Biomass Characteristics and Energy Yields of Tobacco (Nicotiana tabacum L.) Cultivated in Eastern Poland
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Biomass Energy Potential
3.2. Methane Potential of Tobacco Silage
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Diamantidis, N.D.; Koukis, E.G. Agricultural crops and residues as feedstock for non-food products in Western Europe. Ind. Crop. Prod. 2000, 11, 97–106. [Google Scholar] [CrossRef]
- Andrianov, V.; Borisjuk, N.; Pogrebnyak, N.; Brinker, A.; Dixon, J.; Spitsin, S.; Flynn, J.; Matyszczuk, P.; Andryszak, K.; Laurelli, M.; et al. Tobacco as a production platform for biofuel: Overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol. J. 2010, 8, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Barla, F.G.; Kumar, S. Tobacco biomass as a source of advanced biofuels. Biofuels 2016, 10, 335–346. [Google Scholar] [CrossRef]
- Usta, N. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass Bioenergy 2005, 28, 77–86. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, J.; Li, D.; Cai, B.; Zhang, X. Enhanced saccharification and ethanolic fermentation of tobacco stalks by chemical pretreatment. J. Biotechnol. 2010, 150, 173–174. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations, Database on Crops Statistics. 2018. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 8 May 2020).
- GUS (Main Statistical Office of Poland). Rocznik Statystyczny Rolnictwa; Zakład Wydawnictw Statystycznych: Warsaw, Poland, 2018; ISSN 2080-8798.
- Gwiazdowski, R.; Barna, A.; Wepa, M.; Marchewka, R. Skutki Wdrożenia Dyrektywy Tytoniowej: Raport Centrum im. Adama Smitha o Ekonomicznych Skutkach Wdrożenia Rewizji Dyrektywy 2001/37/WE Parlamentu Europejskiego i Rady Europy z 5 czerwca 2001 Roku; Centrum im. Adama Smitha: Warsaw, Poland, 2013; ISBN 978-83-86885-65-7. (In Polish) [Google Scholar]
- Barna, A.; Marchewka, R.; Wepa, M. Raport—Uwarunkowania Prawne oraz Polityka Podatkowa Państwa Wobec Wyrobów Tytoniowych a Rynek Pracy w Polskiej branży Tytoniu; Związek Przedsiębiorców i Pracodawców: Warsaw, Poland, 2013; p. 72. (In Polish) [Google Scholar]
- Berbeć, A.; Madej, A. Obecna sytuacja i perspektywy uprawy tytoniu w Polsce na tle świata i Unii Europejskiej (in polish). Studia Rap. IUNG PIB 2012, 31, 51–67. [Google Scholar]
- Doroszewska, T.; Berbeć, A.; Czarnecka, D.; Kawka, M. Choroby i Szkodniki Tytoniu; IUNG-PIB: Puławy, Poland, 2013; ISBN 978-83-7562-154-9. (In Polish) [Google Scholar]
- Budzianowska, A.; Budzianowski, J. Tytoń źródłem biopaliw. Przegl Lek 2012, 69, 1149–1152. (In Polish) [Google Scholar]
- Radojičić, V.; Ećim-Djurić, O.S.M.; Djulančić, N.; Kulić, G. Possibilities of Virginia Tobacco Stalks Utilization. Tutun Tob. 2014, 64, 71–76. [Google Scholar]
- Cornelissen, S.; Koper, M.; Deng, Y.Y. The role of bioenergy in a fully sustainable global energy system. Biomass Bioenergy 2012, 41, 21–33. [Google Scholar] [CrossRef]
- Tsavkelova, E.A.; Netrusow, A.I. Biogas production from cellulose-containing substrates. A review. Appl. Biochem. Microbiol. 2012, 48, 421–433. [Google Scholar] [CrossRef]
- EU Climate Strategies and Targets: 2030 Climate & Energy Framework. Available online: https://ec.europa.eu/clima/policies/strategies/2030_en (accessed on 12 October 2020).
