Italian Zeolitites in the Control of Grey Mould and Sour Rot and Their Effect on Leaf Reflectance, Grape and Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zeolitite Based Products
2.2. Zeolitite Application and Disease Assessment
2.3. Effect of the Zeolitite Residue on Leaf Reflectance and on Grape and Wine Composition
2.3.1. Leaf Reflectance
2.3.2. Grape and Wine Composition
2.4. Statistical Analysis
3. Results
3.1. Zeolitite Activity
3.2. Effect of the Zeolitite Residue on Leaf Reflectance and on Grape and Wine Composition
3.2.1. Leaf Reflectance
3.2.2. Grape and Wine Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Johnston, P.R.; Seifert, K.A.; Stone, J.K.; Rossman, A.Y.; Marvanová, L. Recommendations on generic names competing for use in Leotiomycetes (Ascomycota). IMA Fungus 2014, 5, 91–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steel, C.C.; Blackman, J.W.; Schmidtke, L.M. Grapevine Bunch Rots: Impacts on Wine Composition, Quality, and Potential Procedures for the Removal of Wine Faults. J. Agric. Food Chem. 2013, 61, 5189–5206. [Google Scholar] [CrossRef] [PubMed]
- Zoecklein, B.W.; Williams, J.M.; Duncan, S.E. Effect of Sour Rot on the Composition of White Riesling (Vitis vinifera L.) Grapes. Small Fruits Rev. 2000, 1, 63–77. [Google Scholar] [CrossRef]
- Barata, A.; Gonzã¡lez, S.; Malfeito-Ferreira, M.; Querol, A.; Loureiro, V. Sour rot-damaged grapes are sources of wine spoilage yeasts. FEMS Yeast Res. 2008, 8, 1008–1017. [Google Scholar] [CrossRef] [Green Version]
- Calzarano, F.; Valentini, G.; Arfelli, G.; Seghetti, L.; Manetta, A.C.; Metruccio, E.G.; Di Marco, S. Activity of Italian natural chabasite-rich zeolitites against grey mould, sour rot and grapevine moth, and effects on grape and wine composition. Phytopathol. Mediterr. 2019, 58, 307–321. [Google Scholar] [CrossRef]
- Hall, M.E.; Loeb, G.M.; Wilcox, W.F. Control of Sour Rot via Chemical and Canopy Management Techniques. Am. J. Enol. Vitic. 2018, 69, 342–350. [Google Scholar] [CrossRef]
- Marois, J.J.; Nelson, J.K.; Morrison, J.C.; Lile, L.S.; Bledsoe, A.M. The influence of berry contact within grape clusters on the development of Botrytis cinerea and epicuticolar wax. Am. J. Enol. Vitic. 1986, 37, 293–296. [Google Scholar]
- Barata, A.; Santos, S.C.; Malfeito-Ferreira, M.; Loureiro, V. New Insights into the Ecological Interaction Between Grape Berry Microorganisms and Drosophila Flies During the Development of Sour Rot. Microb. Ecol. 2012, 64, 416–430. [Google Scholar] [CrossRef]
- Vogel, A.R.; White, R.S.; MacAllister, C.; Hickey, C.C. Fruit Zone Leaf Removal Timing and Extent Alters Bunch Rot, Primary Fruit Composition, and Crop Yield in Georgia-grown ‘Chardonnay’ (Vitis vinifera L.). HortScience 2020, 55, 1654–1661. [Google Scholar] [CrossRef]
- Vanderweide, J.; Frioni, T.; Ma, Z.; Stoll, M.; Poni, S.; Sabbatini, P. Early Leaf Removal as a Strategy to Improve Ripening and Lower Cluster Rot in Cool Climate (Vitis vinifera L.) Pinot Grigio. Am. J. Enol. Vitic. 2019, 71, 70–79. [Google Scholar] [CrossRef]
- Passaglia, E.; Sheppard, R.A. The Crystal Chemistry of Zeolites. Natural Zeolites 2001, 45, 69–116. [Google Scholar] [CrossRef]
