Drivers of Mechanization in Cotton Production in Benin, West Africa
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Theoretical Perspectives on the Drivers of Farm Mechanization
2.2. Theoretical Models
3. Estimation Procedure
3.1. Empirical Model Test of Hypotheses
3.2. Research Area
3.3. Sampling Method and Sample Size
3.4. Data Collection
3.5. Descriptive Statistics of the Variables
4. Results
4.1. Mechanization Status in Cotton Production
4.2. Drivers of Farm Mechanization
4.3. Marginal Effects of Drivers of Farm Mechanization
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sims, B.; Hilmi, M.; Kienzle, J. Agricultural mechanization. A key input for sub-Saharan African smallholders. Integr. Crop Manag. 2016, 23, 1–42. [Google Scholar]
- Wang, X.; Yamauchi, F.; Huang, J. Rising wages, mechanization, and the substitution between capital and labor: Evidence from small scale farm system in China. Agric. Econ. 2016, 47, 309–317. [Google Scholar] [CrossRef]
- Yamauchi, F. Rising real wages, mechanization and growing advantage of large farms: Evidence from Indonesia. Food Policy 2016, 58, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Huang, Z.; Zhang, X.; Reardon, T. The rapid rise of cross-regional agricultural mechanization services in China. Am. J. Agric. Econ. 2013, 95, 1245–1251. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, W.; Jetté-Nantel, S.; Tian, Z. The influence of labor price change on agricultural machinery usage in Chinese agriculture. Can. J. Agric. Econ. 2013, 62, 219–243. [Google Scholar] [CrossRef]
- Diao, X.; Cossar, F.; Houssou, N.; Kolavalli, S. Mechanization in Ghana: Emerging demand, and the search for alternative supply models. Food Policy 2014, 48, 168–181. [Google Scholar] [CrossRef] [Green Version]
- Takeshima, H.; Nin-Pratt, A.; Diao, X. Mechanization and agricultural technology evolution, agricultural intensification in sub-Saharan Africa: Typology of agricultural mechanization in Nigeria. Am. J. Agric. Econ. 2013, 95, 1230–1236. [Google Scholar] [CrossRef] [Green Version]
- De Janvry, A.; Sadoulet, E.; Kyle, E.; Darr, M. L’adoption des technologies agricoles: Quelles leçons tirer des expérimentations de terrain? RED 2015, 4, 129–153. [Google Scholar] [CrossRef]
- Atidegla, S.C. Agricultural mechanization/motorization in Benin: Different initiatives, challenges and prospective within the period 1930–2016. Int. J. Curr. Res. 2019, 11, 5121–5126. [Google Scholar] [CrossRef]
- Mounirou, I. Agricultural Mechanization as an Expansion Factor of Cropland in Benin: The Case of Tractors. Sustain. Agric. Res. 2018, 7, 1–10. [Google Scholar] [CrossRef]
- Zokpodo, K.L.B.; Dahou, M.N.; Dayou, D.E. Analyse des déterminants liés au fonctionnement des centres d’exploitation des machines agricoles (CEMA) au Bénin. Ann. Sci. Agron. 2017, 21, 181–202. [Google Scholar]
- Kirui, K.O.; von Braun, J. Mechanization in African Agriculture: A Continental Overview on Patterns and Dynamics; ZEF Working Paper 169; Center for Development Research (ZEF), University of Bonn: Bonn, Germany, 2018. [Google Scholar]
- Bonou-zin, D.C.R.; Allali Khalil, F.A.; Yabi, A.J. Environmental efficiency and economic performance of cotton production in Benin: What relationship? JAES 2019, 8, 161–175. [Google Scholar] [CrossRef]
- INSAE. Les Echanges Extérieurs du Bénin en 2019, Grands Traits du Commerce Extérieur au Bénin; INSAE: Cotonou, Bénin, 2020. [Google Scholar]
- MAEP. Plan Stratégique de Développement du Secteur Agricole (PSDSA) 2025 et Plan National D’investissements Agricoles et de Sécurité Alimentaire et Nutritionnelle PNIASAN 2017–2021; MAEP: Cotonou, Bénin, 2017. [Google Scholar]
- Pingali, P.; Bigot, Y.; Binswanger, P.H. Agricultural Mechanization and the Evolution of Farming System in Sub-Saharan Africa; The Johns Hopkins University Press: Washington, DC, USA, 1987. [Google Scholar]
- Binswanger, P.H. Agricultural mechanization: A comparative historical perspective. World Bank Res. Obs. 1986, 1, 27–56. [Google Scholar] [CrossRef]
- Ruttan, W.V. Induced innovation and agricultural development. Food Policy 1977, 2, 196–216. [Google Scholar] [CrossRef] [Green Version]
