Estimation of Tunisian Greenhouse Gas Emissions from Different Livestock Species
Abstract
:1. Introduction
2. Material and Methods
2.1. Country Geographic Situation and Climatic Data
2.2. Estimation of Animal Population and GHG Emissions
2.2.1. Methane (CH4) Emissions
2.2.2. N2O Emissions from the Manure Management
Direct N2O Emissions from the Manure Management (N2OD (MM))
2.3. Calculation
3. Results
3.1. Livestock Population Distribution
3.2. Total Greenhouse Gas Emissions (GHGs)
3.3. Methane Emissions
3.4. Nitrous Emissions
4. Discussions
4.1. Total GHG Emissions from Tunisian Livestock
4.2. Methane Emissions
4.3. Nitrous Oxide Emissions
4.4. Mitigation and Adaptation Plan Undertaken by the Government
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diao, X.; Hazell, P.; Thurlow, J. The role of agriculture in African development. World Dev. 2010, 38, 1375–1383. [Google Scholar] [CrossRef]
- African Union Development Agency-NEPAD (AUDA-NEPAD). African Agriculture, Transformation and Outlook (2013). Available online: https://web.archive.org/web/20201016205723/; https://www.nepad.org/caadp/publication/agriculture-africa-transformation-and-outlook (accessed on 16 October 2020).
- Santos, N.; Ceccacci, I. Egypt, Jordan, Morocco and Tunisia: Key Trends in The Agrifood Sector; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015. [Google Scholar]
- Observatoire National de l’Agriculture (ONAGRI). Annuaire Statistique 2017; ONAGRI, Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche: Tunis, Tunisia, 2017. [Google Scholar]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Biancalani, R.; Condor Golec, R.D.; Jacobs, H.; Flammini, A.; et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Chang. Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkes, A.; Reisinger, A.; Wollenberg, E.; Van Dijk, S. Measurement, Reporting and Verification of Livestock GHG Emissions by Developing Countries in the UNFCCC: Current Practices and Opportunities for Improvement; CCAFS Report No. 17; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and Global Research Alliance for Agricultural Greenhouse Gases (GRA): Wageningen, The Netherlands, 2017. [Google Scholar]
- Ministère des Affaires Locales et L’Environnement de la Tunisie. Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC)-Intended Nationally Determined Contribution: Tunisia (2015). Available online: https://web.archive.org/web/20181217172822/; https:/www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Tunisia First/INDC-Tunisia-English Version.pdf (accessed on 17 December 2018).
- Ministère des Affaires Locales et L’Environnement de la Tunisie. Deuxième Rapport Biennal de la Tunisie (2016) à la Convention Cadre des Nations Unies sur les Changements Climatiques (CCNUCC). Available online: https://web.archive.org/web/20191114003609/; https://unfccc.int/sites/default/files/resource/BUR2_Tunesia_2016.pdf (accessed on 14 November 2019).
- Ministère des Affaires Locales et L’Environnement de la Tunisie/United. United Nations Develpment Programme-Global Evironmental Finance. Tunisia’s Third National Communication (2019) as part of the United Nations Framework Convention on Climate Change (UNFCCC). Available online: https://web.archive.org/web/20201017061222/; https:/unfccc.int/sites/default/files/resource/Synthese Ang Finalise Tunisia.pdf (accessed on 17 October 2020).
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2015; pp. 811–922. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In IPCC National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006; ISBN 4-88788-032-4. [Google Scholar]
- Verner, D.; Treguer, D.; Redwood, J.; Christensen, J.; McDonnell, R.; Elbert, C.; Konishi, Y. Climate Variability, Drought, and Drought Management in Tunisia’s Agricultural Sector; World Bank Group: Washington, DC, USA, 2018. [Google Scholar]
- United Nations Climate Change. Global Warming Potentials (IPCC Fourth Assessment Report, 2007). Available online: https://unfccc.int/process-and-meetings/transparency-and-reporting/greenhouse-gas-data/frequently-asked-questions/global-warming-potentials-ipcc-fourth-assessment-report (accessed on 2 May 2020).