- Matyka, M. Production and economic aspects of cultivation of perennial plants for energy purposes. Monogr. Rozpr. Nauk. IUNG PIB 2013, 35, 1–98. [Google Scholar]
- Oniszk-Popławska, A.; Matyka, M.; Dagny-Ryńska, E. Evaluation of a long-term potential for the development of agricultural biogas plants: A case study for the Lubelskie Province, Poland. Renew. Sustain. Energy Rev. 2014, 36, 329–349. [Google Scholar] [CrossRef]
- Matyka, M.; Księżak, J. Potencjalne możliwości produkcji biogazu z mozgi trzcinowatej. Probl. Inżynierii Rol. 2013, 80, 79–86. [Google Scholar]
- Bilalis, D.; Karkanis, A.; Efthimiadou, A.; Konstantas, A.; Triantafyllidis, V. Effects of irrigation system and green manure on yield and nicotine content of Virginia (flue-cured) Organic tobacco (Nicotiana tabaccum), under Mediterranean conditions. Ind. Crop. Prod. 2009, 29, 388–394. [Google Scholar] [CrossRef]
- Szewczuk, C. Wpływ dolistnego dokarmiania tytoniu na plony i jakość liści. Ann. Univ. Mariae Curie-Skłodowska Lub. Sect. E 2009, 64, 46–51. (In Polish) [Google Scholar]
- Pawełek, E. Zbiór i suszenie Virginii w regionie leżajskim. Przegląd Tyton. 2000, 9, 6–9. (In Polish) [Google Scholar]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Prade, T.; Svensson, S.E.; Andersson, A.; Mattsson, J.E. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 2011, 35, 3040–3049. [Google Scholar] [CrossRef]
- Jureková, Z.; Húska, D.; Kotrla, M.; Prčík, M.; Hauptvogl, M. Comparison of Energy Sources Grown on Agricultural Land. Acta Reg. Environ. 2015, 12, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Stolarski, M.J.; Krzyżaniak, M.; Załuski, D.; Tworkowski, J.; Szczukowski, S. Effects of Site, Genotype and Subsequent Harvest Rotation on Willow Productivity. Agriculture 2020, 10, 412. [Google Scholar] [CrossRef]
- Niemczyk, M.; Wojda, T.; Kantorowicz, W. Przydatność hodowlana wybranych odmian topoli w plantacjach energetycznych o krótkim cyklu produkcji. Sylwan 2016, 160, 292–298. [Google Scholar]
- Sheen, S.J. Biomass and chemical composition of tobacco plants under high density growth. Beitr Tabakforsch. Int. 1983, 12, 35–42. [Google Scholar] [CrossRef]
- Wildman, S.G. Tobacco, a potential food crop. Crops and Soil Magazine, January 1979, pp. 7–9. Beitr Tabakforsch. Int. 1979, 12, 35–42. [Google Scholar]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M. Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland. Energies 2020, 13, 1495. [Google Scholar] [CrossRef] [Green Version]
- Stolarski, M.J.; Krzyżaniak, M.; Szczukowski, S.; Tworkowski, J. Efektywność energetyczna produkcji biomasy wierzby w jednorocznym i trzyletnim cyklu zbioru. Fragm. Agron 2014, 31, 88–95. [Google Scholar]
- Mijailovic, I.; Radojicic, V.; Ecim-Djuric, O.; Stefanovic, G.; Kulic, G. Energy potential of tobacco stalks in briquettes and pellets production. J. Environ. Prot. Ecol. 2014, 15, 1034–1041. [Google Scholar]