- Rijk, G.A. Agricultural mechanization policy and strategy: The case of Thailand. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 1989. [Google Scholar]
- Zhang, X.; Yang, J.; Reardon, T. Mechanization Outsourcing Clusters and Division of Labor in Chinese Agriculture. China Econ. Rev. 2017, 43, 184–195. [Google Scholar] [CrossRef]
- Takahashi, K.; Otsuka, K. The increasing importance of nonfarm income and the changing use of labor and capital in rice farming: The case of central luzon, 1979–2003. Agric. Econ. 2009, 40, 231–242. [Google Scholar] [CrossRef]
- Aryal, J.P.; Rahutb, D.B.; Maharjanc, S.; Erenstein, O. Understanding factors associated with agricultural mechanization: A Bangladesh case. World Dev. Perspect. 2019, 13, 1–19. [Google Scholar] [CrossRef]
- Mottaleb, A.K.; Krupnik, J.T.; Erenstein, O. Factors associated with small-scale agricultural machinery adoption in Bangladesh: Census findings. J. Rural Stud. 2016, 46, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Mottaleb, A.K.; Rahut, B.D.; Ali, A.; Gérard, B.; Erenstein, O. Enhancing smallholder access to agricultural machinery services: Lessons from Bangladesh. J. Dev. Stud. 2017, 53, 1502–1517. [Google Scholar] [CrossRef] [Green Version]
- Kirui, K.O. The Agricultural Mechanization in Africa: Micro-Level Analysis of State Drivers and Effects; ZEF-Discussion Papers on Development Policy 272; Center for Development Research (ZEF), University of Bonn: Bonn, Germany, 2019. [Google Scholar]
- Daum, T.; Birner, R. Agricultural mechanization in Africa: Myths, realities and an emerging and research agenda. Glob. Food Sec. 2020, 26, 1–10. [Google Scholar] [CrossRef]
- Makate, C.; Makate, M. Interceding role of institutional extension services on the livelihood impacts of drought tolerant maize technology adoption in Zimbabwe. Technol. Soc. 2019, 56, 126–133. [Google Scholar] [CrossRef]
- Doss, R.C. Analyzing technology adoption using microstudies: Limitations, challenges, and opportunities for improvement. Agric. Econ. 2006, 34, 207–219. [Google Scholar] [CrossRef]
- Otsuka, K.; Liu, Y.; Yamauchi, F. The future of small farms in Asia. Dev. Policy Rev. 2016, 34, 441–461. [Google Scholar] [CrossRef]
- Grabowski, R. Agriculture, Mechanization and Land Tenure. J. Dev. Stud. 1990, 27, 43–53. [Google Scholar] [CrossRef]
- Asiama, O.K.; Bennett, M.R.; Zevenbergen, A.J. Land consolidation on Ghana’s rural customary lands: Drawing from The Dutch, Lithuanian and Rwandan experiences. J. Rural Stud. 2017, 56, 87–99. [Google Scholar] [CrossRef]
- Pingali, P. Agricultural mechanization: Adoption patterns and economic impact. Handb. Agric. Econ. 2007, 3, 2779–2805. [Google Scholar] [CrossRef]
- Gosh, K.B. Determinants of Farm Mechanization in Modern Agriculture: A Case Study of Burdwan Districts of West Bengal. Int. J. Agric. Res. 2010, 5, 1107–1115. [Google Scholar] [CrossRef]
- Rasouli, F.; Sadighi, H.; Minaei, S. Factors Affecting Agricultural Mechanization: A Case Study on Sunflower Seed Farms in Iran. J. Agric. Sci. Technol. 2009, 11, 39–48. [Google Scholar]
- Kuwornu, K.M.J.; Apios, K.E.; Kwadzo, T.-M.G. Access and intensity of mechanization: Empirical evidence of rice farmers in Southern Ghana. Braz. Arch. Biol. Technol. 2017, 60, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Awotide, A.B.; Karimov, A.A.; Diagne, A. Agricultural technology adoption, commercialization and smallholder rice farmers’ welfare in rural Nigeria. Agric. Food Econ. 2016, 4, 1–24. [Google Scholar] [CrossRef]
- Paudel, P.G.; Gartaula, H.; Rahut, B.D.; Craufurd, P. Gender differentiated small-scale farm mechanization in Nepal hills: An application of exogenous switching treatment regression. Technol. Soc. 2020, 61. [Google Scholar] [CrossRef] [PubMed]
- Adekunle, A.; Osazuwa, P.; Raghavan, G.S.V. Socio-economic determinants of agricultural mechanisation in Africa: A research note based on cassava cultivation mechanisation. Technol. Forecast. Soc. Chang. 2016, 112. [Google Scholar] [CrossRef]
- Ayodele, O. Economic impact of agricultural mechanization adoption: Evidence from maize farmers in Ondo state, Nigeria. JABR 2012, 1, 25–32. [Google Scholar]
