Temporal–Spatial Distribution of Risky Sites for Feeding Cattle in China Based on Temperature/Humidity Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Data
2.3. THI Calculation
2.4. Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics. China Statistical Yearbook 2017; China Statistics Press: Beijing, China, 2019.
- Qiu, H.; Ju, Z.; Chang, Z. A survey of cattle production in China. World Anim. Rev. 1993, 3, 75. [Google Scholar]
- China National Commission of Animal Genetics Resources. Animal Genetic Resources in China-Bovine; China Agriculture Press: Beijing, China, 2011. [Google Scholar]
- McDowell, R.E. Improvement of Livestock Production in Warm Climates; W.H. Freeman and Co.: San Francisco, CA, USA, 1972. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Herbut, P.; Angrecka, S.; Walczak, J. Environmental parameters to assessing of heat stress in dairy cattle-a review. Int. J. Biometeorol. 2018, 62, 2089–2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Bjerg, B.S.; Choi, C.Y.; Zong, C.; Zhang, G. A review and quantitative assessment of cattle-related thermal indices. J. Therm. Biol. 2018, 77, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouraoui, R.; Lahmar, M.; Majdoub, A.; Djemali, M.N.; Belyea, R. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 2002, 51, 479–491. [Google Scholar] [CrossRef] [Green Version]
- West, J.W. Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Calamari, L.; Petrera, F.; Stefanini, L.; Abeni, F. Effects of different feeding time and frequency on metabolic conditions and milk production in heat-stressed dairy cows. Int. J. Biometeorol. 2013, 57, 785–796. [Google Scholar] [CrossRef]
- Polsky, L.; Von Keyserlingk, M.A.G. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [Green Version]
- Heinicke, J.; Hoffmann, G.; Ammon, C.; Amon, B.; Amon, T. Effects of the daily heat load duration exceeding determined heat load thresholds on activity traits of lactating dairy cows. J. Therm. Biol. 2018, 77, 67–74. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S. Relationship between THI level and dairy cows’ behaviour during summer period. Ital. J. Anim. Sci. 2018, 17, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, L.; Chen, X.; Lu, Y.; Wang, D. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress—A review. Asian-Australas. J. Anim. Sci. 2019, 32, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- Bohmanova, J.; Misztal, I.; Cole, J.B. Temperature-humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef]
- Kim, W.S.; Lee, J.-S.; Jeon, S.W.; Peng, D.Q.; Kim, Y.S.; Bae, M.H.; Jo, Y.H.; Lee, H.G. Correlation between blood, physiological and behavioral parameters in beef calves under heat stress. Asian-Australas. J. Anim. Sci. 2018, 31, 919–925. [Google Scholar] [CrossRef]
- Thom, E.C. Cooling degrees: Day air-conditioning, heating and ventilating. Trans. Am. Soc. Heat. 1958, 55, 65–69. [Google Scholar]
- LCI. Patterns of Transit Losses; Livestock Conservation: Omaha, NE, USA, 1970. [Google Scholar]
- Johnson, H.D. Environmental management of cattle to minimize the stress of climatic changes. Int. J. Biometeorol. 1980, 24, 65–78. [Google Scholar]
- West, J.W.; Mullinix, B.G.; Bernard, J.K. Effects of Hot, Humid Weather on Milk Temperature, Dry Matter Intake, and Milk Yield of Lactating Dairy Cows. J. Dairy Sci. 2003, 86, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Vitali, A.; Segnalini, M.; Bertocchi, L.; Bernabucci, U.; Nardone, A.; Lacetera, N. Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows. J. Dairy Sci. 2009, 92, 3781–3790. [Google Scholar] [CrossRef] [Green Version]