- Indahsari, O.P. Briquettes from Tobacco Stems as the New Alternative Energy. J. Kim. Terap. Indones. (Indones. J. Appl. Chem.) 2018, 19, 73–80. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Kacprzak, A.; Matyka, M.; Krzystek, L.; Ledakowicz, S. Wpływ stopnia nawożenia i czynników atmosferycznych na wydajność produkcji biogazu z wybranych roślin energetycznych. Inż. Ap. Chem. 2012, 4, 141–142. (In Polish) [Google Scholar]
- Oleszek, M.; Król, A.; Tys, J.; Matyka, M.; Kulik, M. Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour. Technol. 2014, 156, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, R.; Jiang, Z.; Li, W.; Liu, G.; Chen, C. Anaerobic digestion of tobacco stalk: Biomethane production performance and kinetic analysis. Environ. Sci. Pollut. Res. 2019, 26, 14250–14258. [Google Scholar] [CrossRef] [PubMed]
- Leffingwell, J. Basic chemical constituents of tobacco leaf and differences among tobacco types. Reprinted from Tobacco. In Production, Chemistry, and Technology; Layten, D., Davis, M.T., Eds.; Blackwell Science: Hoboken, NJ, USA, 1999; pp. 265–284, Chapter 8. [Google Scholar]
- Miś, T. Ocena odmian tytoniu uprawianych w rejonie województwa podkarpackiego (in polish). Biul. Inst. Hod. Aklim. Roślin 2003, 228, 363–371. [Google Scholar]
- Wijatyk, B. Rynek tytoniu. In Strategiczne Opcje dla Polskiego Sektora Agrobiznesu w Świetle Analiz Ekonomicznych; Majewski, E., Dalton, G., Eds.; SGGW: Warszawa, Poland, 2000; p. 408. (In Polish) [Google Scholar]
Area | Production (Thousands of Mg) | Area Harvested (Thousands of ha) | Average Yield (Mg ha−1) |
---|---|---|---|
China | 2242.2 | 1003.7 | 2.2 |
Brazil | 762.3 | 356.5 | 2.1 |
India | 749.9 | 417.7 | 1.8 |
USA | 241.9 | 117.9 | 2.0 |
Indonesia | 181.1 | 203.0 | 0.9 |
Pakistan | 106.7 | 46.3 | 2.3 |
Malawi | 95.4 | 86.1 | 1.1 |
Argentina | 104.1 | 54.7 | 1.9 |
Zambia | 115.9 | 65.7 | 1.8 |
Italy | 59.3 | 17.2 | 3.4 |
Poland | 33.2 | 16.4 | 2.0 |
UE-27 * | 178.3 | 77.9 | 2.3 |
World (total) | 6094.9 | 3368.9 | 1.8 |
Tobacco Plantation | Virginia A | Virginia B | Virginia C | Burley |
---|---|---|---|---|
Variety of tobacco | HYV 23 | HYV 23 | VRG 10TL | TN10 |
Soil classification | Podzoluvisol | Loess soil | Pseudo Podzoluvisol | |
S—Sand | LS- loamy sand (on sandy loam) | |||
Complex of agricultural suitability of soils: from 1 (best) to 9 (worst) | 6 | 2 | 5 | |
Soil pH | 5.0 | 6.0 | 5.9 | |
Soil P2O5 content (mg 100g−1) | 16.2 | 18.1 | 16.8 | |
Soil K2O content (mg 100g−1) | 15.8 | 19.1 | 17.0 | |
Soil Mg content (mg 100g−1) | 5.9 | 7.6 | 7.2 | |
Mineral fertilization N-P2O5-K2O (kg ha−1) | 130-50-130 | 50-45-100 | 100-43-103 | |
Organic fertilization N-P2O5-K2O (kg ha−1) | 0 | 100-33-38 | 0 | |
Density of plants (per hectare) | 22,000 | 20,000 | 23,000 | |
Irrigation | Yes | No | No |
Plantation and Type of Tobacco | Virginia A | Virginia B | Virginia C | Burley | Average |
---|---|---|---|---|---|
Yield of fresh matter (FM), (leaves + stems) (Mg ha−1) | 62.3 a * | 55.7 a | 34.8 b | 59.8 a | 53.2 |
Total dry matter (DM) in FM (%) | 23.0 a | 28.4 b | 27.1 b | 22.4 a | 25.2 |
