.349 |
L* (lightness) | 51.90 | 55.04 | 51.39 | 53.13 | 51.45 | 1.100 | 0.906 | 0.105 |
a* (redness) | 1.03 | 0.98 | 0.92 | 0.95 | 1.16 | 0.153 | 0.849 | 0.336 |
b* (yellowness) | 10.08 | 9.41 | 10.11 | 9.92 | 10.28 | 0.505 | 0.839 | 0.313 |
Cooking loss (%) | 25.40 | 24.45 | 23.54 | 25.11 | 24.67 | 1.171 | 0.621 | 0.469 |
Shear force (N) | 9.33 | 9.22 | 9.63 | 9.03 | 7.55 | 1.060 | 0.388 | 0.286 |
Drip loss (%) | 7.87 | 7.45 | 7.93 | 7.58 | 8.55 | 0.667 | 0.671 | 0.342 |
3 WHC (%) | 12.22 | 12.33 | 16.66 | 12.05 | 13.10 | 0.919 | 0.451 | 0.278 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matshogo, T.B.; Mnisi, C.M.; Mlambo, V. Dietary Green Seaweed Compromises Overall Feed Conversion Efficiency but not Blood Parameters and Meat Quality and Stability in Broiler Chickens. Agriculture 2020, 10, 547. https://doi.org/10.3390/agriculture10110547
Matshogo TB, Mnisi CM, Mlambo V. Dietary Green Seaweed Compromises Overall Feed Conversion Efficiency but not Blood Parameters and Meat Quality and Stability in Broiler Chickens. Agriculture. 2020; 10(11):547. https://doi.org/10.3390/agriculture10110547
Chicago/Turabian StyleMatshogo, Tumisang Ben, Caven Mguvane Mnisi, and Victor Mlambo. 2020. "Dietary Green Seaweed Compromises Overall Feed Conversion Efficiency but not Blood Parameters and Meat Quality and Stability in Broiler Chickens" Agriculture 10, no. 11: 547. https://doi.org/10.3390/agriculture10110547
APA StyleMatshogo, T. B., Mnisi, C. M., & Mlambo, V. (2020). Dietary Green Seaweed Compromises Overall Feed Conversion Efficiency but not Blood Parameters and Meat Quality and Stability in Broiler Chickens. Agriculture, 10(11), 547. https://doi.org/10.3390/agriculture10110547