- Gernand, E.; Konig, S.; Kipp, C. Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health. J. Dairy Sci. 2019, 102, 6660–6671. [Google Scholar] [CrossRef]
- Akyuz, A.; Boyaci, S.; Cayli, A. Determination of Critical Period for Dairy Cows Using Temperature Humidity Index. J. Anim. Vet. Adv. 2010, 9, 1824–1827. [Google Scholar] [CrossRef]
- Jeelani, R.; Konwar, D.; Khan, A.; Kumar, D.; Chakraborty, D.; Brahma, B. Reassessment of temperature-humidity index for measuring heat stress in crossbred dairy cattle of a sub-tropical region. J. Therm. Biol. 2019, 82, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; McGrath, D. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma 2004, 119, 261–275. [Google Scholar] [CrossRef]
- Sivrikaya, F.; Baskent, E.Z.; Sevik, U.; Akgul, C.; Kadiogullari, A.İ.; Degermenci, A.S. A GIS-based decision support system for forest management plans in Turkey. Environ. Eng. Manag. J. 2010, 9, 929–937. [Google Scholar] [CrossRef]
- Golbon, R.; Cotter, M.; Mahbod, M.; Sauerborn, J. Global Assessment of Climate-Driven Susceptibility to South American Leaf Blight of Rubber Using Emerging Hot Spot Analysis and Gridded Historical Daily Data. Forests 2019, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Mondal, B.; Dolui, G.; Pramanik, M.; Maity, S.; Biswas, S.S.; Pal, R. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecol. Indic. 2017, 83, 62–73. [Google Scholar] [CrossRef]
- Siles, G.; Charland, A.; Voirin, Y.; Bénié, G.B. Integration of landscape and structure indicators into a web-based geoinformation system for assessing wetlands status. Ecol. Indic. 2019, 52, 166–176. [Google Scholar] [CrossRef]
- Avila-Sandoval, C.; Júnez-Ferreira, H.; González-Trinidad, J.; Bautista-Capetillo, C.; Pacheco-Guerrero, A.; Olmos-Trujillo, E. Spatio-Temporal Analysis of Natural and Anthropogenic Arsenic Sources in Groundwater Flow Systems. Int. J. Environ. Res. Public Health 2018, 15, 2374. [Google Scholar] [CrossRef] [Green Version]
- Suryabhagavan, K.V. GIS-based climate variability and drought characterization in Ethiopia over three decades. Weather Clim. Extrem. 2017, 15, 11–23. [Google Scholar] [CrossRef]
- Praene, J.P.; Malet-Damour, B.; Radanielina, M.H.; Fontaine, L.; Rivière, G. GIS-based approach to identify climatic zoning: A hierarchical clustering on principal component analysis. Build. Environ. 2019, 164, 106330. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Woodward, N.T.; Unger, D.; Hung, I.K.; Oswald, B.P.; Farrish, K.W. A GIS tool for plant spatial pattern analysis. Environ. Modell. Softw. 2011, 26, 1251–1254. [Google Scholar] [CrossRef] [Green Version]
- Ganasri, B.P.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef] [Green Version]
- Akumu, C.E.; Baldwin, K.; Dennis, S. GIS-based modeling of forest soil moisture regime classes: Using Rinker Lake in northwestern Ontario, Canada as a case study. Geoderma 2019, 351, 25–35. [Google Scholar] [CrossRef]
- Güler, M. An evaluation of risky sites for cattle production in northern Turkey based on temperature/humidity index calculated using GIS and indicator kriging. Meteorol. Appl. 2015, 22, 360–367. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Lara, L.J.; Rostagno, M.H. Impact of Heat Stress on Poultry Production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Leinonen, I.; Williams, A.G.; Kyriazakis, I. The effects of welfare-enhancing system changes on the environmental impacts of broiler and egg production. Poult. Sci. 2014, 93, 256–266. [Google Scholar] [CrossRef]
- Robinson, P.J. On the definition of a heat wave. J. Appl. Meteorol. 2001, 40, 762–775. [Google Scholar] [CrossRef]