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 978-92-5-107920-1. [Google Scholar]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhabra, A.; Manjunath, K.R.; Panigrahy, S.; Parihar, J.S. Greenhouse gas emissions from Indian livestock. Clim. Chang. 2013, 117, 329–344. [Google Scholar] [CrossRef]
- Sallaye, M. Etablissement D’un Rapport sur L’inventaire des Sources D’émission et des Puits D’absorption de GES (2018). Available online: https://web.archive.org/web/20201018063956/; https://www.researchgate.net/profile/Miloud_Sallaye/publication/327872220_Etablissement_d%27un_rapport_sur_l%27inventaire_des_sources_d%27emission_et_des_puits_d%27absorption_de_GES_en_Algerie/links/5baaaf9b45851574f7e63b5c/Etablissement-dun-rapport-sur-linventaire-des-sources-demission-et-des-puits-dabsorption-de-GES-en-Algerie.pdf (accessed on 18 October 2020).
- Truong, A.H.; Kim, M.T.; Nguyen, T.T.; Nguyen, N.T.; Nguyen, Q.T. Methane, nitrous oxide and ammonia emissions from livestock farming in the Red River Delta, Vietnam: An inventory and projection for 2000–2030. Sustainability 2018, 10, 3826. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Revised 1996 IPCC Guidelines for National Greenhouse Inventories; Houghton, J.T., Meira Filho, L.G., Lim, B., Tréanton, K., Mamaty, I., Bonduki, Y., Griggs, D.J., Callander, B.A., Eds.; IPCC/OECD/IEA: Paris, France, 1997. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; ISBN 978-1-107-05799-1. [Google Scholar]
- Nugrahaeningtyas, E.; Baek, C.Y.; Jeon, J.H.; Jo, H.J.; Park, K.H. Greenhouse gas emission intensities for the livestock sector in Indonesia, based on the national specific data. Sustainability 2018, 10, 1912. [Google Scholar] [CrossRef] [Green Version]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Anim. Res. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency (IEA) Part III: Greenhouse-gas emissions. CO2 Emissions from Fuel Combustion 2012; OECD Publishing: Paris, France, 2012; pp. III.1–III.51. [Google Scholar]
- Thorpe, A. Enteric fermentation and ruminant eructation: The role (and control?) of methane in the climate change debate. Clim. Chang. 2009, 93, 407–431. [Google Scholar] [CrossRef]
- Chang, J.; Peng, S.; Ciais, P.; Saunois, M.; Dangal, S.R.S.; Herrero, M.; Havlík, P.; Tian, H.; Bousquet, P. Revisiting enteric methane emissions from domestic ruminants and their δ13CCH4 source signature. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Moeletsi, M.E.; Tongwane, M.I.; Tsubo, M. Enteric methane emissions estimate for Livestock in South Africa for 1990–2014. Atmos. Basel 2017, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations. Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006; ISBN 978-92-5-105571-7. [Google Scholar]
- Sejian, V.; Lal, R.; Lakritz, J.; Ezeji, T. Measurement and prediction of enteric methane emission. Int. J. Biometeorol. 2011, 55, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bruinsma, J. World Agriculture: Towards 2015/2030. An FAO Perspective; Earthscan Publications Ltd.: London, UK, 2003; ISBN 92-5-104835-5. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Livestock Sector Development for Poverty Reduction: An Economic and Policy Perspective—Livestock’s Many Virtues; Otte, J., Costales, A., Dijkman, J., Pica-Ciamarra, U., Robinson, T., Ahuja, V., Ly, C., Roland-Holst, D., Eds.; FAO: Rome, Italy, 2012; ISBN 9789251072424. [Google Scholar]