- Paudel, P.G.; Kc, B.D.; Rahut, B.D.; Justice, E.S.; McDonald, J.A. Scale-appropriate mechanization impacts on productivity among smallholders: Evidence from rice systems in the mid-hills of Nepal. Land Use Policy 2019, 85, 104–113. [Google Scholar] [CrossRef]
- Fischer, G.; Wittich, S.; Malima, G.; Sikumba, G.; Lukuyu, B.; Ngunga, D.; Rugalabam, J. Gender and mechanization: Exploring the sustainability of mechanized forage chopping in Tanzania. J. Rural Stud. 2018, 64, 112–122. [Google Scholar] [CrossRef]
- Nepal, R.; Thapa, B.G. Determinants of agricultural commercialization and mechanization in the hinterland of a city in Nepal. Appl. Geogr. 2009, 29, 377–389. [Google Scholar] [CrossRef]
- De Groote, H.; Marangu, C.; Gitonga, M.Z. Trends in Agricultural Mechanization in Kenya’ s Maize Production Areas from 1992–2012. AMA-AGR Mech. Asia. Afr. 2018, 49, 20–32. [Google Scholar]
- Nguyen-Van, P.; Poiraud, C.; To-The, N. Modeling farmers’s decisions on tea varieties in Vietnam: A multinomial logit analysis. Agric. Econ. 2016, 48, 1–9. [Google Scholar] [CrossRef]
- Wanjiku, J.; Manyengo, U.J.; Oluoch-Kosura, W.; Karugia, J.T. Gender Differentiation in the Analysis of Alternative Farm Mechanization Choices on Small Farms in Kenya; Research paper 2007/15; UNU-WIDER: Tokyo, Japan, 2007. [Google Scholar]
- Mabuza, L.M.; Sithole, M.M.; Wale, E.; Ortmann, F.G.; Darroch, M. Factors influencing the use of alternative land cultivation technologies in Swaziland: Implications for smallholder farming on customary Swazi Nation Land. Land Use Policy 2013, 33, 71–80. [Google Scholar] [CrossRef]
- Tse, Y.K. A diagnostic test for the multinomial logit model. J. Bus. Econ. Stat. 1987, 5, 283–286. [Google Scholar]
- Hausman, A.J.; McFadden, D. Specification tests for the multinomial logit. Econometrica 1984, 52, 1219–1240. [Google Scholar] [CrossRef] [Green Version]
- Mujeyi, A.; Mudhara, M.; Mutenje, J.M. Adoption determinants of multiple climate smart agricultural technologies in Zimbabwe: Considerations for scaling-up and out. Afr. J. Sci Technol. Innov. Dev. 2019. [Google Scholar] [CrossRef]
- Greene, H.W. Econometric Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Nana, T.J.; Thiombiano, T. Adoption of Adaptation Strategies for Climate change: Case of Burkina Faso Farmers. JAES 2018, 7, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Long, J.S. Regression Models for Categorical and Limited Dependent Variables: Advanced Quantitative Techniques in the Social Science; Series 7; Sage Publication: Thousand Oaks, CA, USA, 1997. [Google Scholar]
- Hassan, R.; Nhemachena, C. Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis. AfJARE 2008, 2, 83–104. [Google Scholar]
- Hardy, A.M. Regression with Dummy Variables (Quantitative Applications in the Social Sciences), 1st ed.; Sage Publication: Newbury Park, CA, USA, 1993. [Google Scholar]
- Chatterjee, S.; Hadi, S.A.; Price, B. Regression Analysis by Examples, 3rd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Belsley, A.D.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; John Wiley and Sons: New York, NY, USA, 1980. [Google Scholar]
- Belsley, A.D. A guide to using the collinearity diagnostics. Comput. Sci. Econ. Manag. 1991, 4, 33–50. [Google Scholar]
- Kothari, C.R. Research Methodology: Methods and Techniques, 2nd ed.; New Age International Publisher: New Delhi, India, 2004. [Google Scholar]
- Eerdewijk, A.; Danielsen, K. Gender Matters in Farm Power; KIT: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Daum, T.; Capezzone, F.; Birner, R. Of Trackers and Tractors. Using a Smartphone App and Compositional Data Analysis to Explore the Link between Mechanization and Intra-Household Allocation of Time in Zambia; ZEF-Discussion Papers on Development Policy 278; Center for Development Research (ZEF), University of Bonn: Bonn, Germany, 2019. [Google Scholar]
- Yukichi, Y.M.; Takahashi, K.; Otsuka, K. Contract Farming, Farm Mechanization, and Agricultural Intensification: The Case of Rice Farming in Cote d’Ivoire; Working Papers 157; JICA Research Institute: Tokyo, Japan, 2017.