- Wu, J. The distributions of Chinese yak breeds in response to climate change over the past 50 years. Anim. Sci. J. 2016, 87, 947–958. [Google Scholar] [CrossRef]
- Pinto, S.; Hoffmann, G.; Ammon, C.; Amon, B.; Heuwieser, W.; Halachmi, I.; Banhazi, T.; Amon, T. Influence of Barn Climate, Body Postures and Milk Yield on the Respiration Rate of Dairy Cows. Ann. Anim. Sci. 2019, 19, 469–481. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, C.; Chen, H.; Li, R.; Chong, Q.; Xiao, H.; Chen, S. Genome-wide scan of selection signatures in Dehong humped cattle for heat tolerance and disease resistance. Anim. Genet. 2019, 51, 292–299. [Google Scholar] [CrossRef]
- Wang, J.; He, Y.; Pang, K.; Zeng, Q.; Zhang, X.; Ren, F.; Guo, H. Changes in milk yield and composition of colostrum and regular milk from four buffalo breeds in China during lactation. J. Sci. Food Agric. 2019, 99, 5799–5807. [Google Scholar] [CrossRef] [PubMed]
- Scharf, B.; Carroll, J.A.; Riley, D.G.; Chase, C.C., Jr.; Coleman, S.W.; Keisler, D.H.; Weaber, R.L.; Spiers, D.E. Evaluation of physiological and blood serum differences in heat-tolerant (Romosinuano) and heat-susceptible (Angus) Bos taurus cattle during controlled heat challenge. J. Anim. Sci. 2010, 88, 2321–2336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McManus, C.; Castanheira, M.; Paiva, S.R.; Louvandini, H.; Fioravanti, M.C.; Paludo, G.R.; Bianchini, E.; Correa, P.S. Use of multivariate analyses for determining heat tolerance in Brazilian cattle. Trop. Anim. Health Prod. 2011, 43, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, X.; Qu, K.; Li, F.; Jia, P.; Chen, Q.; Chen, N.; Zhang, J.; Chen, H.; Huang, B.; Lei, C. Abundant Genetic Diversity of Yunling Cattle Based on Mitochondrial Genome. Animals 2019, 9, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla, L.; Matsui, T.; Kamiya, Y.; Kamiya, M.; Tanaka, M.; Yano, H. Heat stress decreases plasma vitamin C concentration in lactating cows. Livest. Sci. 2006, 101, 300–304. [Google Scholar] [CrossRef]
- Koyama, H.; Ikeda, S.; Sugimoto, M.; Kume, S. Effects of folic acid on the development and oxidative stress of mouse embryos exposed to heat stress. Reprod. Domest. Anim. 2012, 47, 921–927. [Google Scholar] [CrossRef]
- Hassanpour, H.; Moghaddam, A.K.Z.; Khosravi, M.; Mayahi, M. Effects of synbiotic on the intestinal morphology and humoral immune response in broiler chickens. Livest. Sci. 2013, 153, 116–122. [Google Scholar] [CrossRef]
- Nikkhah, A.; Kianzad, D.; Hajhosseini, A.; Zalbeyk, A. Protected methionine prolonged provision improves summer production and reproduction of lactating dairy cows. Pak. J. Biol. Sci. 2013, 16, 558–563. [Google Scholar] [CrossRef]
- Song, X.; Luo, J.; Fu, D.; Zhao, X.; Bunlue, K.; Xu, Z.; Qu, M. Traditional chinese medicine prescriptions enhance growth performance of heat stressed beef cattle by relieving heat stress responses and increasing apparent nutrient digestibility. Asian-Australas J. Anim. Sci. 2014, 27, 1513–1520. [Google Scholar] [CrossRef] [Green Version]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Rejeb, M.; Sadraoui, R.; Najar, T. Role of Vitamin C on Immune Function under Heat Stress Condition in Dairy Cows. Asian J. Anim. Vet. Adv. 2016, 11, 717–724. [Google Scholar] [CrossRef]
- Marcillac-Embertson, N.M.; Robinson, P.H.; Fadel, J.G.; Mitloehner, F.M. Effects of shade and sprinklers on performance, behavior, physiology, and the environment of heifers. J. Dairy Sci. 2009, 92, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Boyd, B.M.; Shackelford, S.D.; Hales, K.E.; Brown-Brandl, T.M.; Bremer, M.L.; Spangler, M.L.; Wheeler, T.L.; King, D.A.; Erickson, G.E. Effects of shade and feeding zilpaterol hydrochloride to finishing steers on performance, carcass quality, heat stress, mobility, and body temperature. J. Anim. Sci. 2015, 93, 5801–5811. [Google Scholar] [CrossRef] [PubMed]