- Thornton, P.K.; Herrero, M. The Inter-Linkages Between Rapid Growth in Livestock Production, Climate Change, and The Impacts on Water Resources, Land Use, and Deforestation; International Livestock Research Institute (ILRI): Nairobi, Kenya, 2009. [Google Scholar]
- Thornton, P.K.; Herrero, M. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc. Natl. Acad. Sci. USA 2010, 107, 19667–19672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchemin, K.A.; McAllister, T.A.; McGinn, S.M. Dietary mitigation of enteric methane from cattle. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4, 35.1–35.17. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; Rotz, A.; Dell, C.; Adesogan, A.; et al. Mitigation of greenhouse gas emissions in livestock production—A review of technical options for non-CO2 emissions. In FAO Animal Production and Health Paper No. 177; Gerber, P.J., Benjamin, H., Makkar, H.P.S., Eds.; FAO: Rome, Italy, 2013; ISBN 978-92-5-107659-0. [Google Scholar]
- Rotz, C.A. Modeling greenhouse gas emissions from dairy farms. J. Dairy Sci. 2018, 101, 6675–6690. [Google Scholar] [CrossRef] [PubMed]
- Dourmad, J.-Y.; Rigolot, C.; van de Werf, H. Emission of green house gas, developing management and animal farming systems to assist mitigation. In Livestock and Global Climate Change; Rowlinson, P., Steele, M., Nefzaoui, A., Eds.; British Society of Animal Science, Cambridge University Press: Hammamet, Tunisia, 2008; pp. 36–39. [Google Scholar]
- Yan, T.; Agnew, R.; Gordon, F.; Porter, M. Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest. Prod. Sci. 2000, 64, 253–263. [Google Scholar] [CrossRef]
- Patra, A.K. A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep. Livest. Sci. 2014, 162, 97–103. [Google Scholar] [CrossRef]
- Hristov, A.N.; Kebreab, E.; Niu, M.; Oh, J.; Bannink, A.; Bayat, A.R.; Boland, T.M.; Brito, A.F.; Casper, D.P.; Crompton, L.A.; et al. Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 2018, 101, 6655–6674. [Google Scholar] [CrossRef] [PubMed]
- Ministry for the Environment. New Zealand’s Greenhouse Gas Inventory 1990–2013; New Zealand Governent: Wellington, New Zealand, 2015; ISBN 1179-223X.
- Dijkstra, J.; Oenema, O.; van Groenigen, J.W.; Spek, J.W.; van Vuuren, A.M.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. Animal 2013, 7, 292–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Animal | Cattle | Sheep | Goats | Equines | Camelids | Poultry | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | Dairy | Others | Horses | Donkeys/Mules | Laying | Broiler | Turkey | |||
EFenteric | 89 | 58 | 5 | 5 | 18 | 10 | 46 | 0 | 0 | 0 |
EFmanure | 9 | 4 | 0.22 | 0.24 | 0.97 | 2.1 | 4.1 | 0.01 | 0.02 | 0.09 |
VS | 4.5 | 2.7 | 032 | 0.35 | 1.72 | 0.94 | 2.49 | 0.01 | 0.02 | 0.07 |