Volatile Solids (VS) content in FM (%) | 20.5 a | 21.1 a | 16.2 b | 15.9 b | 18.4 |
Yield of leaves (Mg ha−1) DM | 5.6 a | 5.0 a | 3.5 b | 4.7 a | 4.7 |
Yield of stems (Mg ha−1) DM | 8.7a | 10.8 b | 6.0 c | 8.7 a | 8.6 |
Leaf/stem ratio | 0.6 | 0.5 | 0.6 | 0.5 | 0.6 |
Yield (leaves + stems) (t·ha−1) DM | 14.3 ab | 15.8 a | 9.4 c | 13.4 b | 13.2 |
Higher heating value of leaves (MJ kg−1) | 17.2 a | 16.4 a | 16.2 a | 15.6 a | 16.3 |
Higher heating value of stems (MJ kg−1) | 18.4 a | 17.6 ab | 17.4 ab | 17.0 b | 17.6 |
Higher heating value (leaves + stems) (MJ kg−1) | 18.0 a | 17.0 ab | 16.8 ab | 16.3 b | 17.0 |
Biomass energy yield (GJ ha−1 yr−1) of leaves | 96.3 a | 81.8 ab | 56.5 c | 73.0 bc | 76.9 |
Biomass energy yield (GJ ha−1 yr−1) of stems | 160.3 a | 191.0 b | 103.8 c | 147.7 a | 150.7 |
Biomass energy yield (GJ ha−1 yr−1) of leaves + stems | 256.6 ab | 272.8 a | 160.3 c | 220.7 b | 227.6 |
Methane potential (Nm3 Mg−1 VS) | 298 b | 220 a | nd | 226 a | 248 |
Yield of methane (Nm3 ha−1 yr−1) | 3802 b | 2590 a | nd | 2149 a | 2847 |
Crop | Crop Yield DM (Mg ha−1 yr−1) | HHV (MJ kg−1) | Biomass Energy Yield (GJ ha−1 yr−1) |
---|---|---|---|
Tobacco | 9–16 | 16.3–18.0 | 160–273 |
Wheat (Triticum aestivum L.) | 14 1 7–13 3 | 12.3 1 | 123 1 128–231 3 |
Poplar | 10–15 1 2–8 6 | 17.3 1 | 173–259 1 33–230 8 |
Willow | 10–15 1 2–18 5 | 18.7 1 | 187–280 1 203–210 7 |
Switchgrass | 8 1 | 17.4 1 | 139 1 |
Miscanthus | 12–30 1 11–29 3 | 18.5 1 | 222–555 1 186–486 3 |
Industrial hemp | 10–14 2 | 17.5–19.12 | 246–296 2 |
Maize | 8–32 3 | 17.5 4 | 142–545 3 |
Crop | Crop yield (t FM ha−1) | Nm3 CH4 t−1 VS (MIN) | Nm3 CH4 t−1 VS (MAX) |
---|---|---|---|
Tobacco 1 | 35–62 | 220 | 298 |
Maize 1 | 36 | 346 | 437 |
Corn-cob-mix (CCM) 2 | 10–15 | 350 | 360 |
Fodder beet 2 | 80–120 | 398 | 424 |
Grass 2 | 22–31 | 286 | 324 |
Maize 2 | 40–60 | 291 | 338 |
Red clover 2 | 17–25 | 297 | 347 |
Rye grain 2 | 4–7 | 297 | 413 |
Sorghum 2 | 40–80 | 286 | 319 |
Sugar beet 2 | 40–70 | 387 | 408 |
Sunflower 2 | 31–42 | 231 | 297 |
Triticale 2 | 28–33 | 319 | 335 |
Wheat 2 | 30–50 | 351 | 378 |
Wheat grain 2 | 6–10 | 371 | 398 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berbeć, A.K.; Matyka, M. Biomass Characteristics and Energy Yields of Tobacco (Nicotiana tabacum L.) Cultivated in Eastern Poland. Agriculture 2020, 10, 551. https://doi.org/10.3390/agriculture10110551
Berbeć AK, Matyka M. Biomass Characteristics and Energy Yields of Tobacco (Nicotiana tabacum L.) Cultivated in Eastern Poland. Agriculture. 2020; 10(11):551. https://doi.org/10.3390/agriculture10110551
Chicago/Turabian StyleBerbeć, Adam Kleofas, and Mariusz Matyka. 2020. "Biomass Characteristics and Energy Yields of Tobacco (Nicotiana tabacum L.) Cultivated in Eastern Poland" Agriculture 10, no. 11: 551. https://doi.org/10.3390/agriculture10110551
APA StyleBerbeć, A. K., & Matyka, M. (2020). Biomass Characteristics and Energy Yields of Tobacco (Nicotiana tabacum L.) Cultivated in Eastern Poland. Agriculture, 10(11), 551. https://doi.org/10.3390/agriculture10110551