- Van Laer, E.; Tuyttens, F.A.; Ampe, B.; Sonck, B.; Moons, C.P.; Vandaele, L. Effect of summer conditions and shade on the production and metabolism of Holstein dairy cows on pasture in temperate climate. Animal 2015, 9, 1547–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giro, A.; Pezzopane, J.R.M.; Barioni Junior, W.; Pedroso, A.F.; Lemes, A.P.; Botta, D.; Romanello, N.; Barreto, A.D.N.; Garcia, A.R. Behavior and body surface temperature of beef cattle in integrated crop-livestock systems with or without tree shading. Sci. Total Environ. 2019, 684, 587–596. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S. The effect of heat stress on time spent lying by cows in a housing system. Ann. Anim. Sci. 2018, 18, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Ranjitkar, S.; Bu, D.; Van Wijk, M.; Ma, Y.; Ma, L.; Zhao, L.; Shi, J.; Liu, C.; Xu, J. Will heat stress take its toll on milk production in China? Clim. Chang. 2020, 161, 637–652. [Google Scholar] [CrossRef]
- Skibiel, A.L.; Fabris, T.F.; Corra, F.N.; Torres, Y.M.; McLean, D.J.; Chapman, J.D.; Kirk, D.J.; Dahl, G.E.; Laporta, J. Effects of feeding an immunomodulatory supplement to heat-stressed or actively cooled cows during late gestation on postnatal immunity, health, and growth of calves. J. Dairy Sci. 2017, 100, 7659–7668. [Google Scholar] [CrossRef] [Green Version]
- Batistel, F.; Arroyo, J.M.; Bellingeri, A.; Wang, L.; Saremi, B.; Parys, C.; Trevisi, E.; Cardoso, F.C.; Loor, J.J. Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. J. Dairy Sci. 2017, 100, 7455–7467. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, A.A.; Aggarwal, A.; Indu, B.; Aarif, O. Inorganic zinc supplementation modulates heat shock and immune response in heat stressed peripheral blood mononuclear cells of periparturient dairy cows. Theriogenology 2017, 95, 75–82. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, J.; Ye, G.; Gan, F.; Hamid, M.; Liao, S.; Huang, K. Protective effects of zymosan on heat stress-induced immunosuppression and apoptosis in dairy cows and peripheral blood mononuclear cells. Cell Stress Chaperones 2018, 23, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Kekana, T.W.; Nherera-Chokuda, F.V.; Muya, M.C.; Manyama, K.M.; Lehloenya, K.C. Milk production and blood metabolites of dairy cattle as influenced by thermal-humidity index. Trop. Anim. Health Pro. 2018, 50, 921–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Yang, Y.; Zhao, X.; Wang, F.; Gao, S.; Bu, D. Heat stress induces proteomic changes in the liver and mammary tissue of dairy cows independent of feed intake: An iTRAQ study. PLoS ONE 2019, 14, e0209182. [Google Scholar] [CrossRef] [PubMed]
- Ning, Q.; Qu, K.; Hanif, Q.; Jia, Y.; Cheng, H.; Zhang, J.; Chen, N.; Chen, H.; Huang, B.; Lei, C. MTOR Variation Related to Heat Resistance of Chinese Cattle. Animals 2019, 9, 915. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Huang, B.; Lai, Z.; Li, S.; Wu, F.; Qu, K.; Jia, Y.; Hou, J.; Liu, J.; Lei, C.; et al. The Distribution Characteristics of a 19-bp Indel of the PLAG1 Gene in Chinese Cattle. Animals 2019, 9, 1082. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Ma, Y.; Liu, L.; Kang, L.; Brito, L.F.; Wang, D.; Wu, H.; Liu, A.; Wang, Y.; Xu, Q. Detection of functional polymorphisms in the hsp70 gene and association with cold stress response in Inner-Mongolia Sanhe cattle. Cell Stress Chaperon. 2019, 24, 409–418. [Google Scholar] [CrossRef]