BO | 0.24 | 0.17 | 0.13 | 0.13 | 0.26 | 0.26 | 0.21 | 0.36 | 0.39 | 0.36 |
MS(T,S,k) (%) | 75 | 75 | 25 | 25 | 90 | 5 | 5 | 100 | 100 | 100 |
Animal | Cattle | Sheep | Goats | Equines | Camelids | Poultry | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | Dairy | Others | Horses | Donkeys/Mules | Laying | Broiler | Turkey | |||
Nrate(T) | 0.35 | 0.35 | 1.17 | 1.37 | 0.46 | 0.46 | 0.46 | 1.1 | 0.82 | 0.74 |
TAM | 550 | 391 | 28 | 30 | 238 | 130 | 217 | 0.9 | 1.8 | 6.8 |
Nex(T) | 70.26 | 49.95 | 11.96 | 15.00 | 39.96 | 21.83 | 36.43 | 0.36 | 0.54 | 1.84 |
N2OD(mm) | 0.41 | 0.29 | 0.02 | 0.03 | 0.28 | 0.01 | 0.01 | 0.001 | 0.001 | 0.003 |
Nvolatilization-MMS | 15.81 | 16.56 | 0.36 | 0.45 | 4.32 | 0.13 | 0.22 | 0.14 | 0.30 | 0.73 |
FracGasMS (%) | 30 | 45 | 12 | 12 | 12 | 12 | 12 | 40 | 55 | 40 |
Animal Species | Cattle | Sheep | Goats | Equines | Camelids | Poultry | ||||
---|---|---|---|---|---|---|---|---|---|---|
Dairy | Others | Horses | Donkey/Mules | Broiler | Laying | Turkey | ||||
2008 | 449 | 246 | 7301 | 1496 | 25 | 172 | 84 | 7536 | 6387 | 1654 |
2009 | 443 | 239 | 7362 | 1455 | 24 | 168 | 82 | 7796 | 6358 | 1934 |
2010 | 440 | 231 | 7234 | 1296 | 23 | 164 | 80 | 8662 | 6214 | 2278 |
2011 | 430 | 226 | 6999 | 1282 | 23 | 164 | 80 | 8269 | 6200 | 1993 |
2012 | 427 | 228 | 6802 | 1272 | 23 | 164 | 80 | 9766 | 6332 | 2888 |
2013 | 424 | 222 | 6856 | 1274 | 22 | 156 | 78 | 10,649 | 6725 | 2851 |
2014 | 438 | 234 | 6806 | 1248 | 22 | 148 | 76 | 11,307 | 7418 | 3059 |
2015 | 450 | 231 | 6490 | 1162 | 21 | 139 | 78 | 11,807 | 9797 | 2917 |
2016 | 458 | 228 | 6486 | 1199 | 21 | 130 | 80 | 10,899 | 7431 | 2811 |
2017 | 437 | 209 | 6406 | 1185 | 20 | 120 | 81 | 10,836 | 7350 | 2892 |
2018 | 401 | 194 | 6470 | 1197 | 20 | 111 | 83 | 10,993 | 6866 | 3033 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammar, H.; Abidi, S.; Ayed, M.; Moujahed, N.; deHaro Martí, M.E.; Chahine, M.; Bouraoui, R.; López, S.; Cheikh M’hamed, H.; Hechlef, H. Estimation of Tunisian Greenhouse Gas Emissions from Different Livestock Species. Agriculture 2020, 10, 562. https://doi.org/10.3390/agriculture10110562
Ammar H, Abidi S, Ayed M, Moujahed N, deHaro Martí ME, Chahine M, Bouraoui R, López S, Cheikh M’hamed H, Hechlef H. Estimation of Tunisian Greenhouse Gas Emissions from Different Livestock Species. Agriculture. 2020; 10(11):562. https://doi.org/10.3390/agriculture10110562
Chicago/Turabian StyleAmmar, Hajer, Sourour Abidi, Mediha Ayed, Nizar Moujahed, Mario E. deHaro Martí, Mireille Chahine, Rachid Bouraoui, Secundino López, Hatem Cheikh M’hamed, and Haikel Hechlef. 2020. "Estimation of Tunisian Greenhouse Gas Emissions from Different Livestock Species" Agriculture 10, no. 11: 562. https://doi.org/10.3390/agriculture10110562
APA StyleAmmar, H., Abidi, S., Ayed, M., Moujahed, N., deHaro Martí, M. E., Chahine, M., Bouraoui, R., López, S., Cheikh M’hamed, H., & Hechlef, H. (2020). Estimation of Tunisian Greenhouse Gas Emissions from Different Livestock Species. Agriculture, 10(11), 562. https://doi.org/10.3390/agriculture10110562