- Jha, B.; Singh, D.N. Fly Ash Zeolites; Springer Science and Business Media LLC: Berlin, Germany, 2016; Volume 78, p. 211. [Google Scholar]
- Bish, D.L.; Ming, D.W. Natural Zeolites: Occurrence, Properties, Application; Mineralogical Society of America: Chantilly, VA, USA, 2001; p. 654. [Google Scholar]
- Eroglu, N. A review: Insecticidal potential of Zeolite (Clinoptilolite), toxicity ratings and general properties of Turkish Zeolites. In Proceedings of the 11th International Working Conference on Stored Product Protection, Chiang Mai, Thailand, 24–28 November 2014; pp. 755–767. [Google Scholar]
- Malekian, R.; Abedi-Koupai, J.; Eslamian, S.S. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. J. Hazard. Mater. 2011, 185, 970–976. [Google Scholar] [CrossRef]
- Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of Zeolites for Sustainable Agriculture: A Review on Water and Nutrient Retention. Water Air Soil Pollut. 2017, 228, 464. [Google Scholar] [CrossRef]
- De Smedt, C.; Steppe, K.; Spanoghe, P. Beneficial effects of zeolites on plant photosynthesis. Adv. Mater. Sci. 2017, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, C.; Someus, E.; Spanoghe, P. Potential and actual uses of zeolites in crop protection. Pest Manag. Sci. 2015, 71, 1355–1367. [Google Scholar] [CrossRef]
- Mercurio, M.; Bish, D.L.; Cappelletti, P.; De Gennaro, B.; Grifa, C.; Izzo, F.; Morra, V.; Langella, A. The combined use of steam-treated bentonites and natural zeolites in the oenological refining process. Miner. Mag. 2016, 80, 347–362. [Google Scholar] [CrossRef]
- Malferrari, D.; Laurora, A.; Brigatti, M.F.; Coltorti, M.; Di Giuseppe, D.; Faccini, B.; Passaglia, E.; Vezzalini, M.G. Open-field experimentation of an innovative and integrated zeolitite cycle: Project definition and material characterization. Rendiconti Lince 2013, 24, 141–150. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts, In Third Earth Resources Technology Satellite–1 Symposium. Volume I: Technical Presentations, Nasa SP-351; Freden, S.C., Mercanti, E.P., Becker, M., Eds.; NASA: Washington, DC, USA, 1974; pp. 309–317.
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- AA.VV. Methods of Community Analysis to Use in Wine Sector. In Official Gazette of the European Communities, 3 October 1990, No. 2676/90; Commission Regulation (EEC): Brussels, Belgium, 1990. [Google Scholar]
- Di Marco, S.; Osti, F.; Bossio, D.; Nocentini, M.; Cinelli, T.; Calzarano, F.; Mugnai, L. Electrolyzed acid water: A clean technology active on fungal vascular pathogens in grapevine nurseries. Crop. Prot. 2019, 119, 88–96. [Google Scholar] [CrossRef]
- Calzarano, F.; Stagnari, F.; D’Egidio, S.; Pagnani, G.; Galieni, A.; Di Marco, S.; Metruccio, E.G.; Pisante, M. Durum Wheat Quality, Yield and Sanitary Status under Conservation Agriculture. Agriculture 2018, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Parrilli, M.; Sommaggio, D.; Tassini, C.; Di Marco, S.; Osti, F.; Ferrari, R.; Metruccio, E.; Masetti, A.; Burgio, G. The role of Trichoderma spp. and silica gel in plant defence mechanisms and insect response in vineyard. Bull. EÈntomol. Res. 2019, 109, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Calzarano, F.; University of Teramo, Teramo, Italy. Personal Communication, 2020.