- Van den Berg, M.; Hengsdijk, H.; Wolf, J.; Van Ittersum, M.; Guanghou, W.; Roetter, R. The impact of increasing farm size and mechanization on rural income and rice production in Zhengjiang province, China. Agric. Syst. 2007, 94, 841–850. [Google Scholar] [CrossRef]
- Paudel, P.G.; Kc, D.B.; Rahut, B.D.; Khanal, P.N.; Justice, E.S.; McDonald, J.A. Smallholder farmers’ willingness to pay for scale-appropriate farm mechanization: Evidence from the mid-hills of Nepal. Technol. Soc. 2019, 59, 1–10. [Google Scholar] [CrossRef]
- Suri, T. Selection and comparative advantage in technology adoption. Econometrica 2011, 79, 159–209. [Google Scholar] [CrossRef] [Green Version]
- Hailu, K.B.; Abrha, K.B.; Weldegiorgis, K.A. Adoption and impact of agricultural technologies on farm income: Evidence from Southern Tigray, Northern Ethiopia. IJFAEC 2014, 2, 91–106. [Google Scholar]
- Udry, R.C. The economics of agriculture in Africa: Notes toward a research program. AfJARE 2010, 5, 284–299. [Google Scholar] [CrossRef]
- Croppenstedt, A.; Demeke, M.; Meschi, M.M. Technology adoption in the presence of constraints: The case of fertilizer demand in Ethiopia. Rev. Dev. Econ. 2003, 7, 58–70. [Google Scholar] [CrossRef]
- Singh, K. Education, technology adoption and agricultural productivity. Indian J. Agric. Econ. 2000, 55, 473–489. [Google Scholar]
- Alene, A.D.; Manyong, V.M. Farmer-to-farmer technology diffusion and yield variation among adopters: The case of improved cowpea in northern Nigeria. Agric. Econ. 2006, 35, 203–211. [Google Scholar] [CrossRef]
- Yebou, J.; Mounirou, I. Innovations techniques et productivités agricoles dans les pays en développement: Cas de la mécanisation agricole en production cotonnière au centre du Benin. Agron. Afr. 2018, 30, 1–14. [Google Scholar]
Variables | Description | Expected Sign |
---|---|---|
Gender | 1 if the producer is a man and 0 if not | +/− |
Primary level | 1 if the producer has a primary-level education and 0 if not | + |
Secondary level | 1 if the producer has a secondary-level education and 0 if not | + |
Family labor | Number of family labors in the producer’s household | − |
Age | Age of the producer (in completed years) | +/− |
Experience | Number of years of experience in cotton production (years) | +/− |
Area cropped | Area cropped for cotton production (in ha) | + |
Credit access | 1 if the producer has access to credit and 0 if not | + |
Land access | 1 if the producer has direct access to land and 0 if not | + |
Northern zone | 1 if the producer is from the cotton zone of northern Benin and 0 if not | +/− |
Western Atacora | 1 if the producer is from the western zone of Atacora and 0 if not | +/− |
Variables | Hand Tools | Draught Animals | Tractors | Together | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std. Dev | Mean | Std. Dev | Mean | Std. Dev | Mean | Std. Dev | |
Qualitative variables | ||||||||
Gender | 0.82 | 0.38 | 0.75 | 0.43 | 0.85 | 0.36 | 0.81 | 0.39 |
Primary level | 0.28 | 0.45 | 0.71 | 0.46 | 0.44 | 0.50 | 0.47 | 0.50 |
Secondary level | 0.04 | 0.20 | 0.11 | 0.32 | 0.38 | 0.49 | 0.18 | 0.39 |
Credit access | 0.07 | 0.25 | 0.38 | 0.49 | 0.31 | 0.47 | 0.25 | 0.43 |