- Shen, J.; Hanif, Q.; Cao, Y.; Yu, Y.; Lei, C.; Zhang, G.; Zhao, Y. Whole Genome Scan and Selection Signatures for Climate Adaption in Yanbian Cattle. Front. Genet. 2020, 11, 94. [Google Scholar] [CrossRef]
- Calegari, F.; Calamari, L.; Frazzi, E. Misting and fan cooling of the rest area in a dairy barn. Int. J. Biometeorol. 2012, 56, 287–295. [Google Scholar] [CrossRef]
- Cheng, J.-B.; Fan, C.-Y.; Sun, X.-Z.; Wang, J.-Q.; Zheng, N.; Zhang, X.-K.; Qin, J.-J.; Wang, X.-M. Effects of Bupleurum extract on blood metabolism, antioxidant status and immune function in heat-stressed dairy cows. J. Integr. Agric. 2018, 17, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Conte, G.; Ciampolini, R.; Cassandro, M.; Lasagna, E.; Calamari, L.; Bernabucci, U.; Abeni, F. Feeding and nutrition management of heat-stressed dairy ruminants. Ital. J. Anim. Sci. 2018, 17, 604–620. [Google Scholar] [CrossRef] [Green Version]
- Negron-Perez, V.M.; Fausnacht, D.W.; Rhoads, M.L. Invited review: Management strategies capable of improving the reproductive performance of heat-stressed dairy cattle. J. Dairy Sci. 2019, 102, 10695–10710. [Google Scholar] [CrossRef] [PubMed]
Climate Region | Tropical | Arid | Temperate | Cold | Polar |
---|---|---|---|---|---|
January | 73 | 35 | 53 | 33 | 35 |
February | 75 | 42 | 56 | 39 | 38 |
March | 79 | 52 | 62 | 48 | 43 |
April | 84 | 62 | 71 | 59 | 47 |
May | 86 | 69 | 77 | 67 | 52 |
June | 87 | 74 | 81 | 73 | 56 |
July | 87 | 78 | 85 | 77 | 59 |
August | 86 | 76 | 84 | 76 | 58 |
September | 85 | 70 | 79 | 69 | 54 |
October | 82 | 60 | 72 | 58 | 47 |
November | 78 | 48 | 64 | 45 | 41 |
December | 74 | 38 | 56 | 35 | 37 |
Mean | 81 | 59 | 70 | 57 | 47 |
Variables | Latitude | Longitude | Elevation |
---|---|---|---|
January | −0.94 ** | −0.08 * | −0.11 ** |
February | −0.91 ** | −0.07 * | −0.16 ** |
March | −0.85 ** | −0.07 | −0.29 ** |
April | −0.72 ** | 0.05 | −0.54 ** |
May | −0.59 ** | 0.2 ** | −0.71 ** |
June | −0.43 ** | 0.32 ** | −0.83 ** |
July | −0.35 ** | 0.42 ** | −0.89 ** |
August | −0.41 ** | 0.40 ** | −0.87 ** |
September | −0.61 ** | 0.28 ** | −0.74 ** |
October | −0.77 ** | 0.16 ** | −0.57 ** |
November | −0.92 ** | 0.01 | −0.30 ** |
December | −0.95 ** | −0.06 | −0.15 ** |
Probability (%) | 0–24 | 25–49 | 50–74 | 75–84 | 85–100 |
---|---|---|---|---|---|
January | |||||
February | 99.81 | 0.19 | |||
March | 99.32 | 0.65 | 0.03 | ||
April | 98.19 | 1.10 | 0.47 | 0.12 | 0.12 |
May | 91.65 | 1.78 | 1.35 | 0.66 | 4.55 |
June | 65.13 | 11.63 | 5.13 | 3.61 | 14.50 |
July | 33.44 | 19.43 | 17.04 | 5.48 | 24.60 |
August | 47.85 | 14.84 | 10.54 | 4.89 | 21.89 |
September | 82.84 | 4.12 | 2.91 | 2.38 | 7.74 |
October | 95.68 | 1.29 | 0.88 | 0.45 | 1.69 |
November | 100.00 | ||||
December |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhong, R.; Zhou, D. Temporal–Spatial Distribution of Risky Sites for Feeding Cattle in China Based on Temperature/Humidity Index. Agriculture 2020, 10, 571. https://doi.org/10.3390/agriculture10110571
Wang T, Zhong R, Zhou D. Temporal–Spatial Distribution of Risky Sites for Feeding Cattle in China Based on Temperature/Humidity Index. Agriculture. 2020; 10(11):571. https://doi.org/10.3390/agriculture10110571
Chicago/Turabian StyleWang, Ting, Rongzhen Zhong, and Daowei Zhou. 2020. "Temporal–Spatial Distribution of Risky Sites for Feeding Cattle in China Based on Temperature/Humidity Index" Agriculture 10, no. 11: 571. https://doi.org/10.3390/agriculture10110571
APA StyleWang, T., Zhong, R., & Zhou, D. (2020). Temporal–Spatial Distribution of Risky Sites for Feeding Cattle in China Based on Temperature/Humidity Index. Agriculture, 10(11), 571. https://doi.org/10.3390/agriculture10110571