- Glenn, D.M.; Puterka, G.J. Particle Films: A New Technology for Agriculture. Hortic. Rev. 2010, 31, 1–44. [Google Scholar] [CrossRef]
- Tatlier, M.; Munz, G.; Henninger, S.K. Relation of water adsorption capacities of zeolites with their structural properties. Micropor. Mesopor. Mater. 2018, 264, 70–75. [Google Scholar] [CrossRef]
- Walters, D.R. Disguising the Leaf Surface: The Use of Leaf Coatings for Plant Disease Control. Eur. J. Plant. Pathol. 2006, 114, 255–260. [Google Scholar] [CrossRef]
- Agrisana, S.R.L.; Latina, Italy. Personal communication, 2020.
- Gullino, M.L.; Morando, A. Copper compounds: Old products, still very effective in modern viticulture. Vignevini 1984, 11, 35–37. [Google Scholar]
- Aleksić, G.; Milićević, Z.; Kuzmanović, S.; Starović, M.; Stevanović, M.; Delibašić, G.; Živković, S. Efficacy of copper citrate in grapevine disease control. Pestic. Fitomed. 2019, 34, 103–109. [Google Scholar] [CrossRef]
- Conde, A.; Pimentel, D.; Neves, A.; Dinis, L.-T.; Bernardo, S.; Correia, C.M.; Gerós, H.; Moutinho-Pereira, J. Kaolin Foliar Application Has a Stimulatory Effect on Phenylpropanoid and Flavonoid Pathways in Grape Berries. Front. Plant. Sci. 2016, 7, 1150. [Google Scholar] [CrossRef] [Green Version]
- Baránek, M.; Armengol, J.; Holleinová, V.; Pečenka, J.; Calzarano, F.; Peňázová, E.; Vachůn, M.; Eichmeier, A. Incidence of symptoms and fungal pathogens associated with grapevine trunk diseases in Czech vineyards: First example from a north-eastern European grape-growing region. Phytopathol. Mediterr. 2018, 57, 449–458. [Google Scholar] [CrossRef]
Treatment 1 | Active Ingredients | Dose (Kg/L ha−1) |
---|---|---|
1—ICZ | Italian chabasite-rich zeolitite | 15 |
2—ICZCu | Italian copper chabasite-rich zeolitite | 4 |
3—Untreated Control | / | / |
Parameter | Unit of Measurement | Sample | Method of Analysis |
---|---|---|---|
Malic acid | g L −1 | Wines | Enzymatic |
Tartaric acid | g L −1 | Wines | Spectrophotometric |
Total acidity | g L −1 | Berries and wines | Acid/base titration |
Soluble solids | ° Brix | Berries | Fehling |
pH 20 °C | - | Berries and wines | Potentiometric |
Ethyl alcohol | % vol. | Wines | Distillation |
Grey Mould | Sour Rot | ||||
---|---|---|---|---|---|
Survey | Treatment | Incidence | Severity | Incidence | Severity |
% | % | ||||
12/09/2018 | 1—ICZ | 6.11 b | 0.19 b | 11.11 b | 0.38 b |
2—ICZCu | 3.89 b | 0.08 b | 7.78 b | 0.33 b | |
3—Untreated Control | 23.89 a | 2.61 a | 40.00 a | 3.86 a | |
08/09/2019 | 1—ICZ | 4.44 b | 0.06 b | 7.22 b | 0.19 b |
2—ICZCu | 5.00 b | 0.08 b | 4.44 b | 0.19 b | |
3—Untreated Control | 16.11 a | 0.91 a | 28.33 a | 1.50 a |