Land access | 0.60 | 0.49 | 0.81 | 0.39 | 0.91 | 0.29 | 0.77 | 0.42 |
Northern zone | 0.04 | 0.20 | 0.87 | 0.33 | 0.15 | 0.36 | 0.34 | 0.47 |
Western Atacora | 0.02 | 0.15 | 0.11 | 0.31 | 0.83 | 0.38 | 0.33 | 0.47 |
Quantitative variables | ||||||||
Family labor | 5.99 | 3.00 | 3.41 | 0.69 | 3.22 | 0.73 | 4.22 | 2.26 |
Age | 49.24 | 7.25 | 47.68 | 6.07 | 47.21 | 5.90 | 48.05 | 6.49 |
Experience | 23.64 | 3.86 | 22.56 | 2.49 | 22.30 | 3.42 | 22.84 | 3.38 |
Area cropped | 9.32 | 7.04 | 11.02 | 10.62 | 13.37 | 3.42 | 11.25 | 13.89 |
Alternatives | Description | Probability |
---|---|---|
= 0 | Hand tools: the cotton producer used traditional tools (hoe/daba) | |
= 1 | Draught animals: the cotton producer used draught animals (ox) | |
= 2 | Tractors: the cotton producer used tractors |
Variables | Draught Animals | Tractors | ||
---|---|---|---|---|
Coefficients | Std. Err. | Coefficients | Std. Err. | |
Constant | −0.870 | 3.309 | 1.938 | 3.394 |
Gender | −0.457 | 1.122 | −2.310 * | 1.196 |
Primary level | 3.476 *** | 1.039 | 2.426 ** | 1.071 |
Secondary level | 5.715 *** | 1.723 | 7.199 *** | 1.726 |
Family labor | −1.401 *** | 0.466 | −2.331 *** | 0.534 |
Age | −0.095 | 0.070 | −0.124 * | 0.072 |
Area cropped | 0.203 * | 0.111 | 0.284 ** | 0.112 |
Credit access | 2.794 ** | 1.340 | 3.821 *** | 1.382 |
Land access | 1.379 | 1.001 | 2.605 ** | 1.089 |
Northern zone | 9.792 *** | 1.869 | 7.994 *** | 2.001 |
Western Atacora | 9.284 *** | 2.220 | 13.366 *** | 2.346 |
Base category | Hand tools | |||
Number of observations | 478 | |||
Log likelihood | −114.761 | |||
LR chi2(22) | 819.48 | |||
Prob > chi2 | 0.00001 | |||
Pseudo R2 | 0.781 |
Variables | Draught Animals | Tractors | ||
---|---|---|---|---|
Coefficients | Std. Err. | Coefficients | Std. Err. | |
Gender | 0.096 ** | 0.039 | −0.114 *** | 0.039 |
Primary level | 0.089 *** | 0.032 | −0.043 | 0.031 |
Secondary level | −0.028 | 0.038 | 0.121 *** | 0.035 |
Family labor | 0.038 ** | 0.016 | −0.064 *** | 0.017 |
Age | 0.001 | 0.002 | −0.002 | 0.002 |
Area cropped | −0.003 * | 0.001 | 0.006 *** | 0.001 |
Credit access | −0.030 | 0.031 | 0.077 ** | 0.031 |
Land access | −0.054 | 0.039 | 0.081 ** | 0.039 |
Northern zone | 0.188 *** | 0.048 | −0.052 | 0.051 |
Western Atacora | −0.136 *** | 0.051 | 0.297 *** | 0.046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saliou, I.O.; Zannou, A.; Aoudji, A.K.N.; Honlonkou, A.N. Drivers of Mechanization in Cotton Production in Benin, West Africa. Agriculture 2020, 10, 549. https://doi.org/10.3390/agriculture10110549
Saliou IO, Zannou A, Aoudji AKN, Honlonkou AN. Drivers of Mechanization in Cotton Production in Benin, West Africa. Agriculture. 2020; 10(11):549. https://doi.org/10.3390/agriculture10110549
Chicago/Turabian StyleSaliou, Idelphonse O., Afio Zannou, Augustin K. N. Aoudji, and Albert N. Honlonkou. 2020. "Drivers of Mechanization in Cotton Production in Benin, West Africa" Agriculture 10, no. 11: 549. https://doi.org/10.3390/agriculture10110549
APA StyleSaliou, I. O., Zannou, A., Aoudji, A. K. N., & Honlonkou, A. N. (2020). Drivers of Mechanization in Cotton Production in Benin, West Africa. Agriculture, 10(11), 549. https://doi.org/10.3390/agriculture10110549