Upper Zone Vines | Central Zone Vines | Lower Zone Vines | ||||
---|---|---|---|---|---|---|
Treatment | NDVI | GNDVI | NDVI | GNDVI | NDVI | GNDVI |
1—ICZ-1 | 0.825 a | 0.513 a | 0.807 a | 0.515 a | 0.822 a | 0.554 a |
2—ICZCu-1 | 0.813 ab | 0.535 a | 0.809 a | 0.517 a | 0.808 a | 0.517 ab |
3—ICZ-2 | 0.755 bc | 0.479 ab | 0.756 b | 0.473 b | 0.745 b | 0.460 bc |
4—ICZCu-2 | 0.728 c | 0.400 b | 0.736 b | 0.438 b | 0.727 b | 0.427 c |
5—Control | 0.791 ab | 0.499 a | 0.811 a | 0.518 a | 0.803 a | 0.513 ab |
Treatment | Yield | Soluble Solids | pH | Total Acidity | Grape Seed Weight | Grape Berry Weight |
---|---|---|---|---|---|---|
(Kg vine−1) | (° Brix) | (g L−1) | (g L−1) | (g L−1) | ||
1—ICZ-1 | 12.8 a | 20.0 ab | 3.4 a | 5.7 ab | 0.4 a | 2.4 a |
2—ICZCu-1 | 12.9 a | 21.1 a | 3.4 a | 5.0 b | 0.4 a | 2.4 a |
3—ICZ-2 | 13.0 a | 19.8 ab | 3.4 a | 5.7 ab | 0.4 a | 2.3 a |
4—ICZCu-2 | 12.9 a | 20.8 a | 3.4 a | 5.2 ab | 0.5 a | 2.4 a |
5—Control | 12.9 a | 19.0 b | 3.4 a | 6.0 a | 0.4 a | 2.3 a |
Treatment | Ethyl Alcohol | Residual Sugars | pH | Total Acidity | Volatile Acidity | Malic Acid | Tartaric Acid |
---|---|---|---|---|---|---|---|
(% vol.) | (g L−1) | (g L−1) | (g L−1) | (g L−1) | (g L−1) | ||
1—ICZ-1 | 12.3 ab | 1.2 a | 3.3 a | 5.6 ab | 0.5 a | 1.6 ab | 3.4 a |
2—ICZCu-1 | 13.0 a | 1.2 a | 3.3 a | 5.3 b | 0.5 a | 1.4 b | 3.2 a |
3—ICZ-2 | 12.4 ab | 1.2 a | 3.3 a | 5.5 ab | 0.5 a | 1.6 ab | 3.4 a |
4—ICZCu-2 | 12.9 a | 1.1 a | 3.3 a | 5.3 b | 0.5 a | 1.4 b | 3.4 a |
5—Control | 11.8 b | 1.3 a | 3.3 a | 5.9 a | 0.5 a | 1.8 a | 3.4 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calzarano, F.; Seghetti, L.; Pagnani, G.; Di Marco, S. Italian Zeolitites in the Control of Grey Mould and Sour Rot and Their Effect on Leaf Reflectance, Grape and Wine. Agriculture 2020, 10, 580. https://doi.org/10.3390/agriculture10120580
Calzarano F, Seghetti L, Pagnani G, Di Marco S. Italian Zeolitites in the Control of Grey Mould and Sour Rot and Their Effect on Leaf Reflectance, Grape and Wine. Agriculture. 2020; 10(12):580. https://doi.org/10.3390/agriculture10120580
Chicago/Turabian StyleCalzarano, Francesco, Leonardo Seghetti, Giancarlo Pagnani, and Stefano Di Marco. 2020. "Italian Zeolitites in the Control of Grey Mould and Sour Rot and Their Effect on Leaf Reflectance, Grape and Wine" Agriculture 10, no. 12: 580. https://doi.org/10.3390/agriculture10120580
APA StyleCalzarano, F., Seghetti, L., Pagnani, G., & Di Marco, S. (2020). Italian Zeolitites in the Control of Grey Mould and Sour Rot and Their Effect on Leaf Reflectance, Grape and Wine. Agriculture, 10(12), 580. https://doi.org/10.3390/agriculture10120580